LECTURE 17

Last time

• Lower bound for testing triangle-freeness
• Canonical testers for the dense graph model

Today

• Approximating the average degree
Graph Models for Sublinear Algorithms

Dense Graph Model
• Input is represented by adjacency matrix
• Access: Adjacency queries: Is \((i, j)\) an edge?
• For property testing, distance is normalized by \(n^2\) or \(\binom{n}{2}\)

Bounded Degree Model
• Input is represented by adjacency lists of length \(\Delta\) (degree bound)
• Access: Neighbor queries: What is the \(i\)th neighbor of vertex \(v\)?
• For property testing, distance is normalized by \(\Delta n\)

General Graph Model
• Input is represented by adjacency lists and adjacency matrix, sometimes with additional data structures
• Access: adjacency, neighbor and degree queries
• For property testing, distance is normalized by \(m\)
Approximating the Average Degree

Input: parameters ε, n, access to an undirected n-node graph $G = (V, E)$ represented by adjacency lists.

Queries

• **Degree queries:** given vertex v, return its degree $d(v)$
• **Neighbor queries:** given (v, i), return the i-th neighbor of v

Goal: Return, w.p. at least $2/3$, an estimate \hat{d} for the average degree $\bar{d} = \frac{1}{n} \sum_{v \in V} d(v)$

Estimating the average degree is equivalent to estimating the number of edges:

$$\bar{d} = \frac{2m}{n}$$
Estimating the Average Degree: Results

• An estimate \(\hat{d} \) is a \(c \)-approximation for \(\bar{d} \) if

\[
\bar{d} \leq \hat{d} \leq c \cdot \bar{d}
\]

• Assumption: \(\bar{d} \geq 1 \)

• [Feige 06]: \((2 + \varepsilon)\)-approximation with \(\tilde{O}(\sqrt{n}) \) degree queries
Need \(\Omega(n) \) degree queries to get better than \(2 \)-approximation

• [Goldreich Ron 08]: \((1 + \varepsilon)\)-approximation with \(\tilde{O}(\sqrt{n}) \) degree and neighbor queries
Simple Lower Bounds

- Need $\Omega(n)$ queries to get a c-approximation to the average of numbers $x_1, \ldots, x_n \in \{0,1,\ldots,n-1\}$ for any constant c

Proof: Use Yao’s Minimax. To distinguish between

- all numbers are 1
 - the average is 1
- random c numbers are n-1 and the rest are 1
 - the average is $> c$

we need $\Omega\left(\frac{n}{c}\right) = \Omega(n)$ queries.

But degree sequences are special!

1 1 1 1 1 1 1 1 1 n-1 n-1 is not a degree sequence
Simple Lower Bounds

- Need $\Omega(\sqrt{n})$ degree queries to get a c-approximation for any constant c

Proof: Use Yao’s Minimax. To distinguish between random isomorphisms of
 - a matching of $n/2$ edges
 - \sqrt{cn}-clique and a matching on remaining nodes

we need $\Omega\left(\frac{\sqrt{n}}{\sqrt{c}}\right) = \Omega(\sqrt{n})$ queries
Average: Degree Approximation Guarantee

- \(\Pr[|\hat{d} - \bar{d}| \geq \varepsilon \cdot \bar{d}] \leq \frac{1}{3} \)

- In particular, \(\hat{d} \) is an unbiased estimator: \(\mathbb{E}[\hat{d}] = \bar{d} \)

- The approximation guarantee is equivalent to \((1 + \varepsilon)\)-approximation
 \[
 (1 - \varepsilon) \cdot \bar{d} \leq \hat{d} \leq (1 + \varepsilon) \cdot \bar{d}
 \]
 \[
 \bar{d} \leq \frac{\hat{d}}{1 - \varepsilon} \leq \frac{1 + \varepsilon}{1 - \varepsilon} \cdot \bar{d}
 \]

 \[
 \frac{1 + \varepsilon}{1 - \varepsilon} \leq 1 + \frac{2\varepsilon}{1 - \varepsilon} \leq 1 + 4\varepsilon \text{ for } \varepsilon \leq 1/2
 \]

 Conclusion: \(\frac{\hat{d}}{1 - \varepsilon} \) gives a \((1 + \varepsilon')\)-approximation, where \(\varepsilon' = 4\varepsilon \)

- Amplification of success probability: If we want error probability \(\delta \),
 we repeat the algorithm \(\Theta \left(\log \frac{1}{\delta} \right) \) and output the median answer.
Main idea: To reduce variance, we will count each edge towards its endpoint with smaller degree.

- Define ordering on V: for $u, v \in V$, we say $u < v$ if $d(u) < d(v)$ or if $d(u) = d(v)$ and $id(u) < id(v)$.
- "Orient" the edges towards higher-ID nodes.
- Define $N(v)$ to be the set of neighbors of v.

