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Sublinear Algorithms

LECTURE 3
Last time
• Properties of lists and functions. 

• Testing if a list is sorted/Lipschitz              

and if a function is monotone. 

Today
• Testing if a graph is connected.

• Estimating the number of connected 

components.

• Estimating the weight of a MST

Sofya Raskhodnikova;Boston University



Graph Properties



Testing if a Graph is Connected [Goldreich Ron]

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
• in adjacency lists representation 

(a list of neighbors for each vertex) 

• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣, 𝑖), where 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑑]: entry 𝑖 of adjacency list of vertex 𝑣

Exact Answer: W(dn) time

• Approximate version:  

Is the graph connected or ²-far from connected?

dist 𝐺1, 𝐺2 =
# 𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒𝑠 𝑖𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡𝑠 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺1 𝑎𝑛𝑑 𝐺2 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑛

Time: 𝑂
1

𝜀2𝑑
today 

+ improvement on HW

No dependence on n!
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Testing Connectedness: Algorithm

1. Repeat s=8/ed times:

2. pick a random vertex 𝑢

3. determine if connected component of 𝑢 is small:

perform BFS from 𝑢, stopping after at most 4/ed new nodes

4. Reject if a small connected component was found, otherwise accept.

Run time: O(𝑑/e2𝑑2)=O(1/e2𝑑)

Analysis: 

• Connected graphs are always accepted.

• Remains to show:  

If a graph is ²-far from connected, it is rejected with probability  ≥
2
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Connectedness Tester(n, d, ε, query access to G)



Testing Connectedness: Analysis

• By Claim 2, at least 
e𝑑𝑛
4

nodes are in small connected components.

• By Witness lemma, it suffices to sample 
2⋅4

e𝑑𝑛/𝑛
= 

8

e𝑑
nodes to detect one 

from a small connected component.
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Claim 1

If G is e-far from connected, it has ≥
e𝑑𝑛
2

connected components.  

Claim 2

If G is e-far from connected, it has ≥
e𝑑𝑛
4

connected components 

of size at most 4/ed.  



Testing Connectedness: Proof of Claim 1

We prove the contrapositive: 

If G has < 
e𝑑𝑛
2

connected components, one can make G connected by 

modifying < e fraction of its representation, i.e., < e𝑑𝑛 entries.

• If there are no degree restrictions, k components can be connected by 

adding 𝑘-1 edges, each affecting 2 nodes. Here, 𝑘 <  
e𝑑𝑛
2

, so 2𝑘 − 2 < e𝑑𝑛 .

• What if adjacency lists of all vertices in a component are full, 

i.e., all  vertex degrees are d?
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Claim 1

If G is e-far from connected, it has ≥
e𝑑𝑛
2

connected components.  



Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, 

i.e., all  vertex degrees are d?

• Consider an  MST of this component.

• Let 𝑣 be a leaf of the MST.

• Disconnect 𝑣 from a node other than its parent in the MST.

• Two entries are changed while keeping the same number of components.
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𝑣

Claim 1

If G is e-far from connected, it has ≥
e𝑑𝑛
2

connected components.  



Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, 

i.e., all  vertex degrees are d?

• Apply this to each component with <2 free spots in adjacency lists.

• Now we can connect all the components using the freed up spots while 
ensuring that we never change more than 2 spots per component.

• Thus, k components can be connected by changing 2k spots. 

Here, k <  
e𝑑𝑛
2

, so 2k < e𝑑𝑛 .
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𝑣

Claim 1

If G is e-far from connected, it has ≥
e𝑑𝑛
2

connected components.  



Testing Connectedness: Proof of Claim 2

• By Claim 1, there are at least 
e𝑑𝑛
2

connected components.

• Their average size is at most  
𝑛

e𝑑𝑛/2
=

2

e𝑑
.

• By an averaging argument (or Markov inequality), at least half of the 
components are of size at most twice the average.
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Claim 1

If G is e-far from connected, it has ≥
e𝑑𝑛
2

connected components.  

