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Sublinear Algorithms

LECTURE 4
Last time
• Testing if a graph is connected.

• Estimating the number of connected 

components.

• Estimating the weight of a MST

Today
• Limitations of sublinear-time algorithms

• Yao’s Minimax Principle

Sofya Raskhodnikova;Boston University



Query Complexity

• Query complexity of an algorithm is the maximum number of queries 
the algorithm makes.

– Usually expressed as a function of input length (and other parameters)

– Example: the test for sortedness (from Lecture 2) had query complexity 

𝑂 log 𝑛 for constant 𝜀, more precisely 𝑂
log 𝑛

𝜀

– running time ≥ query complexity

• Query complexity of a problem 𝑃, denoted  𝑞 𝑃 , is the query 
complexity of the best algorithm for the problem.
– What is 𝑞(testing sortednes𝑠)? How do we know that there is no 

better algorithm?

Today: Techniques for proving lower bounds on 𝑞 𝑃 .
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Yao’s Principle

A Method for Proving Lower Bounds



Yao’s Minimax Principle
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Consider a computational problem on a finite domain.

• The following statements are equivalent.

• Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 ⇒ Statement 1.

Statement 1

For any probabilistic algorithm A of complexity 𝑞 there exists an input 𝑥 s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(𝑥) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs, 
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(𝑥) is wrong] > 1/3.



Proof of Easy Direction of Yao’s Principle
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• Consider a finite set of inputs 𝑋 (e.g., all inputs of length n).

• Consider a randomized algorithm that takes an input 𝑥 ∈ 𝑋,
makes ≤ 𝑞 queries to 𝑥 and outputs accept or reject.

• Every randomized algorithm can be viewed as a distribution 𝜇
on deterministic algorithms (which are decision trees).

• Let Y be the set of all 𝑞-query deterministic algorithms that run 
on inputs in X.



Proof of Easy Direction of Yao’s Principle
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• Consider a matrix M with 

– rows indexed by inputs 𝑥 from X, 

– columns indexed by algorithms  𝑦 from 𝑌,

– entry 𝑀 𝑥, 𝑦 = ቊ
1 if algorithm 𝑦 is correct on input 𝑥
0 if algorithm 𝑦 is wrong on input 𝑥

• Then an algorithm A is a distribution 𝜇 over columns 𝑌 with 
probabilities satisfying σ𝑦∈𝑌 𝜇(𝑦) = 1.

𝒚𝟏 𝒚𝟐 …

𝒙𝟏 1 0

𝒙𝟐 1 1

… ⋱



Rephrasing Statements 1 and 2 in Terms of M

• For all distributions 𝜇 over columns 𝑌, there exists a row 𝑥 s.t.
Pr
𝑦←𝜇

[𝑀(𝑥, 𝑦) = 0] > 1/3.

• There is a distribution D over rows X, s.t. for all columns 𝑦,
Pr
𝑥←𝐷

[𝑀(𝑥, 𝑦) = 0] > 1/3.
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Statement 1

For any probabilistic algorithm A of complexity q there exists an input 𝑥 s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(𝑥) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs, 
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(𝑥) is wrong] > 1/3.



Statement 2 ⇒ Statement 1

• Suppose there is a distribution D over X, s.t. for all columns 𝑦,
Pr
𝑥←𝐷

[𝑀(𝑥, 𝑦) = 0] > 1/3.

• Then for all distributions 𝜇 over Y,
Pr
𝑥←𝐷
𝑦←𝜇

[𝑀(𝑥, 𝑦) = 0] > 1/3.

• Then for all distributions 𝜇 over Y, there exists a row 𝑥,
Pr
𝑦←𝜇

[𝑀(𝑥, 𝑦) = 0] > 1/3.
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𝒚𝟏 𝒚𝟐 …

𝒙𝟏 1 0

𝒙𝟐 1 1

… ⋱



Yao’s Principle (Easy Direction)
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• Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 ⇒ Statement 1.

NOTE: Also applies to restricted algorithms

• 1-sided error tests

• nonadaptive tests

Statement 1

For any probabilistic algorithm A of complexity q there exists an input x s.t.

Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(x) is wrong] > 1/3.

Statement 2

There is a distribution D on the inputs, 
s.t. for every deterministic algorithm of complexity q,

Pr
𝑥←𝐷

[A(x) is wrong] > 1/3.



Yao’s Minimax Principle as a game
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Players: Evil algorithms designer Al and poor lower bound prover Lola.

Game1

Move 1. Al selects a q-query randomized algorithm A for the problem.

Move 2. Lola selects an input on which A errs with largest probability.

