Sublinear Algorithms

| ECTURE 6

Last time
» Limitations of sublinear-time algorithms
* Yao’s Minimax Principle
« Example: testing monotonicity
« Communication complexity

Today
« Communication complexity
 Other models of computation

HW1 resubmissiomn, project guidelines
Sigm up for project meetings, scribing, grading

Sofya Raskhodnikova;Boston University

10/5/2020

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds

(Randomized) Communication Complexity

Shared random string
Alice |1101000101110101110101010110... | Bob

7 0100 N ... ¥,

0011 !!
Input: x \ Input: y

Compute C(x,y)

4
®

Goal: minimize the number of bits exchanged.

e Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

e Communication complexity of a function C, denoted R((C), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ,,

Alice

1101000101110101110101010110...

Bob

W

Input:S € [n], |S]

SN

N

FAS
y 4

|

Input: T <

Compute DIS], (S, T)

reject

otherwise

_ {accept ifSNT =0

n], |IT| =k

(Theorem [Kalyanasundaram Schmitger 92, Razborov 92]

L RODISJ,) = Qk) forall k < 2.

—

A lower bound using CC method

Testing if a Boolean function is a k-parity

Linear Functions Over Finite Field IF,

A Boolean function f:{0,1}"* — {0,1} is linear (also called parity) if

flxy, ., xy) =ayxy + -+ anx,%for some dq, ...,a, € {0,1}

no free term

e Work in finite field IF,

— Other accepted notation for F,: GF, and Z, example

— Addition and multiplication is mod. 2) . 001001

= X=(%1, s X0, y=(V1, oo, Yn), that is, x, y € {0,1} 011001
X+ y=(x1 + Y1, e, X + V) 010000

Linear Functions Over Finite Field IF,

A

.

Boolean function f:{0,1}"* — {0,1} is linear (also called parity) if

\

f(xq,..,xp) = ayxy + -+ a,x, forsomeay,...,a, € {0,1}

) [n] is a shorthand for {1, ... n}

f(x1, e, X)) = Djes X; for some S C |n].

/

Notation: ys(x) = Yes X;-

k-Parity Functions

fk-IParity Functions

A function f : {0,1}" — {0,1} is a k-parity if
flx) = xs(x) = Xiesxi

_for some set S € [n] of size |S| = k.

Testing If a Boolean Function is a k-Parity

Input: Boolean function f:{0,1}" — {0,1} and an integer k
Question: Is the function a k-parity or e-far from a k-parity
(= £2™ values need to be changed to make it a k-parity)?

Time:
O(k log k) [Buhrman, Carcia-Soriano, Matsliah, de Wolf 13]

Q(min(k,n — k)) [Blais Brody Matulef 12]
e Today: Q(k) fork <n/2
Q;// Today’s bound implies Q(min(k,n — k))

10

Important Fact About Linear Functions

[Fact. Two different linear functions disagree on half of the values.]

e Consider functions ys and yr where S # T.

Let i be an element on which S and T differ
(w.lLo.g.i € S\T)
Pair up all n-bit strings: (x, x(9)
where x(is x with the ith bit flipped.
For each such pair, xs(x) # xs(x®)
but y7(x) = xr(x®)
So, x< and yr differ on exactly one of x, x(V.

Since all x’s are paired up,
Xs and yr differ on half of the values.

O |krEk O
N Ll (el)

X

xD1—a b
0 0
1 0
0 1

x50 xr(x)

[Corollary. A k'—parity function, where k' # k, is J5-far from any k-parity.]

11

Reduction from DISJ , to Testing k-Parity

e LetT be the best tester for the k-parity property fore = 1/2
— query complexity of T is g (testing k—parity).
* We will construct a communication protocol for DIS] /2 that runs
T and has communication complexity 2 - g(testing k—parity).

holds for CC of every
protocol for DISJ, [Hastad Wigderson 07]

e Then 2 - g(testing k—parity) % R(DIS]k/Z) % O(k/2)
|
q(testing k-parity) = Q(k)

12

Reduction from DISJ , to Testing k-Parity

1101000101110101110101010110...

\/_\/ o
h=f+g (mod?2)
h(x)? || f(x) + g(x) mod 2
Alice Bob
T o
P00 T Coogm ,

accept/rejec

f(x)

\ 4

< g(x)

Input S C [n], |S| = k/\ Input: T <€ [n], |T| = k/2
Compute: f)(S Compute: g = xr

Output T's answer

e T receives its random bits from the shared random string.