Claim 2

If G is e-far from connected, it has ≥
e𝑑𝑛
4

connected components 

of size at most 4/ed.  



Testing if a Graph is Connected [Goldreich Ron]
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Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices

• in adjacency lists representation 

(a list of neighbors for each vertex) 

• maximum degree d

Connected or 

𝜀-far from connected?

𝑂
1

𝜀2𝑑
time

(no dependence on 𝑛)



Randomized Approximation 
in sublinear time

A Simple Example



Randomized Approximation: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Goal: Estimate the fraction of 1’s in 𝑤 (like in polls)

It suffices to sample 𝑠 = 1 ⁄ 𝜀2 positions and output the average                         
to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3

Yi = value of sample 𝑖. Then E[Y] =
1

𝑠
⋅ ∑

𝑠

𝑖=1
E[Yi] = (fraction of 1’s in 𝑤)

Pr (sample mean) − fraction of 1′s in 𝑤 ≥ 𝜀

≤ 2e−2𝑠𝜀
2
= 2𝑒−2 < 1/3

12

Let Y1, … , Ys be independently distributed random variables in [0,1]. 

Let Y =
1

𝑠
⋅ ∑

𝑠

𝑖=1
Yi (called sample mean). Then Pr Y − E Y ≥ 𝜀 ≤ 2e−2𝑠𝜀

2
.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

Apply Hoeffding Bound substitute 𝑠 = 1 ⁄ 𝜀2



Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices
• in adjacency lists representation 

(a list of neighbors for each vertex) 

• maximum degree d

Exact Answer: W(dn) time

Additive approximation:  # of CC ±εn

with probability ¸ 2/3

Time: 

• Known:𝑂
𝑑

𝜀2
log

1

𝜀
, W

𝑑

𝜀2

• Today:  𝑂
𝑑

𝜀3
. No dependence on n!

13Partially based on slides by Ronitt Rubinfeld: 

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Breaks C up into

contributions

of different nodes

Approximating # of CCs: Main Idea

• Let 𝐶 = number of components

• For every vertex 𝑢, define
𝑛𝑢 = number of nodes in u’s component

– for each component A:   ∑𝑢∈𝐴
1

𝑛𝑢
= 1

∑
𝑢∈𝑉

1

𝑛𝑢
= 𝐶

• Estimate this sum by estimating 𝑛𝑢’s for a few random nodes

– If 𝑢’s component is small, its size can be computed by BFS.

– If 𝑢’s component is big, then 1/𝑛𝑢 is small, so it does not 
contribute much to the sum

– Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

14



Approximating # of CCs: Algorithm

Estimating 𝑛𝑢 = the number of nodes in 𝑢’s component: 

• Let estimate ො𝑛𝑢 = min 𝑛𝑢,
2

𝜀

– When 𝑢’s component has  · 2/e nodes , ො𝑛𝑢 = 𝑛𝑢

– Else  ො𝑛𝑢 = 2/e, and so 0 <
1

ො𝑛𝑢
−

1

𝑛𝑢
<

1

ො𝑛𝑢
=

𝜀

2

• Corresponding estimate for C is መ𝐶 = ∑𝑢∈𝑉
1

ො𝑛𝑢
.  It is a good estimate: 

መ𝐶 − 𝐶 = ∑𝑢∈𝑉
1

ො𝑛𝑢
− ∑𝑢∈𝑉

1

𝑛𝑢
≤ ∑𝑢∈𝑉

1

ො𝑛𝑢
−

1

𝑛𝑢
≤

𝜀𝑛

2

1. Repeat s=Θ(1/e2) times:

2. pick a random vertex 𝑢

3. compute ො𝑛𝑢 via BFS from 𝑢, stopping after at most 2/e new nodes

4. Return ሚ𝐶 = (average of the values 1/ො𝑛𝑢) ∙ 𝑛

Run time: O(d /e3)
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ൢ

𝑎
𝑏
𝑐

1

ො𝑛𝑢
−

1

𝑛𝑢
≤
𝜀

2

APPROX_#_CCs (n, d, ε, query access to G)



