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Testing Models

Property Tester Tolerant Property Tester
YES Accept with YES Accept with
probability > 2/3 probability > 2/3

‘ ﬂ
& |:> Don’t care 1€ ,
Er |:> Don’t care

Far from |:> Reject with Far from |:> Reject with
YES probability >2/3 YES probability =>2/3

Two objects are at distance ¢ = they differ in an & fraction of places
Equivalent problem: approximating distance to the property.




Why Hamming Distance?

e Nice probabilistic interpretation

— probability that two functions differ on a random point
in the domain

e Natural measure for
— algebraic properties (linearity, low degree)
— properties of graphs and other combinatorial objects

e Motivated by applications to probabilistically checkable
proofs (PCPs)

e [tis equivalent to other natural distances for

— properties of Boolean functions



Which stocks grew steadily?
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L,-Testing

for properties of real-valued data
[Berman Raskhodnikova Yaroslavtsev]



Use Lp-metrics to Measure Distances

e Functions f,g: D - |0,1] over (finite) domain D

Normalize the values, so they are between 0 and 1

e Forp=>1 /P
Ly(F.9) = |If = gll, = | D IF) = gGoP
X€ED
Lo(f,9) = |If —gl|l, = {x€D:f(x) # g}
If —gl
o dy(f,9) = |]|c|1|‘Tp|p
Example: 0 5 .3 .2.7

*—0—>0—0—0




L,-Testing and Tolerant L,,-Testing

Property Tester

=N

YES

Far from

YES

=)
=)

Accept with
probability > 2/3

Don’t care

Reject with
probability > 2/3

Tolerant Property Tester

™M
Y

Far from

NES

Accept with
probability > 2/3

|:> Don’t care

|:> Reject with
probability > 2/3

Functions f, g: D — [0,1] are at distance ¢ If d,, =

If-gly
I,




L,,-Testing Model for Real-Valued Data

e Generalizes standard L,-testing

e Forp > 0 still have a nice probabilistic interpretation:
distance d,,(f, g) = (E[|f — g|PD)/?

e Compatible with existing PAC-style learning models
(preprocessing for model selection)

* For Boolean functions, do(f, g) = d,(f, g)P.



Plan

1. Relationships between L, -testing models
Z. Ly-testing monotonicity



Relationships between
L,-Testing Models



Relationships Between L,,-Testing Models

C,(P,€) = complexity of L,,-testing property P
with distance parameter &
e e.g., queryortime complexity
e for general or restricted (e.g., nonadaptive) tests

/For all properties P I

e [4-testing is no harder than Hamming testing
Cl(P,E) < CO(PIS)
e L,-testing for p > 1is close in complexity to Lq-testing
k C1(P,g) < C,(P,&) < Cy(P,£P) .
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Relationships Between L,,-Testing Models

C,(P,g) = complexity of L,,-testing property P
with distance parameter &
e e.g., queryortime complexity
e for general or restricted (e.g., nonadaptive) tests

/" For properties of Boolean functions f: D — {0,1} I

e [q-testing is equivalent to Hamming testing
Cl(PIS) — CO(PIE)

e L,-testing for p > 1is equivalent to Lq-testing
with appropriate distance parameter

\_ Cp(P,g) = C1(P,&P) Y,

12



Property: Monotonicity of Functions



Monotonicity

e Domain D=[n]¢ (vertices of d-dim hypercube)

e Afunction f: D — Ris monotone /‘
if increasing a coordinate of x does g

not decrease f(x). f 1

i

)ﬂ
+—t—1
e Specialcased =1 -

>0

/

(1,1.,1)

f:[n] = Ris monotone & f(1), ... f(n) is sorted.
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Monotonicity Testers: Running Time

-_—
- [0,1] G(Oin) @()

[Erglin Kannan Kumar Rubinfeld
Viswanathan 00, Fischer 04]

[n]4 o (d - log n) 0 (ilogi)

&

[Chakrabarty Seshadhri 13] Q( log ) ford = 2

nonadaptlve 1-sided error

" Hiding some log 1/¢ dependence
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L,-Testing of Monotonicity

19



Monotonicity: Reduction to Boolean Functions
P

Boolean threshold function f;: D — {0,1}\
x fofe
' >t
OIS {o 1ot)}rl(e)?wise !
\_ J
O3>
e Decomposition: f(x) = f01 foo(x)dt 0 £(x)
e M = class of monotone functions
" Characterization Theorem A
1
LM = [ Li(fe,M)dt

Example: 0O 5 .3 .2 .7

= =
> >
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Characterization Theorem: One Direction

[Ll(f, M) < folLl(f(t)'M)dt]

o Vt € [0,1], let g,=closest monotone (Boolean) function to f .

1
e let g = fogtdt. Then g is monotone, since g; are monotone.