Game2

Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a q-query deterministic algorithm with as large 
probability of success on Lola’s distribution  as possible.



Toy Example: a Lower Bound for Testing 0*

Input: string of n bits

Question: Does the string contain only 0’s or is it 𝜀-far form the all-0 string? 

Claim. Any algorithm needs (1/𝜀) queries to answer this question w.p. ≥ 𝟐/𝟑.

Proof: By Yao’s Minimax Principle, enough to prove Statement 2.
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Distribution D on n-bit strings

• Divide the input string into 1/ε blocks of size ε𝑛. 

• Let yi be the string  where the ith block is 1s and remaining bits are 0.

• Distribution D gives the all-0 string w.p. 1/2 and yi with w.p. 1/2, 

where 𝑖 is chosen uniformly at random from 1, …, 1/ε.

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜺𝒏𝜺𝒏 𝜺𝒏 𝜺𝒏



A Lower Bound for Testing 0*

Claim. Any 𝜀-test for 0* needs (1/𝜀) queries.

Proof (continued): Now fix a deterministic tester A making q < 1/3𝜀 queries.

1. A must accept if all answers are 0. Otherwise, it would be wrong on all-0 
string, that is, with probability  1/2 with respect to D.

2. Let 𝑖1, . . . , 𝑖𝑞 be the positions A queries when it sees only 0s.  The test can 
choose its queries based on previous answers. However, since all these 
answers are 0 and since A is deterministic, the query positions are fixed.

• At least 1/𝜀 − q > 
2

3𝜀
of the blocks do not hold any queried indices.

• Therefore, A accepts > 2/3 of the inputs yi. Thus, it is wrong with probability 

> 
2

3𝜀
⋅
𝜀

2
=

1

3

Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in O(1/𝜀 polylog 1/𝜀) time
12

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝜺𝒏𝜺𝒏 𝜺𝒏 𝜺𝒏



A Lower Bound for Testing Sortedness

Input: a list of n numbers  x1 , x2 ,..., xn

Question: Is the list sorted or 𝜀-far from sorted? 

Already saw: two different O((log n)/𝜀) time testers. 

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

(log n) queries are required for all constant  𝜀 ≤ 1/2

Today:   (log n) queries are required for all constant  𝜀 ≤ 1/2

for every 1-sided error nonadaptive test.

• A test has 1-sided error if it always accepts all

YES instances.

• A test is nonadaptive if its queries do not

depend on answers to previous queries.
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1-sided Error Property Tester

Far from

YES

YES

Reject with 
probability ≥ 𝟐/𝟑

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑

𝜀



1-Sided Error Tests Must Catch “Mistakes”

• A pair (𝑖, 𝑗) is violated if 𝑖 < 𝑗 but 𝑥𝑖 > 𝑥𝑗

Proof: Every sorted partial list can be extended to a sorted list.
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Claim. A 1-sided error test can reject only if it finds a violated pair.

1 ? ? 4 … 7 ? ? 9



Yao’s Principle Game [Jha]

Lola’s distribution is uniform over the following log 𝑛 lists:
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Claim 2. Every pair (𝑖, 𝑗) is violated in exactly one list above.

1 1 1 1 1 1 1 1 0 00 0 0 0 0 0ℓ1

ℓ2 1 1 1 1 0 0 0 0 2 22 2 1 1 1 1

1 1 0 0 2 2 1 1 3 23 2 4 4 3 3ℓ3

1 0 2 1 3 2 4 3 5 64 5 7 6 8 7ℓlog 𝑛

...

Claim 1. All lists above are 1/2-far from sorted.



Yao’s Principle Game: Al’s Move

Al picks a set 𝑄 = {𝑎1, 𝑎2, … , 𝑎|𝑄|} of positions to query.

• His test must be correct, i.e., must find a violated pair with probability ≥
2/3 when input is picked according to Lola’s distribution.

• 𝑄 contains a violated pair   ⇔ (𝑎𝑖 , 𝑎𝑖+1) is violated for some 𝑖

Pr
ℓ←Lola′s distribution

[ 𝑎𝑖 , 𝑎𝑖+1 for some 𝑖 is vilolated in list ℓ] ≤
𝑄 − 1

log 𝑛

• If 𝑄 ≤
2

3
log 𝑛 then this probability is  <

2

3

• So, 𝑄 = Ω(log 𝑛)

• By Yao’s Minimax Principle, every randomized 1-sided error 
nonadaptive test for sortedness must make Ω(log 𝑛) queries.
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? ? ? ?

