9/10/2020

Sublinear Algorithms

| ECTURE 3

Last time

* Properties of lists and functions.

» Testing If a list Is sorted/Lipschitz
and If a function Is monotone.

Today

* Testing If a graph Is connected.
» Estimating the number of connected

components.
 Estimating the weight of a MST

Sofya Raskhodnikova;Boston University

Graph Properties

Testing iIf a Graph i1s Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y.

e in adjacency lists representation \
(a list of neighbors for each vertex) \

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v, 1), where v € V and i € [d]: entry i of adjacency list of vertex v
Exact Answer: Q2(dn) time

e Approximate version:
Is the graph connected or e-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

g2

No dependence on n!

+ improvement on HW

Testing Connectedness: Algorithm

ﬂionnectedness Tester(n, d, €, query access to G) \
1. Repeat s=8/cd times:
2. pick a random vertex u
3. determine if connected component of u is small:

perform BFS from u, stopping after at most 4/ed new nodes
K4. Reject if a small connected component was found, otherwise accept. /

Run time: O(d/e2d?)=0(1/2d)

Analysis:
e Connected graphs are always accepted.
e Remains to show:

If a graph is e-far from connected, it is rejected with probability >

wilN

Testing Connectedness: Analysis

(Claim 1

W

Llf G is e-far from connected, it has > SdTn connected componentsJ

Claim 2

\

\

. - ed
If G is e-far from connected, it has > T" connected components

of size at most 4/¢d. y

. gdn)
e By Claim 2, at least ¥ nodes are in small connected components.

: : . 2-4 8
e By Witness lemma, it suffices to sample = — nodes to detect one

gdn/n &d

from a small connected component.

Testing Connectedness: Proof of Claim 1

(Claim 1]
Llf G is e-far from connected, it has > SdTn connected componentsJ

We prove the contrapositive:

If G has < % connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % ,S0 2k —2<edn.

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

Freeing up an Adjacency List Entry

(Claim 1]
Llf G is e-far from connected, it has > SdTn connected componentsJ

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

Freeing up an Adjacency List Entry

(Claim 1]
Llf G is e-far from connected, it has > SdTn connected componentsJ

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

e Apply this to each component with <2 free spots in adjacency lists.

e Now we can connect all the components using the freed up spots while
ensuring that we never change more than 2 spots per component.

e Thus, k components can be connected by changing 2k spots.

edn
Here, k < —, S0 2k < edn .

Testing Connectedness: Proof of Claim 2

(Claim 1

W

Llf G is e-far from connected, it has > SdTn connected componentsJ

Claim 2

\

\

. - ed
If G is e-far from connected, it has > Tn connected components

of size at most 4/¢d. y

. ed
e By Claim 1, there are at least Tn connected components.

e Their average size is at most

2
gdn/2 &d’

e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

Testing iIf a Graph is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices
e in adjacency lists representation v Y‘
(a list of neighbors for each vertex) .\. .\.

e maximum degree d

Connected or
e-far from connected?
1 ..
0 (T) time J
e-d
(no dependence on n)

10

Randomized Approximation
in sublinear time

A Simple Example

Randomized Approximation: a Toy Example

Input: a string w € {0,1}"

Goal: Estimate the fraction of 1’s in w (like in polls)
It suffices to sample s = 1 / £ positions and output the average

0

0

0

1

0

1

to get the fraction of 1’s +¢ (i.e., additive error &) with probability > 2/3

/Hoeffding Bound

\

Lethl-
_ S =1

Let Yy, ..., Y be independently distributed random variables in [0,1].
S
2. Vi (called sample mean). Then Pr[|Y — E[Y]| = ¢] < e2se",

J

S

Y; = value of sample i. Then E[Y] = % - Y E[Y;] = (fraction of 1's in w)

i=1

Pr[|(sample mean) — (fraction of 1'sin w)| = €]

< 2e725¢° = 2072 < 1/3

| |

Apply Hoeffding Bound

substitute s = 1 / &2

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices v

e in adjacency lists representation Y‘
(a list of neighbors for each vertex) \

e maximum degree d \

Exact Answer: QQ(dn) time

Additive approximation: # of CC zen
with probability > 2/3

Time:
d 1 d
e Known: O (e—zlog E)’ Q(S—Z)
e Today: O (ﬁ)
: "

13

Approximating # of CCs: Main ldea

e Let C = number of components

e For every vertex u, define
n,, = number of nodes in u’s component

Breaks C up into
contributions
of different nodes

— for each component A: Y ,c4 =1

ny

e Estimate this sum by estimating ,,’s for a few random nodes
— If u’s component is small, its size can be computed by BFS.