Approximating # of CCs: Analysis

Want to show: Pr ሚ𝐶 − መ𝐶 >
𝜀𝑛

2
≤

1

3

Let Yi = 1/ො𝑛𝑢for the ith vertex 𝑢 in the sample

• Y =
1

𝑠
⋅ ∑

𝑠

𝑖=1
Yi =

ሚ𝐶

𝑛

• E[Y] =
1

𝑠
⋅ ∑

𝑠

𝑖=1
E[Yi] = E[Y1] =

1

𝑛
∑𝑢∈𝑉

1

ො𝑛𝑢
=

መ𝐶

𝑛

Pr ሚ𝐶 − መ𝐶 >
𝜀𝑛

2
= Pr 𝑛𝑌 − 𝑛𝐸 𝑌 >

𝜀𝑛

2
= Pr Y − E Y >

𝜀

2
≤2𝑒−

𝜀2𝑠

2

• Need 𝑠 = Θ
1

𝜀2
samples to get probability ≤

1

3
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Let Y1, … , Ys be independently distributed random variables in [0,1]. 

Let Y =
1

𝑠
⋅ ∑

𝑠

𝑖=1
Yi (called sample mean). Then Pr Y − E Y ≥ 𝜀 ≤ 2e−2𝑠𝜀

2
.

Hoeffding Bound



Approximating # of CCs: Analysis

So far: መ𝐶 − 𝐶 ≤
𝜀𝑛

2

Pr ሚ𝐶 − መ𝐶 >
𝜀𝑛

2
≤

1

3

• With probability ≥
2

3
,

ሚ𝐶 − 𝐶 ≤ ሚ𝐶 − መ𝐶 + መ𝐶 − 𝐶 ≤
𝜀𝑛

2
+
𝜀𝑛

2
≤ 𝜀𝑛

Summary: 

The number of connected components in 𝑛-vetex graphs of 

degree at most 𝑑 can be estimated within ±𝜀𝑛 in time 𝑂
𝑑

𝜀3
.
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Minimum spanning tree (MST)

• What is the cheapest way to connect all the dots?
Input: a  weighted graph 

with n vertices and m edges

• Exact computation:
– Deterministic 𝑂(𝑚 ∙ inverse-Ackermann(𝑚)) time [Chazelle]

– Randomized 𝑂(𝑚) time [Karger Klein Tarjan]

1

3

7

5

2

4

18Partially based on slides by Ronitt Rubinfeld: 

http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph 𝐺 = (𝑉, 𝐸) on n vertices

• in adjacency lists representation 

• maximum degree d and maximum allowed weight w

• weights in {1,2,…,w}

Output:  (1+ ε)-approximation to MST weight, 𝑤𝑀𝑆𝑇

Time: 

• Known: 𝑂
𝑑𝑤

𝜀3
log

𝑑𝑤

𝜀
, W

𝑑𝑤

𝜀2

• Today:  𝑂
𝑑𝑤4log 𝑤

𝜀3
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No dependence on n!



Idea Behind Algorithm

• Characterize MST weight in terms of number of  connected 
components in certain subgraphs of G

• Already know that number of connected components can be 
estimated quickly
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• Recall Kruskal’s algorithm for computing MST exactly.

Suppose all weights are 1 or 2.  Then MST weight                      
= (# weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST)

= 𝑛 – 1 + (# of weight-2 edges in MST)

= 𝑛 – 1 + (# of CCs induced by weight-1 edges) −1

weight 1

weight 2
connected components
induced by weight-1 edges

MST

MST and Connected Components: Warm-up

MST has  𝑛 − 1 edges

By Kruskal

file:///C:/Users/sofya/Dropbox (BOSTON UNIVERSITY)/Documents/courses/SublinearAlgorithmsCourses/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt#1. Kruskal’s Algorithm
file:///C:/Users/sofya/Dropbox (BOSTON UNIVERSITY)/Documents/courses/SublinearAlgorithmsCourses/sublinear-algo-course-slides-WIM2011/kruskal-demonstration.ppt#1. Kruskal’s Algorithm


MST and Connected Components

In general:   Let 𝐺𝑖 = subgraph of 𝐺 containing all edges of weight ≤ 𝑖
𝐶𝑖 = number of connected components in 𝐺𝑖

Then MST has 𝐶𝑖 − 1 edges of weight  > 𝑖.