Algorithm (Input: ϵ, n; degree and neighbor query access to $G=(V,E)$)

1. Set $k = \frac{12}{\epsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
2. For $i = 1$ to k do
 a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
 b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v
 c. If $u < v$, set $X_i = 2d(u)$
3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$
Analysis: Expectation

Algorithm (Input: ε, n; vertex and neighbor query access to $G=(V,E)$)

1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
2. For $i = 1$ to k do
 a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
 b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 c. If $u < v$, set $X_i = 2d(u)$
3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

- Let $d^+(u)$ denote the number of neighbors v of u with $u < v$.
- Let X denote one of the variables X_i. (They all have the same distribution.)
- Let U denote the random variable equal to the node u sampled in Step 2a.

\[\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|U]] \]

By the compact form of the Law of Total Expectation
\[\mathbb{E}[X|U] = \frac{d^+(U)}{d(U)} \cdot 2d(U) = 2d^+(U). \]
\[\mathbb{E}[X] = \mathbb{E}[2d^+(U)] = 2 \sum_{u \in V} \frac{1}{n} \cdot d^+(u) = \frac{2m}{n} = \bar{d} \]

$d^+(U)$ is # of neighbors v of U for which $X = 2d(U)$
Observation about Degrees

- Let $d^+(u)$ denote the number of neighbors v of u with $u < v$.
- Let $H \subseteq V$ be the set of the $\sqrt{2m}$ vertices with highest rank according to $<$.
- Let $L = V \setminus H$.

Observations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. For all $v \in H$, $d^+(v) < \sqrt{2m}$.</td>
<td>vertices with the highest degree</td>
</tr>
<tr>
<td>2. For all $v \in L$, $d(v) < \sqrt{2m}$.</td>
<td></td>
</tr>
</tbody>
</table>

Proof:

1. $d^+(v)$ is the number of neighbors of v of rank higher than v.

 If $v \in H$, it is among the $\sqrt{2m}$ vertices of the highest rank, so $d^+(v) < \sqrt{2m}$

2. Consider $v \in L$. All $u \in H$, by definition, have degree at least $d(v)$.

 Then the sum of all degrees, $2m$, is greater than $\sqrt{2m} \cdot d(v)$.

 That is, $d(v) < \frac{2m}{\sqrt{2m}} = \sqrt{2m}$
Analysis: Variance

- \(\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 < \mathbb{E}[X^2] \)
- \(\mathbb{E}[X^2] = \left[\mathbb{E}[X^2 | U] \right] \)

By the compact form of the Law of Total Expectation

\[
\mathbb{E}[X^2 | U] = \frac{d^+(U)}{d(U)} \cdot (2d(U))^2 = 4d^+(U) \cdot d(U).
\]

\[
\mathbb{E}[X^2] = \mathbb{E}[4d^+(U) \cdot d(U)] = 4 \sum_{u \in V} \frac{1}{n} \cdot d^+(u) \cdot d(u)
\]

\[
= \frac{4}{n} \left(\sum_{u \in H} d^+(u) \cdot d(u) + \sum_{u \in L} d^+(u) \cdot d(u) \right)
\]

\[
\leq \frac{4}{n} \left(\sum_{u \in H} \sqrt{2m} \cdot d(u) + \sum_{u \in L} d^+(u) \cdot \sqrt{2m} \right)
\]

\[
\leq \frac{4\sqrt{2m}}{n} \left(\sum_{u \in H} d(u) + \sum_{u \in L} d(u) \right) = 4\sqrt{2m} \cdot \bar{d}
\]

Reminders:
- \(d^+(u) = \) the # of neighbors \(v \) of \(u \) with \(u < v \).
- RV \(X \) denotes \(X_i \).
- RV \(U \) = the node \(u \) sampled in Step 2a.

Observation:
- \(\forall v \in H, d^+(v) < \sqrt{2m} \).
- \(\forall v \in L, d(v) < \sqrt{2m} \).
Analysis: Putting It All Together

Algorithm (Input: ε, n; vertex and neighbor query access to $G=(V,E)$)

1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$.
2. For $i = 1$ to k do
 a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$.
 b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 c. If $u < v$, set $X_i = 2d(u)$.
3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$.

- $\mathbb{E}[\hat{d}] = \mathbb{E}[X] = \tilde{d}$
- $\text{Var}[\hat{d}] = \frac{\text{Var}[X]}{k} \leq \frac{4\sqrt{2m} \cdot \tilde{d}}{k}$
- $\Pr[|\hat{d} - \tilde{d}| \geq \varepsilon \cdot \tilde{d}] = \Pr[|\hat{d} - \mathbb{E}[\hat{d}]| \geq \varepsilon \cdot \tilde{d}] \leq \frac{\text{Var}[\hat{d}]}{(\varepsilon \cdot \tilde{d})^2}$

\[
\frac{4\sqrt{2m} \cdot \tilde{d}}{k \cdot \varepsilon^2 \cdot \tilde{d}^2} = \frac{4\sqrt{2m} \cdot n}{k \cdot \varepsilon^2 \cdot 2m} = \frac{4n}{k \cdot \varepsilon^2 \cdot \sqrt{2m}} = \frac{4\sqrt{n}}{k \cdot \varepsilon^2 \cdot \sqrt{d}} \leq \frac{1}{3} \leq \frac{1}{3}
\]
Approximating the Average Degree: Run Time

Algorithm (Input: ε, n; vertex and neighbor query access to G=(V,E))

1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
2. For $i = 1$ to k do
 a. Sample a vertex $u \in V$ u.i.r. and query its degree $d(u)$
 b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 c. If $u \prec v$, set $X_i = 2d(u)$
3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Running time:

$$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$$

to get $\Pr[|\hat{d} - \bar{d}| \geq \varepsilon \cdot \bar{d}] \leq \frac{1}{3}$