13

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T
Correctness:

e h=f+g(@mod2)=yxs+ xr (mod2) = ysar
e |SAT| =S|+ |T|=2|SNT]

)k if SNT =0
|SAT|_{§k—2 if SNT # @

B k—parity if SNT=0
5 k’—Nparity wherek’ #k if SNT # @

1/2-far from every k-parity

Summary: q(testing k-parity) = Q.(k) fork < n/2

14

Testing Lipschitz Property
onh Hypercube

Lower Bound

Lipschitz Property of Functions f: {0,1}"*-R

e Afunction f : {0,1}" - Riis Lipschitz
if changing a bit of x changes f(x) by at most 1.

e

N
<3

e |s f Lipschitz or e-far from Lipschitz Lipschitz

(f has to change on many points to become Lipschitz)?
— Edge x — yisviolated by f if |f(x) — f(y)| > 1.

-

\}(

Time: 2
- 0(n/¢), logarithmic in the size of the input, 2™
[Chakrabarty Seshadhri]

Ly

%—far from Lipschitz
- Q(n) [Jha Raskhodnikova]

16

Testing Lipschitz Property

/Theorem

Testing Lipschitz property of functions f: {0,1}" — {0,1,2}
__requires ()(n) queries.

‘w;// Prove it.

17

Summary of Lower Bound Methods

e Yao’s Principle

— testing membership in 1%, sortedness of a list and monotonicity
of Boolean functions

e Reductions from communication complexity problems
— testing if a Boolean function is a k-parity

18

Other Models of Sublinear
Computation

Algorithms Resilient to Erasures (or Errors)

Ll LA -|{BlL|L| L|B|LIA-|BJLI|A-|L/LIA-|B|LIA-|B|L|Lf-|BILIA

\ \ \ \
e A I e

\ \ Y

randomized algorithm

e < a fraction of the input is erased (or modified)
adversarially before algorithm runs

e Algorithm does not know in advance what’s erased
(or modified)
e Can we still perform computational tasks?

20

Property Testing

Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

£ R

YES | far from
-~ YES

AN 4
Accept \.N.Ith Don't Reject v.vith
probability care probability

=>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places
21

Property Testing with Erasures

Property Tester [Rubinfeld Sudan 96,
Goldreich Goldwasser Ron 98]

y D
YES | ¢ far from
~— YES
% 4
Accept with] Reject with
probability Dc:':et probability
> 2/3 >2/3

Erasure-Resilient Property Tester [Dixit
Raskhodnikova Thakurta Varma 16]

e < (fraction of the input is erased
adversarially

{ Can be Any completion\
completed| & is far from
to YES | YES
\ 4
Accept with) Reject with
probability DC::‘et probability
=>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places

22

Can We Make Testers a-Erasure-Resilient?

It is easy if a tester makes only uniform queries
(and the property is extendable).

e Use the original tester as black box and ignore erasures:

O (Tla) factor query complexity overhead for all o € (0,1).

e Applies to many properties

— Monotonicity over poset domains
[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]

— Convexity of black and white images
[Berman Murzabulatov Raskhodnikova 16]

— Boolean arrays having at most k alternations in values

23

Erasure-Resilient Sortedness Tester?

Example: Testing sortedness of n-element arrays

e Every uniform tester requires Q(y/n) queries.
e [EKKRVOO] (optimal) tester that makes O (logn) queries

1(1|1(1(1|1(1|1|11({1|1(1|1|1({1|L]0[0{O|0|0]|0(0|00({0]|0(O]0]0
12)

random search element

1-«x
e All known optimal sortedness testers [EKKRV0O, BGJRW09, CS13a] break
with just one erasure.

Known optimal testers for monotonicity, Lipschitz property and

convexity of functions [GGLRS00, DGLRRS99, EKKRVOO, FO4, CS13a, CS13b,
CST14, BRY14, BRY14, CDST15, KMS15, BB16, JR13, CS13a, BRY14, BRY14,

CDJS15, PRRO3, BRY14] break on a constant number of erasures.

. . 1
e (Can we make it erasure-resilient O (—) factor overhead?

