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Recall: Yao’s Minimax Principle

( Statement 1

For any probabilistic algorithm A of complexity g there exists an input x s.t.
Pr [A(X) 1s wrong] > 1/3.

coin tosses of A

; Statement 2 )

There is a distribution D on the inputs,
s.t. for every deterministic algorithm of complexity q,
Pr}) [A(X) 1s wrong] > 1/3.
A .l 4

e Need for lower bounds
Yao’s Minimax Principle (easy direction): Statement 2 = Statement 1.

NOTE: Also applies to restricted algorithms
e 1-sided error tests
e nonadaptive tests



Yao’s Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

( Gamel \
Move 1. Al selects a g-query randomized algorithm A for the problem.
Move 2. Lola selects an input on which A errs with largest probability.

4 Game2 N
Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a g-query deterministic algorithm with as large
\probability of success on Lola’s distribution as possible. )




Testing Monotonicity of
functions on Hypercube

Non-adaptive 1-sided error
Lower Bound



Boolean Functions f : {0,1}" — {0,1}

Graph representation: 7(011) f(112)

\ /'

n-dimensional hypercube

-

f(010) } f(110)

-

f(001)

-

f(101)

f(000) \f(100)
o vertices: bit strings of length n

° edges: (x,y) is an edge if y can be obtained from x by

increasing one bit fromO0to 1 x | 001001
y [ 011001

e each vertex x is labeled with f (x)



Boolean Functions f : {0,1}" — {0,1}

Graph representation:
n-dimensional hypercube

Vertices:
increasing weight

e 2™ vertices: bit strings of length n

F(11--11)

£(00--- 00)

o 2" 1n edges: (x,y) is an edge if y can be obtained from x by

increasing one bit from0to 1

e each vertex x is labeled with f (x)

X
y

001001

011001




Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky,
Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

e Afunction f : {0,1}" — {0,1} is monotone
if increasing a bit of x does not decrease f (x).

monotone

e |s f monotone or g-far from monotone

(f has to change on many points to become monontone)?
— Edge x—yisviolated by f if f (x) > f (y).
Time:

- 0(n/e), logarithmic in the size of the input, 2" ——far from monotone
- Q(\/n/¢) for 1-sided error, nonadaptive tests

— Advanced techniques: ©(y/n/£?) for nonadaptive tests, Q(3/n)
[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]



Hypercube 1-sided Error Lower Bound

Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

Every 1-sided error nonadaptive test for monotonicity of functions f :
\{0,1}" — {0,1} requires Q(\/ﬁ) queries.

e 1-sided error test must accept if no violated pair is uncovered.

Violated pair: i_)._)._). >0—>0 \?)

— A distribution on far from monotone functions suffices.



Hypercube 1-sided Error Lower Bound

e Hard distribution: pick coordinate i at random and output f;.

NS

1—Xi if |x
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Hypercube 1-sided Error Lower Bound

e Hard distribution: pick coordinate i at random and output f;.

n
1 if [x >E+\/ﬁ
n
1—x; if |x =Ei\/ﬁ
n
0 if |x <§—\/ﬁ

NS

e A truncation’” of an antidicator

antidictator
10



The Fraction of Nodes in Middle Layers

/Hoeffding Bound

\

Let Yy, ..., Y be independently distributed random variables in [0,1].

J

S
LetY = i - Y'Y; (called sample mean). Then Pr[|Y — E[Y]| = €] < De~2se*,
\_ i=1
E[Y]=

NS
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Hard Functions are Far

e Hard distribution: pick coordinate i at random and output f;.

n
1 if [x >§+\/ﬁ
n
1—x; if |x =Ei\/ﬁ
n
0 if [x <§—\/ﬁ
\

4 Analysis

 The middle contains a constant fraction of vertices.

* Edgesfrom (xq,...,%;-1,0,Xj41, ..., X) to (X1, ..., X;-1, 1, Xj 41, ..., Xp) Are
violated if both endpoints are in the middle.

N All n functions are e-far from monotone for some constant &. ARY,




Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries
— .

