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Sublinear Algorithms

LECTURE 6
Last time
• Limitations of sublinear-time algorithms

• Yao’s Minimax Principle

• Example: testing monotonicity

• Communication complexity

Today
• Communication complexity

• Other models of computation

Sofya Raskhodnikova;Boston University



Communication Complexity

A Method for Proving Lower Bounds 
[Blais Brody Matulef 11]

Use known lower bounds 

for other models of computation

Partially based on slides by Eric Blais



(Randomized) Communication Complexity
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Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal:  minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits 
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the 
communication complexity of the best protocol for computing C.



Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌
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Theorem [Kalyanasundaram Schmitger 92, Razborov 92]

𝑅 DISJ𝑘 ≥ Ω 𝑘 for all 𝑘 ≤
𝑛

2
. 

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

= ቊ
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…



A lower bound using CC method

Testing if a Boolean function is a k-parity



Linear Functions Over Finite Field 𝔽2

6

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2
– Other accepted notation for 𝔽2: 𝐺𝐹2 and  ℤ2
– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

001001 

011001  

010000

+

example



Linear Functions Over Finite Field 𝔽2
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear (also called parity) if 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

⇕

𝑓 𝑥1, … , 𝑥𝑛 = σ𝑖∈S 𝑥𝑖 for some 𝑆 ⊆ 𝑛 .

Notation: 𝜒𝑆 𝑥 = σ𝑖∈𝑆 𝑥𝑖.

[𝑛] is a shorthand  for {1, …𝑛}



k-Parity Functions
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𝑘-Parity Functions

A function 𝑓 ∶ 0,1 𝑛 → {0,1} is a 𝑘-parity if

𝑓 𝑥 = 𝜒𝑆 𝑥 = σ𝑖∈𝑆 𝑥𝑖
for some set 𝑆 ⊆ 𝑛 of size 𝑆 = 𝑘. 



Testing if a Boolean Function is a k-Parity
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1} and an integer 𝑘

Question: Is the function a 𝑘-parity or 𝜀-far from a 𝑘-parity 

(≥ 𝜀2𝑛 values need to be changed to make it a 𝑘-parity)?

Time:

O 𝑘 log 𝑘 [Buhrman, Carcia−Soriano, Matsliah, de Wolf 13]

W min(𝑘, 𝑛 − 𝑘 ) [Blais Brody Matulef 12]

• Today:  Ω(𝑘) for 𝑘 ≤ 𝑛/2

• Today’s bound implies   W min(𝑘, 𝑛 − 𝑘 )



Important Fact About Linear Functions

• Consider functions 𝜒𝑆 and 𝜒𝑇 where 𝑆 ≠ 𝑇. 

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ 

(w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖 )

where 𝒙 𝑖 is 𝒙 with the 𝑖th bit flipped.

– For each such pair, 𝜒𝑆(𝒙) ≠ 𝜒𝑆(𝒙
𝑖 )

but 𝜒𝑇(𝒙) = 𝜒𝑇(𝒙
𝑖 )

So, 𝜒𝑆 and 𝜒𝑇 differ on exactly one of 𝒙, 𝒙 𝑖 .

– Since all 𝒙’s are paired up, 

𝜒𝑆 and 𝜒𝑇 differ on half of the values.
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𝒙

𝒙 𝑖

𝜒𝑆(x) 𝜒𝑇(x)

0
1
1
𝑎
0
⋅
⋅
⋅

1 − 𝑎
0
1
0

0
1
0
𝑏
1
⋅
⋅
⋅
𝑏
0
0
1

Two different linear functions disagree on half of the values.Fact.

A 𝑘′−parity function, where 𝑘′ ≠ 𝑘, is ½-far from any k-parity.Corollary.



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity

• Let 𝑇 be the best tester for the 𝑘-parity property for 𝜀 = 1/2
– query complexity of T is 𝑞 testing 𝑘−parity .

• We will construct a communication protocol for 𝐷𝐼𝑆𝐽𝒌/𝟐 that runs 

𝑇 and has communication complexity 2 ⋅ 𝑞(testing 𝑘−parity).

• Then 2 ⋅ 𝑞(testing 𝑘−parity) ≥ 𝑅 DISJ𝑘/2 ≥ Ω 𝑘/2 for 𝑘 ≤ 𝑛/2

⇓

𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

12

holds for CC of every 

protocol for 𝐷𝐼𝑆𝐽𝒌 [Hastad Wigderson 07]



Reduction from 𝐷𝐼𝑆𝐽𝒌/𝟐 to Testing k-Parity
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BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘/2.

Compute: 𝑓 = 𝜒𝑆

Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘/2
Compute: 𝑔 = 𝜒𝑇

1101000101110101110101010110…

Output T’s answer

T

ℎ = 𝑓 + 𝑔 (𝑚𝑜𝑑 2)

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕

ℎ 𝑥 ? 𝑓 𝑥 + 𝑔 𝑥 𝑚𝑜𝑑 2

𝑓(𝑥)
𝑔(𝑥)

• 𝑇 receives its random bits from the shared random string.



Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by 𝑇

Correctness:

• ℎ = 𝑓 + 𝑔 𝑚𝑜𝑑 2 = 𝜒𝑆 + 𝜒𝑇 𝑚𝑜𝑑 2 = 𝜒𝑆Δ𝑇

• 𝑆Δ𝑇 = 𝑆 + 𝑇 − 2 𝑆 ∩ 𝑇

• SΔ𝑇 = ቊ
𝑘 if S∩T = ∅

≤ 𝑘 − 2 if S∩T ≠ ∅

ℎ is ቊ
𝑘−parity if S∩T = ∅

𝑘′−parity where 𝑘′ ≠ 𝑘 if S∩T ≠ ∅

Summary: 𝑞(testing 𝑘-parity) ≥ Ω 𝑘 for 𝑘 ≤ 𝑛/2

14

1/2-far from every 𝑘-parity



Testing Lipschitz Property 
on Hypercube

Lower Bound



Lipschitz Property of Functions f: 0,1 𝑛→R
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• A function 𝑓 ∶ 0,1 𝑛 → R is Lipschitz

if changing a bit of 𝑥 changes 𝑓(𝑥) by at most 1. 

• Is 𝑓 Lipschitz or 𝜀-far from Lipschitz
(𝑓 has to change on many points to become Lipschitz)?

– Edge 𝑥 − 𝑦 is violated by  𝑓 if  𝑓 𝑥 − 𝑓(𝑦) > 1.

Time: 

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

[Chakrabarty Seshadhri] 

– Ω(𝑛) [Jha Raskhodnikova] 

0

0 1

12

1

2

1

2

2 0

00

0

2

2

Lipschitz

1

2
-far from Lipschitz



Testing Lipschitz Property
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Prove it.

Theorem

Testing Lipschitz property of functions f: 0,1 𝑛 → {0,1,2}
requires Ω(𝑛) queries.



Summary of Lower Bound Methods

• Yao’s Principle

– testing membership in 1*, sortedness of a list and monotonicity 
of Boolean functions

• Reductions from communication complexity problems

– testing if a Boolean function is a 𝑘-parity

18



Other Models of Sublinear
Computation



Algorithms Resilient to Erasures (or Errors)
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⊥ ⊥ A - B L ⊥ ⊥ B L A - B L A - ⊥ L A - B L A - B L ⊥ - B L A

? L? B ? L ?

• ≤ 𝜶 fraction of the input is erased (or modified) 
adversarially before algorithm runs

• Algorithm does not know in advance what’s erased 
(or modified)

• Can we still perform computational tasks?

randomized algorithm



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm

21

Property Testing

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing with Erasures

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Erasure-Resilient Property Tester [Dixit 
Raskhodnikova Thakurta Varma 16]

• ≤ 𝛼 fraction of the input is erased 

adversarially

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

Can be 

completed 

to YES
NO

Any completion 

is far from

YES
𝜀



Can We Make Testers α-Erasure-Resilient?

It is easy if a tester makes only uniform queries          
(and the property is extendable).

• Use the original tester as black box and ignore erasures:

• Applies to many properties

– Monotonicity over poset domains 

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]

– Convexity of black and white images 

[Berman Murzabulatov Raskhodnikova 16]

– Boolean arrays having at most 𝑘 alternations in values

– …

23

O
1

1−α
factor query complexity overhead for all α ∈ 0,1 .



Erasure-Resilient Sortedness Tester?

Example: Testing sortedness of 𝑛-element arrays
• Every uniform tester requires Ω 𝑛 queries.
• [EKKRV00] (optimal) tester that makes 𝑂(log 𝑛) queries

• Can we make it erasure-resilient O
1

1−α
factor overhead?

• All known optimal sortedness testers [EKKRV00, BGJRW09, CS13a] break 
with just one erasure.

24

Known optimal testers for monotonicity, Lipschitz property and 
convexity of functions [GGLRS00, DGLRRS99, EKKRV00, F04, CS13a, CS13b, 
CST14, BRY14, BRY14, CDST15, KMS15, BB16, JR13, CS13a, BRY14, BRY14, 
CDJS15, PRR03, BRY14] break on a constant number of erasures.

1  2                                                                                                                         𝑛
random search element

⊥ 0 0 0 0 0 0 0 0 0 0 0 0 0 001 1 1 1 1 1 1 1 1 1 1 1 1 11



Erasure-Resilient Sortedness Tester
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Input: ε,α ∈ (0,1); query access to an array

1. Repeat Θ(1/ε) times:
a. Sample uniformly until you get a nonerased search point 𝒔.
b. Binary search for 𝒔 with uniform nonerased split points.
c. Reject if there are violations along the search path.