• Let 𝛽𝑖 be the number of edges of weight > 𝑖 in MST

• Each MST edge contributes 1 to 𝑤𝑀𝑆𝑇, each MST edge of weight >1 
contributes 1 more, each MST edge of weight >2 contributes one more, …

𝑤𝑀𝑆𝑇 𝐺 = ෍

𝑖=0

𝑤−1

𝛽𝑖 = ෍

𝑖=0

𝑤−1

(𝐶𝑖 − 1) = −𝑤 + ෍

𝑖=0

𝑤−1

𝐶𝑖 = 𝑛 − 𝑤 + ෍

𝑖=1

𝑤−1

𝐶𝑖
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𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 + ෍

𝑖=1

𝑤−1

𝐶𝑖

Claim



Algorithm for Approximating 𝒘𝑴𝑺𝑻

1. For 𝑖 = 1 to 𝑤 − 1 do:

2. ሚ𝐶𝑖 ←APPROX_#CCs(𝑛, 𝑑,
𝜀

w
; 𝐺𝑖).

3. Return ෥𝑤𝑀𝑆𝑇 = 𝑛 − 𝑤 + ∑𝑖=1
𝑤−1 ሚ𝐶𝑖 .

Analysis:

• Suppose all estimates of 𝐶𝑖’s are good: ሚ𝐶𝑖 − 𝐶𝑖 ≤
𝜀

𝑤
𝑛.

Then ෥𝑤𝑀𝑆𝑇 −𝑤𝑀𝑆𝑇 = | ∑𝑖=1
𝑤−1( ሚ𝐶𝑖−𝐶𝑖)| ≤ ∑𝑖=1

𝑤−1 | ሚ𝐶𝑖 − 𝐶𝑖| ≤ 𝑤 ⋅
𝜀

𝑤
𝑛 = 𝜀𝑛

• Pr[all 𝑤 − 1 estimates are good]≥ 2/3 𝑤−1

• Not good enough! Need error probability ≤
1

3𝑤
for each iteration

• Then, by Union Bound, Pr[error]≤ 𝑤 ⋅
1

3𝑤
=

1

3

• Can amplify success probability of any algorithm by repeating it and taking 
the median answer.

• Can take more samples in APPROX_#CCs. What’s the resulting run time?
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Claim.   𝑤𝑀𝑆𝑇 𝐺 = 𝑛 − 𝑤 + ∑𝑖=1
𝑤−1𝐶𝑖APPROX_MSTweight (n, d, w, ε; G)



Multiplicative Approximation for 𝒘𝑴𝑺𝑻

For MST cost, additive approximation ⟹ multiplicative approximation

𝑤𝑀𝑆𝑇 ≥ 𝑛 − 1 ⟹ 𝑤𝑀𝑆𝑇 ≥ 𝑛/2 for 𝑛 ≥ 2

• 𝜀𝑛-additive approximation: 

𝑤𝑀𝑆𝑇 − 𝜀𝑛 ≤ ෝ𝑤𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛

• (1 ± 2𝜀)-multiplicative approximation: 
𝑤𝑀𝑆𝑇 1 − 2𝜀 ≤ 𝑤𝑀𝑆𝑇 − 𝜀𝑛 ≤ ෝ𝑤𝑀𝑆𝑇 ≤ 𝑤𝑀𝑆𝑇 + 𝜀𝑛 ≤ 𝑤𝑀𝑆𝑇 1 + 2𝜀
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