Li(f,M) < |If —glly
1 1
= ||foFwdt = fogedt ||,

= ||/o Feo—gndt |,
< Jo If = gl ar

= [ L1(f o, M)dt

g is monotone

Decomposition & definition of g

Triangle inequality

Definition of g;
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Characterization Theorem: the Other Direction

[Ll(f, M) = folLl(f(t)'M)dt]

e Let h be closest monotone function to f.

* Then h is monotone forall t € [0,1].

Ll (f, M) — ||f — h”l Because h is monotone
= Hfol(f(t) — h(t))dt || Decomposition
1
flx) 2 h(x) | = z fo (Fr —he)dt + z fo(hey = foo)de
< x:f (x)=h(x) x:f (x)<h(x)
fo 2 he

vte[01] = fol< z (fr —hw) + (heo —fu:))) dt
x:f(x)=h(x)

x:f (x)<h(x)
— fol ”f(t) — h(t)||1dt Triangle inequality

> folLl (f(t), M)dt h.; is monotone
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Monotonicity: Using Characterization Theorem
R

Characterization Theorem

dy(f, M) = [ dy(f 1), M)t

.

We can use Characterization Theorem
to get monotonicity L;-testers
and tolerant testers from
standard property testers for Boolean functions.
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L,-Testers from Testers for Boolean Ranges

f:D — {0,1}is also an L;-test for monotonicity of f: D — [0,1].
Proof:

{A nonadaptive, 1-sided error Ly-test for monotonicity of J

f(x) > )

0 -0 -0 -0
e A nonadaptive, 1-sided error test queries a randomset Q € D
and rejects iff Q contains a violation.

e Aviolation (x,y):

e If f:D — [0,1]is monotone, Q will not contain a violation.
o Ifd;(f,M) = ethen3t’:do(f, M) =&

* W.p. = 2/3, set Q contains a violation (x,y) for f+

fey@®) =1fu () =0
U

fx) > f(y)
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L,-Testing Monotonicity of f: [n]¢ - {0, 1}

Idea: 1. Pick axis-parallel lines .

2. Sample points from each 4,

and check for violations of f|,.

[DGLRRS 99] l
e Testing sortedness: If f:[n] — {0,1}is e-far from sorted then

1 . . . .
0 (E) samples are sufficient to find a violation w/ const. prob.

e Dimension reduction: For f:[n]¢ — {0,1}
do( M)
E[do(fie, M)] = 23

How many lines should we sample?

How many points form each line?
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General Work Investment Problem [Goldreich 13]

e Algorithm needs to find “evidence” (e.g., a violation).
e |t can select an element from distr. II (e.g., a uniform line).
e Elements e have different quality q(e) € [0,1]

(e.g., do(fr, M)).
e Algorithm must invest more work into e with lower g(e) to

extract evidence from e (e.g., need 0 (L) samples).

q(e)
* Eeenlq(e)] = p.
What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich
Ron 97], testing properties of images [R 03], multi-input testing problems [G13]
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Work Investment Strategies

A “Reverse’” Markov Inequality

~

Uy u
Prix >Z| > E.
N r[ —2]—2

For a random variable X € [0,1] with expectation E[X] > u,

J

Proof: u < E[X] SPr[XZ%]-1+Pr[X<§]-%.

“Reverse” Markov Strategy:

1. Sample © (i) lines.

2. Sample ® (i) points from each line.

Cost: 0 (u_12> gueries.
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Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

: . 1
Invest in elements of quality g(e) = P separately.

@ucketing Inequality [Berman R Yaroslavtsev 14] N\
For a random variable X € [0,1] with E [X] > ,u, let
—Pr[X ]andk-@)( )
2tu
log 4/p k;
Then [[.25 " (1 —py)* < 1/3.
- /

Bucketing Strategy: For each bucket i € {log%‘
1. Samplek; =0 (i) lines.
2tu

2. Sample @(Zi) points from each line.

1. 1 . . _ £
Cost: © (;log;> queries (for monotonicity, u = 2d)
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Monotonicity Testers: Running Time

B °(3) ()

O (E - log E) U (ilog i)

¢ ¢ Q( log )ford—Z

nonadaptlve 1-sided error

Q) (ep) for constant d
adaptive 1-sided error
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Monotonicity Testers: Running Time

-_—
- [0,1] G(Oin) @()

[Erglin Kannan Kumar Rubinfeld
Viswanathan 00, Fischer 04]

[n]4 o (d - log n) 0 (ilogi)

&

[Chakrabarty Seshadhri 13] Q( log ) ford = 2

nonadaptlve 1-sided error

" Hiding some log 1/¢ dependence
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Open Problems

e Qur L,-tester for monotonicity is nonadaptive, but we
show that adaptivity helps for Boolean range.

Is there a better adaptive tester?

* All our algorithms for L,,-testing forp = 1 were
obtained directly from L,-testers.

Can one design better algorithms by working directly
with L,-distances?

e We designed tolerant tester only for monotonicity
(d=1,2).

Tolerant testers for higher dimensions?

Other properties?
33