— If u’s component is big, then 1/n ,is small, so it does not
contribute much to the sum

— Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
14

Approximating # of CCs: Algorithm

Estimating n,, = the number of nodes in u’s component:

: ~ : 2
e letestimate 71, = min {nu;}

— When u’s component has < 2/e nodes, ,, = ny,

— Else n,, = 2/g, ands00 < ——— < — =%
Ay Ny Ny 2

e Corresponding estimate for Cis C = Yuev Ai

\

It isé good estimate:

|C_C| ZuEVA Zuev <Zuev 1u_n_u <7
@PPROX_#_CCS (n, d, &, query access to G) Y
1. Repeat s=0(1/g?) times:
2. pick a random vertex u
3. compute 71, via BFS from u, stopping after at most 2/ new nodes
\4. Return C = (average of the values 1/7,) - n 4

Run time: O(d /&3)

15

Approximating # of CCs: Analysis

Want to show: Pr[|C‘—C‘| > 2 <2 J
21 =3

/Hoeffding Bound h
Let Y;, ..., Y be independently distributed random variables in [0,1]
S
letY == Y Y; (called sample mean). Then Pr[|Y — E[Y]| = ¢] < 2e725¢
_ S i=1 J
Let Y; = 1/7,for the it" vertex u in the sample
1 3 ¢
L Y = ; . Z Yi = ;
S 1 1 ¢
+ EIY] =1 ZEM] = EM] = Sy =
2S
Pr||C = €| >Z| = Priny —nE[Y]| > Z| = Pr|ly - E[Y]| > 5| <2¢7%

[N

e Needs =0 (3_2) samples to get probability < 3

16

Approximating # of CCs: Analysis

)
S

So far: C-C S;
Pr(|C - C| > <2
2 3
e With probability 2% ~/
C—c|<|C—C|+ <—+—<en

Summary:
The number of connected components in n-vetex graphs of

d
degree at most d can be estimated within +&n in time O (83)

17

Minimum spanning tree (MST)

e What is the cheapest way to connect all the dots?
Input: a weighted graph
with n vertices and m edges 3 o

e Exact computation:
— Deterministic O(m - inverse-Ackermann(m)) time [Chazelle]
— Randomized O(m) time [Karger Klein Tarjan]

18

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]
Input: a graph ¢ = (V, E) on n vertices
e in adjacency lists representation
e maximum degree d and maximum allowed weight w
e weightsin{1,2,...,w}
Output: (1+ €)-approximation to MST weight, w;,¢r
Time: E ' ’
dw dw No dependence on n!

» Known: 0 (% log™), (%)

€3 €

4
e Today: O (dw logw)

c3

19

Idea Behind Algorithm

e Characterize MST weight in terms of number of connected
components in certain subgraphs of G

e Already know that number of connected components can be
estimated quickly

20

MST and Connected Components: Warm-up

e Recall Kruskal’s algorithm for computing MST exactly. .

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MIST) + 2 - (# weight-2 edges in MST)

= n- 1 4+ (# of weight-2 edges in MST) MST has n — 1 edges

= n- 1 4 (# of CCsinduced by weight-1 edges) —1

N

weight 1
: connected components MST

weight 2 induced by weight-1 edges

By Kruskal

file:///C:/Users/sofya/Dropbox (BOSTON UNIVERSITY)/Documents/courses/SublinearAlgorithmsCourses/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt#1. Kruskal’s Algorithm
file:///C:/Users/sofya/Dropbox (BOSTON UNIVERSITY)/Documents/courses/SublinearAlgorithmsCourses/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt#1. Kruskal’s Algorithm

MST and Connected Components

In general: Let GG; = subgraph of ¢ containing all edges of weight < i
C; = number of connected components in G;

Then MST has C; — 1 edges of weight > .

" Claim h J
w-1
wyst(G) =n—w+ z C;
- =1 J
e Let 3; be the number of edges of weight > i in MST
e Each MST edge contributes 1 to wy,sr, each MST edge of weight >1

contributes 1 more, each MST edge of weight >2 contributes one more, ...

w-1 w-1 w-1 w-1
wusr(©) =) Bi=) (G=D=-w+ Y G=n-w+) G
=0 =0 =0 i=1

Algorithm for Approximating w st

/APPROX_MSTweight (n, d, w, €; G)) { Claim. wysr(G) =n—w+3YX¥'C]

1. Fori=1tow —1do:

2. C; «APPROX_#CCs(n, d, V—ev; Gl
\3. Return Wy gr =n—w + P C; 4

Analysis:

A,
=y

Suppose all estimates of C;’s are good: |C~‘l- — Ci| < i n.
Then [Wysr — wyst| = | le=_11(C~i—Ci)| = ZLW=_11 C~i —Ci| =w-

Prlall w — 1 estimates are good]> (2/3)¥~!

&
—n=&n
w

Not good enough! Need error probability < $ for each iteration

1 1

Then, by Union Bound, Pr[error]< w - =3

Can amplify success probability of any algorithm by repeating it and taking
the median answer.

Can take more samples in APPROX_#CCs. What’s the resulting run time?
23

Multiplicative Approximation for wygr

For MST cost, additive approximation = multiplicative approximation
Wyst=n—1 = wygr=n/2forn=>2

* ¢n-additive approximation:

WysTt — EN < Wygr < Wyor + EN

(1 4+ 2&)-multiplicative approximation:
Wyst (1 —2¢8) S wygr — en < Wygr < Wysr + en < wyer(1 + 2¢)

24