2/n— x | 1101

y 000

" Naive Analysis Pair (x,y)

can expose only
# functions exposed by g queries functions f;, fj and f;
\_ = q2 ’ Zﬁ )

# functions that a query pair (x, y) exposes
< # coordinates on which x and y differ

3

Only pairs of queries in the Green Band can be violated = disagreements < 2/n 3



Hypercube 1-sided Error Lower Bound

How many functions does a set of g queries expose?

® queries
_ o
2n— x | 111910
y 0[L00[L
" Pair (x,
Claim 0 7)
can expose only
# functions exposed by g queries functions f;, f; and f;
ir)]j k
L <(@-1)-2Vn y

# functions that a query pair (x, y) exposes
< # coordinates on which x and y differ

3

Only pairs of queries in the Green Band can be violated = disagreements < 2/n
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Hypercube 1-sided Error Lower Bound

How many functions does a set of g queries expose?

.
Claim

\_

S(CIT—l)'Z\/ﬁ

# functions exposed by g queries

)

sufficient to consider adjacent
vertices in a minimum spanning forest
on the query set

Let Q be the set of queries made.
The tester catches a violation

)

Q contains comparable x, y
that differ in coordinate i

Draw an undirected graph (Q, E)
by connected comparable queries

Consider its spanning forest.

X,y exist

()

there are adjacent vertices on the path
from x to y that differ in coordinate i

15



Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries
2/n—
(s
Claim
# functions exposed by g queries
<(g—1)- 2yn
% (@q—1)-2yn y
U
" Claim A
Every deterministic test that makes a set Q of g queries (in the middle)
succeeds with probability O (i) on our distribution.
- P Yo\ J * e




Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds




(Randomized) Communication Complexity

Shared random string
Alice |1101000101110101110101010110... | Bob

7 0100 N ... ¥,

0011 !!
Input: x \ Input: y

Compute C(x,y)

4
®

Goal: minimize the number of bits exchanged.

e Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

e Communication complexity of a function C, denoted R((C), is the
communication complexity of the best protocol for computing C.



Example: Set Disjointness DISJ,,

Alice

1101000101110101110101010110...

Bob

W

Input:S € [n], |S]

SN

N

FAS
y 4

|

Input: T <

Compute DIS], (S, T)

reject

otherwise

_ {accept ifSNT =0

n], |IT| =k

(Theorem [Kalyanasundaram Schmitger 92, Razborov 92]

L RODISJ,) = Qk) forall k < 2.

—
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A lower bound using CC method

Testing if a Boolean function is a k-parity



Linear Functions Over Finite Field IF,

A Boolean function f:{0,1}"* — {0,1} is linear (also called parity) if

f(xq,..,xy) = ayxy + -+ a,x, forsomeay,...,a, € {0,1}

1

no free term

e Work in finite field IF,
— Other accepted notation for F,: GF, and Z,
— Addition and multiplication is mod 2
- x=(xq1, ..., %), y=(y1, ..., y), that is, x, y € {0,1}"
X+ y=001 + Y, e, Xy + Vi)

example

+

001001
011001
010000

23



Linear Functions Over Finite Field IF,

aBoolean function f:{0,1}" — {0,1} is linear (also called parity) if\
f(xq,..,xp) = ayxy + -+ a,x, forsomeay,...,a, € {0,1}

) [n] is a shorthand for {1, ... n}
S f(x1, e, X)) = Djes X; for some S C |n]. Y

Notation: ys(x) = Yes X;-

24



Testing iIf a Boolean function is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in O e) time

25



k-Parity Functions

fk-IParity Functions )
A function f : {0,1}" — {0,1} is a k-parity if
f(x) = xs(x) = Xiesxi
\_for some set S € [n] of size |S| = k. )

26




Testing If a Boolean Function is a k-Parity

Input: Boolean function f:{0,1}" — {0,1} and an integer k
Question: Is the function a k-parity or e-far from a k-parity
(= £2™ values need to be changed to make it a k-parity)?