𝑎1 𝑎2 𝑎3 𝑎|𝑄|…

By the Union Bound



Testing Monotonicity of 
functions on Hypercube
Non-adaptive 1-sided error 

Lower Bound
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f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001 

011001  

𝑥
𝑦
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Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001 

011001  

𝑥
𝑦

𝑓(00⋯00)

𝑓(11⋯11)

Vertices: 
increasing weight



Monotonicity of Functions
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[Goldreich Goldwasser Lehman Ron Samorodnitsky, 

Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

if increasing a bit of 𝑥 does not decrease 𝑓(𝑥). 

• Is 𝑓 monotone or 𝜀-far from monotone
(𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by  𝑓 if  𝑓 (𝑥) > 𝑓 (𝑦).

Time: 

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

– Ω( 𝑛/𝜀) for 1-sided error, nonadaptive tests

– Advanced techniques: Θ( 𝑛/𝜀2) for nonadaptive tests, Ω 3 𝑛

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]

0

0 0

01

1

1

1

1

1 0

00

0

1

1

monotone

1

2
-far from monotone



Hypercube 1-sided Error Lower Bound
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• 1-sided error test must accept if no violated pair is uncovered.

Violated pair:

– A distribution on far from monotone functions suffices.

Lemma
Every 1-sided error nonadaptive test for monotonicity of functions 𝑓 ∶

0,1 𝑛 → {0,1} requires Ω 𝑛 queries.

01

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]



Hypercube 1-sided Error Lower Bound
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• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖.

2 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

𝑓𝑖(𝑥) =

1 if 𝑥 >
𝑛

2
+ 𝑛

1 − 𝑥𝑖 if 𝑥 =
𝑛

2
± 𝑛

0 if 𝑥 <
𝑛

2
− 𝑛



The Fraction of Nodes in Middle Layers

E[Y]= 

𝜀 =
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Let Y1, … , Ys be independently distributed random variables in [0,1]. 

Let Y =
1

𝑠
⋅ σ

𝑠

𝑖=1
Yi (called sample mean). Then Pr Y − E Y ≥ 𝜀 ≤ 2e−2𝑠𝜀

2
.

Hoeffding Bound

2 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶



Hypercube 1-sided Error Lower Bound
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• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖.

Analysis

2 𝑛 1 − coordinate 𝑖

1

0

𝑓𝑖 ∶

• Edges from (𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) to (𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛) are 
violated if both endpoints are in the middle.

• The middle contains a constant fraction of vertices.
• All 𝑛 functions are 𝜀-far from monotone for some constant 𝜀.

𝑓𝑖(𝑥) =

1 if 𝑥 >
𝑛

2
+ 𝑛

1 − 𝑥𝑖 if 𝑥 =
𝑛

2
± 𝑛

0 if 𝑥 <
𝑛

2
− 𝑛



Hypercube 1-sided Error Lower Bound
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• How many functions does a set of 𝑞 queries expose?

# functions that a query pair (𝑥, 𝑦) exposes
≤ # coordinates on which 𝑥 and 𝑦 differ

≤ 2 𝑛

111011 

001001  

𝑥
𝑦

𝑖 𝑗 𝑘

Pair (𝑥, 𝑦)
can expose only

functions 𝑓𝑖 , 𝑓𝑗 and 𝑓𝑘

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Only pairs of queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛

Naive Analysis

# functions exposed by 𝑞 queries
≤ 𝑞2 ⋅ 2 𝑛



Hypercube 1-sided Error Lower Bound
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• How many functions does a set of 𝑞 queries expose?

# functions that a query pair (𝑥, 𝑦) exposes
≤ # coordinates on which 𝑥 and 𝑦 differ

≤ 2 𝑛

111011 

001001  

𝑥
𝑦

𝑖 𝑗 𝑘

Pair (𝑥, 𝑦)
can expose only

functions 𝑓𝑖 , 𝑓𝑗 and 𝑓𝑘

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Only pairs of queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛

Claim
# functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛



Hypercube 1-sided Error Lower Bound
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• How many functions does a set of 𝑞 queries expose?

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Claim
# functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛

(𝑥, 𝑦) a violation pair
⇓

Some adjacent pair of vertices in a 
minimum spanning forest on the query set 

is also violatedsufficient to consider adjacent 
vertices in a minimum spanning forest 

on the query set



Hypercube 1-sided Error Lower Bound
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• How many functions does a set of 𝑞 queries expose?

queries

2 𝑛

1

0

𝑓

𝑥

𝑦

Claim
# functions exposed by 𝑞 queries

≤ (𝑞 − 1) ⋅ 2 𝑛

⇓

Claim
Every deterministic test that makes a set 𝑄 of 𝑞 queries (in the middle) 

succeeds with probability 𝑂
𝑞

𝑛
on our distribution. ⨳


