Sublinear Algorithms

| ECTURE 7/

Last time
« Communication complexity
» Other models of computation

Today
* Streaming

Project proposals due next Thursday
Sigm up for project meetings, scribing, grading

9/24/2020 _ o
Sofya Raskhodnikova;Boston University

=> B|L|A -|BlL|A -

Data Stream Model [Alon Matias Szegedy 96]

Bl L| A -

B

L| Al -

B

L

A

B

L

A

B

LI Al - >

Streaming
Algorithm

\

(1) Quickly process each element

(2) Limited working memory

(3) Quickly produce output

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g.,
(aq,a,,...,ay,)=3,573,7,5,4, ..

Goal: Compute a function of the stream, e.g., median, number of distinct
elements, longest increasing sequence.

Streaming Puzzle

. // A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.

Sampling from a Stream of Unknown Length

Warm-up: Find a uniform sample s from a stream (a4, a,, ..., a,,,)
of known length m.

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream (a4, a,, ..., a,,)
of unknown length m

‘Algorithm (Reservoir Sampling) A

1. Initially, s « a4

\2. On seeing the tt" element, s < a; with probability 1/t

)
Analysis:

What is the probability that s = a; at sometimet = i?

1 1 1
Prls = a;] = .-(1—”1).....(1_;)

Space: O(k (logn + logm)) bits to get k samples.

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n|™
Warm-up: Output the number of distinct elements in the stream.

Exact solutions:
e Store n bits, indicating whether each domain element has appeared.
e Store the stream: O(mlogn) bits.

Known lower bounds:

e Every deterministic algorithm requires Q0(m) bits
(even for a constant-factor approximation).

e Every exact algorithm (even randomized) requires Q(n) bits.

Need to use both randomization and approximation to get polylog(m, n) space

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n|™

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + &) with probability = 2/3

e Studied by [Flajolet Martin 83, Alon Matias Szegedy 96,...]

e Today: 0(¢~?logn) space algorithm
[Bar-Yossef Jayram Kumar Sivakuar Trevisan 02]

e Optimal: 0(¢~% + logn) space algorithm [Kane Nelson Woodruff 10]

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n]™
Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + &) with probability = 2/3

(l\lgorithm)
1. Apply arandom hash function h : [n] — [n] to each element

2. Compute X, the t-th smallest value of the hash seen where t = 10 / &2
3. Return? =¢- n/X as estimate for r, the number of distinct elements. 4

Analysis:
e Algorithm uses 0(e7?%logn) bits of space (not accounting for storing h)
e We'll show: estimate 7 has good accuracy with reasonable probability.

[Claim. Pr(|f —r| < er] =22/3 J

Counting Distinct Elements: Analysis

[Claim. Pr[lf —r| < ST‘] > 2/3} X: t-th smallest hashed value
A 2
Proof: Suppose the distinct elements are e4, ..., e, f N :O //‘;(
r = n
e (Qverestimation:
Prir =21+ ¢)r —Pr[—> 1+¢ r]—Pr
[F = (1+)] (1+¢) [<
Y ., = . n] r . — t
letY; = 1 [h(el) < r(1+£)] andY =)i, Y E[Y] = -
. ; Var[Y] < E[Y]

E[Y]=r-E[Y1]=r-r(1+€)—1+€

Var|[Y] = Var zr: Y; z VarlY,
z E[Yv?] = z E[Y,

Counting Distinct Elements: Analysis

X: t-th smallest hashed value

[Claim. Pr[|F —r| < er] = 2/3}

A 2
Proof: Suppose the distinct elements are e4, ..., e, =
: : r=t-n/X
e (Qverestimation:
Prl7 > (14 &)r] = P [t'">(1+)]—p X<
r(r > e)r| = Pr ¥ = e)r| = Pr i+ o
t-n
e letV; = ﬂ[h(ei) Sr(1+£)] andY =)7_.V; E[Y] = -
Var[Y] < E[Y]
t-n
PriX<——|=PrlY >2¢t|=Pr|Y = (1 +¢)E|Y
r[r(1+e)] r[] =Prly = (1 + ¢)E[Y]]

e By the ChebysheV’s inequality, for e < 2/3,

Var[Y 1 1+ 1+
Pr[Y > (1+ e)E[Y]] < e .a];[| _ £ £

1
< — — < —
[Y])? — €2E[Y] €2 -t 10 — 6

e Underestimation: A similar analysis shows Pr[7 < (1 — &)r] < -
10

Removing the Random Hashing Assumption

Idea: Use limited independence

o Afamily H = {h:[a] — [b]} of hash functions is k-wise independent if for
all distinct x4, ..., x5, € [a] and all y4, ..., yx € |b],

1
Pr[aGe) =1, h06) = il = 7

Note: a uniformly random family is k-wise independent for all k
e Observations: For x4, ..., X; as above,
1. h(x,) is uniform over [b]
2. h(xy), ..., h(x}) are mutually independent.

11

Construction of k-wise Independent Family

Idea: Use limited independence

o Afamily H = {h:[a] — [b]} of hash functions is k-wise independent if for

all distinct x4, ..., x5, € [a] and all y4, ..., yx € |b],

1
Pr[aGe) =1, h06) = il = 7

@nstruction of k-wise Independent Family of Hash Functions

~

1. Letp beaprime.

2. Condider the set of polynomials of degree k — 1 over IF,,
H=1{h:{0,..,.p—1}->{0,...,p — 1} |
h(x) = g1 + -+ c1x + ¢, with ¢y, ..., Ci—q € Fp}

Q To sample h € H, sample ¢y, ..., Cr—1 € [F, u.i.r.

/

e Spacetostore his O(klogp)
e For arbitrary a, b, need O(k - (loga + log b)) space.

12

Counting Distinct Elements: Final Algorithm

Input: a stream (a4, a,, ..., a,,) € [n|™

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + &) with probability = 2/3

@Igorithm Y

1. Sample a hash function h : [n] — [n] from a 2-wise independent
family and apply h to each element

2. Compute X, the t-th smallest value of the hash seen where t = 10 / &2

Q. Return 7 =t - n/X as estimate for r, the number of distinct elements. 4

Analysis:
e Algorithm uses O(c7?logn) bits of space
e Our correctness analysis applies.

13

Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, .., fin),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 + €) with probability = 2/3

14

Summary

Streaming Model

e Reservoir sampling

e Distinct Elements (approximating Fj))
e k-wise independent hashing

20