Time:
O(k log k) [Chakraborty Garcia—-Soriano Matsliah]

Q(min(k,n — k)) [Blais Brody Matulef 11]
e Today: Q(k) fork <n/2
Q;// Today’s bound implies Q(min(k,n — k))

27



Important Fact About Linear Functions

[ Fact. Two different linear functions disagree on half of the values. ]

e Consider functions ys and yr where S # T.

Let i be an element on which S and T differ
(w.lLo.g.i € S\T)
Pair up all n-bit strings: (x, x(9)
where x( is x with the ith bit flipped.
For each such pair, xs(x) # xs(x®)
but y7(x) = xr(x®)
So, x< and yr differ on exactly one of x, x(V.

Since all x’s are paired up,
Xs and yr differ on half of the values.

O |krEk O
N Ll (el )

X

xD1—a b
0 0
1 0
0 1

x50 xr(x)

[Corollary. A k'—parity function, where k' # k, is J5-far from any k-parity. ]

28



Reduction from DISJ , to Testing k-Parity

e LetT be the best tester for the k-parity property fore = 1/2
— query complexity of T is g (testing k—parity).
* We will construct a communication protocol for DIS] /2 that runs
T and has communication complexity 2 - g(testing k—parity).

holds for CC of every
protocol for DISJ, [Kalyanasundaram Schnitger 92]

e Then 2 - g(testing k—parity) % R(DIS]k/Z) 2¢Q(k/2)
|
q(testing k-parity) = Q(k)

29



Reduction from DISJ , to Testing k-Parity

1101000101110101110101010110...

\/_\/ o
h=f+g (mod?2)
h(x)? || f(x) + g(x) mod 2
Alice Bob
T o
P00 T Coogm ,

accept/rejec

f(x)

\ 4

< g(x)

Input S C [n], |S| = k/\ Input: T <€ [n], |T| = k/2
Compute: f )(S Compute: g = xr

Output T's answer

e T receives its random bits from the shared random string.

30



Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T
Correctness:

e h=f+g(@mod2)=yxs+ xr (mod2) = ysar
e |SAT| =S|+ |T|=2|SNT]

)k if SNT =0
|SAT|_{§k—2 if SNT # @

B k—parity if SNT=0
5 k’—Nparity wherek’ #k  if SNT # @

1/2-far from every k-parity

Summary: q(testing k-parity) = Q.(k) fork < n/2

31



Testing Lipschitz Property
onh Hypercube

Lower Bound



Lipschitz Property of Functions f: {0,1}"*-R

e Afunction f : {0,1}" - Riis Lipschitz
if changing a bit of x changes f(x) by at most 1.

e

N
<3

e |s f Lipschitz or e-far from Lipschitz Lipschitz

(f has to change on many points to become Lipschitz)?
— Edge x — yisviolated by f if |f(x) — f(y)| > 1.

-

\}(

Time: 2
- 0(n/¢), logarithmic in the size of the input, 2™
[Chakrabarty Seshadhri]

Ly

%—far from Lipschitz
- Q(n) [Jha Raskhodnikova]

33



Testing Lipschitz Property

/Theorem

Testing Lipschitz property of functions f: {0,1}" — {0,1,2}
__requires ()(n) queries.

‘w;// Prove it.

34



Summary of Lower Bound Methods

e Yao’s Principle

— testing membership in 1%, sortedness of a list and monotonicity
of Boolean functions

e Reductions from communication complexity problems
— testing if a Boolean function is a k-parity

35



Other Models of Sublinear
Computation



Tolerant Property Tester [rubinfeld Parnas Ron]

Randomized Algorithm

-~

YES

NO

=)

Accept with
probability > 2/3

Reject with
probability >2/3

Tolerant Property Tester

N

YES

|:> Accept with

probability > 2 /3

£1-Close to YE$

&, -far from |:> Reject with
YES probability > 2/3

37



Sublinear-Time “Restoration” Models

Local Decoding
Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

Program Checking

Input: A program P computing f correctly on most
inputs.

Requirement: Self-correct program P: for a given
input x, compute f(x) by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that
the reconstructed function g satisfies P, changing
f only when necessary. For each input x, compute
g(x) with a few queries to f.
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