2. Accept if no violations were found.

1  2                                                                                                                         𝑛

𝒔

⊥ 37

𝒑𝟐𝒑𝟏

⊥ ⊥9 ⊥ 8861 37



Analysis of the Sortedness Tester

1. Array is sorted ⟹ tester accepts

2. Array is ε-far from sorted ⟹ one iteration rejects with 
probability ≥ ε

– Need to repeat only Θ(1/ε) times to get error probability 2/3

3. Want to show: expected # of queries per iteration is 𝑂
log 𝑛

1−𝛼

– Tester traverses a uniformly random search path in a random 
binary search tree.

– The # of levels in a random binary search is 𝑂 log 𝑛 w.h.p.

26

Claim. Expected # of queries to one level of binary search is 

𝑂
1

1−𝛼



Expected Number of Queries in One Iteration

At level 𝑘

27

1  2                                                                                                                         𝑛
Interval I 𝛼𝐼 = fraction of erasures in I

Pr [search point 𝒔 is in 𝐼] =
# nonerased points in I
total # nonerased points

≤
|I|(1 −α𝐼)

n(1 − α)

E [Q] =

= ෍

𝐼

1

1 − α𝐼
⋅

|I| (1 −α𝐼)

n(1 − α)

෍

intervals 𝐼 in level 𝑘

𝐸 𝑄 𝑠 ∈ 𝐼] ⋅ Pr[𝑠 ∈ 𝐼]

𝑸 = # of queries

≤
1

1 − α



What We Proved

• [Dixit Raskhodnikova Thakurta Varma 16]
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Our α-erasure-resilient ε-tester for sortedness of 𝒏-element arrays 

makes O
𝐥𝐨𝐠 𝒏

ε 𝟏−α
queries for all α, ε ∈ 0,1 .

Theorem



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm

29

Property Testing with Erasures

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Erasure-Resilient Property Tester [Dixit 
Raskhodnikova Thakurta Varma 16]

• ≤ 𝛼 fraction of the input is erased 

adversarially

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

Can be 

completed 

to YES
NO

Any completion 

is far from

YES
𝜀



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing with Errors

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼 fraction of the input is wrong

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

𝛼



Property Tester [Rubinfeld Sudan 96,

Goldreich Goldwasser Ron 98]

randomized 

algorithm
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Property Testing with Errors

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼 fraction of the input is wrong

Don’t 
care 

Accept with 
probability 
≥ 𝟐/𝟑

Reject with 
probability 
≥ 𝟐/𝟑

YES NO
far from

YES
𝜀

𝛼



Relationships Between Models

Containments are strict:
• [Fischer Fortnow 05]: standard vs. tolerant

• [Dixit R Thakurta Varma 16]: standard vs. erasure-resilient 

• [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

32

ε-testable

𝛂-erasure-resiliently ε-testable

(𝛂, ε)-tolerantly testable



Distance Approximation for Boolean Functions

33

[Parnas Ron Rubinfeld 06]

Goal: Output 𝑑𝑖𝑠𝑡 𝑓, 𝒫 ± 𝜀

in sublinear time

ො𝜺Algorithm

𝒙
𝒇(𝒙)

𝜺 ∈ (𝟎, 𝟏)

𝒇



Sublinear-Time “Restoration” Models

Local Decoding

Program Checking

Local Reconstruction

34

Input: Function 𝑓 nearly satisfying some property 𝑃
Requirement: Reconstruct function 𝑓 to ensure that 
the reconstructed function 𝑔 satisfies 𝑃, changing 
𝑓 only when necessary. For each input 𝑥, compute 
𝑔(𝑥) with a few queries to 𝑓.

𝑓

𝑃
Input: A program 𝑃 computing 𝑓 correctly on most 
inputs.
Requirement: Self-correct program 𝑃: for a given 
input 𝑥, compute 𝑓(𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest 
codeword with a constant number of queries per 
recovered bit.

𝑓



Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

• Compute the 𝑖-th character 𝑦𝑖 of a legal output 𝑦.

• If there are several legal outputs for a given input, be 
consistent with one.

• Example: maximal independent set in a graph.

35



Sublinear-Space Algorithms

What if we cannot get a sublinear-time algorithm?

Can we at least get sublinear space?

Note: sublinear space is broader (for any algorithm, 
space complexity ≤ time complexity)

36



Data Stream Model

Motivation: internet traffic analysis

Model the stream as 𝑚 elements from [𝑛], e.g.,
𝑥1, 𝑥2, … , 𝑥𝑚 = 3, 5, 3, 7, 5, 4, …

Goal: Compute a function of the stream, e.g., median, number of distinct 
elements, longest increasing sequence.

37

B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2)  Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming 

Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf



Streaming Puzzle

A stream contains 𝑛 − 1 distinct elements from 𝑛 in arbitrary order. 

Problem: Find the missing element, using 𝑂(log 𝑛) space.

38



Conclusion

Sublinear algorithms are possible in many settings

• simple algorithms, more involved analysis

• nice combinatorial problems

• unexpected connections to other areas

• many open questions

In the remainder of the course, we will cover research papers in 
the area.

42