S

24

Erasure-Resilient Sortedness Tester

/Input: g,a € (0,1); query access to an array N\
1. Repeat ©(1/¢€) times:

a. Sample uniformly until you get a nonerased search point s.

b. Binary search for s with uniform nonerased split points.

c. Rejectif there are violations along the search path.
ﬁ Accept if no violations were found. /

Q

i |
: Q\Q :
1]9 1 1] | |61 37 | |1 |8I8
12 AN N NN [N

P1—> S < P2

25

Analysis of the Sortedness Tester

1. Array is sorted = tester accepts

2. Array is e-far from sorted = one iteration rejects with
probability > €

— Need to repeat only ©(1/¢) times to get error probability 2/3

: : : :]
3. Want to show: expected # of queries per iteration is O (f;
— Tester traverses a uniformly random search path in a random

binary search tree.
— The # of levels in a random binary search is O(logn) w.h.p.

Claim. Expected # of queries to one level of binary search is

0 (=)

)

26

Expected Number of Queries in One lteration

At level k /QI
Q = # of queries ; \Q
O. l
I
|

12 < >
Interval | a; = fraction of erasures in |

nonerased points in I < L1 —ay)

Pr [search point sisinI] =

total # nonerased points — (] — q)

E[Q] = z E[Q|s €] Pr[s €]

intervals I inlevel k

z N\ I~ _ |
1 —-a n(l-oa) 1-o

27

What We Proved

e [Dixit Raskhodnikova Thakurta Varma 16]

" Theorem

~

Our a-erasure-resilient e-tester for sortedness of n-element arrays

logn .
\makes O (s (1_00) queries for alla, € € (0,1).

J

28

Property Testing with Erasures

Property Tester [Rubinfeld Sudan 96,
Goldreich Goldwasser Ron 98]

y D
YES | ¢ far from
~— YES
% 4
Accept with] Reject with
probability Dc:':et probability
> 2/3 >2/3

Erasure-Resilient Property Tester [Dixit
Raskhodnikova Thakurta Varma 16]

e < (fraction of the input is erased
adversarially

{ Can be Any completion\
completed| & is far from
to YES | YES
\ 4
Accept with) Reject with
probability DC::‘et probability
=>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places

29

Property Testing with Errors

Property Tester [Rubinfeld Sudan 96,
Goldreich Goldwasser Ron 98]

y D
YES | ¢ far from
~— YES
% 4
Accept with] Reject with
probability Dc:':et probability
> 2/3 >2/3

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

e < (fraction of the input is wrong

’ 4 R
4 far from
YES €
> YES
AN /)
Accept with) Reject with
probability [ZZ:et probability
>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places

30

Property Testing with Errors

Property Tester [Rubinfeld Sudan 96,
Goldreich Goldwasser Ron 98]

y D
YES | ¢ far from
~— YES
% 4
Accept with] Reject with
probability Dc:':et probability
> 2/3 >2/3

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

e < (fraction of the input is wrong

’ 4 R
4 far from
YES €
> YES
AN /)
Accept with) Reject with
probability [ZZ:et probability
>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places

31

Relationships Between Models

Containments are strict:

e [Fischer Fortnow 05]: standard vs. tolerant

e [Dixit R Thakurta Varma 16]: standard vs. erasure-resilient
e [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

e-testable

o-erasure-resiliently -testable

ga, g)-tolerantly testabD

32

Distance Approximation for Boolean Functions

[Parnas Ron Rubinfeld 06] @
X
f(x)

£ { Algorithm J —)

Goal: Output dist(f,P) + ¢
in sublinear time

)

33

Sublinear-Time “Restoration” Models

Local Decoding
Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

Program Checking

Input: A program P computing f correctly on most
inputs.

Requirement: Self-correct program P: for a given
input x, compute f(x) by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that
the reconstructed function g satisfies P, changing
f only when necessary. For each input x, compute
g(x) with a few queries to f.

34

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

Compute the i-th character y; of a legal output y.

If there are several legal outputs for a given input, be
consistent with one.

Example: maximal independent set in a graph.

35

Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?
Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm,
space complexity < time complexity)

36

Data Stream Model

=> B|L|A-|BlL/A-|B|LIA-|[B|LIA-|B|LlA

Algorithm

\

Streaming (1) Quickly process each element

(2) Limited working memory

(3) Quickly produce output

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g.,

(x1,%5, ..., xm) =3,53,7,5,4, ...
Goal: Compute a function of the stream, e.g., median, number of distinct

elements, longest increasing sequence.

37

Streaming Puzzle

. // A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.

38

Conclusion

Sublinear algorithms are possible in many settings
e simple algorithms, more involved analysis

* nice combinatorial problems

e unexpected connections to other areas

* many open questions

In the remainder of the course, we will cover research papers in
the area.

42

