Sublinear Algorithms

| ECTURE 9

L_ast time
« Approximate counting
 Estimation of the 2" moment

» Linear sketching

Today

» Multipurpose sketches

» Count-min and count-sketch

» Range queries, heavy hitters, quantiles

HW3 owt
Sigm up for scribing, grading

Sofya Raskhodnikova;Boston University

10/1/2020

Multipurpose Sketches: Problems

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries
e Point Query: For i € [n], estimate f;

e Range Query: Fori,j € [n], estimate f; + fii1 +...+ f;

* Quantile Query: For ¢ € [0, 1], find j with f; +...+ f; = ¢pm

e Heavy Hitters Query: For ¢ € [0, 1], find all i with f; > ¢m.

Desired accuracy: +em with error probability 6

Initial Solution to Point Queries

e We could maintain the whole frequency vector (fy, ..., f;,)
e Then, on query i, we can output f;
ldea: Group counts for some numbers together

@ & & @ © &6 &6 @ ©¢ @ ® @

v ¥ ¥ ¥

If i falls into bucket j, then f; < ¢;.

/Point Query Algorithm (initial version))

Sample a hash function h : [n] — [b] from a 2-wise independent family

Initialize counters ¢4, ..., ¢, t0 0
For each element a, increment ¢y, by 1.

1
2
3
\4. To answer a point query i, return ¢y . Eever underestimate 4

3

Initial Solution to Point Queries: Analysis

/Point Query Algorithm (initial version) Y

1. Sample a hash function h : [n] — [b] from a 2-wise independent family
Initialize counters ¢y, ..., ¢, t0 0

CONRIS

For each element a, increment ¢y, by 1.

\4. To answer a point query i, return cy ;. Never underestimate 4
e Fixi* € [n].
e LletZ = ¢y — fi* be the overestimation error. by 2-wise independence
|
1 if h(D) = h(i) ‘1

e Foralli #i"letX; = {

0 otherwise E[X;] = Pr{h() = h(i")] b

Z = ZX fi IE[Z]=ZIE[Xi fi = bzfl— . bylinearit_yof

expectation

[#i* S
e By Markov’s inequality, if b = 2 /¢ then
E[Z] 1 1
Pr[Z = em] < <—<-<
em &b 2

Count-Min Sketch [Cormode Muthukrishnan 03]

ﬁoint Query Algorithm
Sett =log,1/6and b = 2/¢

Sample ¢ hash functions h;: [n] — [b] from a 2-wise independent family
Initialize tb counters ¢j; to 0

For each element a and each j € [t], increment ¢; (o) by 1.

1.
2.
3.
4.
5. To answer a point query i, return fi =minc; . Never underestimate
K P query e Jelt] j,h(i) /

e Correctness: Pr[fl- <fi<fi+ em]
= 1 — Pr[all ¢t hash functions overestimate by more than em]|

t
1
> 1 — (§> =1-=4 since hash functions are chosen independently

e Space: O(t (logn + log b)) for the hash functions +
O(tblogm) for the counters

Total: O ((logn + log m)ilog%)

Multipurpose Sketches: Problems

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries

e Point Query: For i € [n], estimate f;

* Range Query: Fori,j € [n], estimate f; + fi;1 + ...+ f; Denote by fi; ;i
* Quantile Query: For ¢ € [0, 1], find j with f; + ...+ f; = ¢pm

e Heavy Hitters Query: For ¢ € [0, 1], find all i with f; > ¢m.

Desired accuracy: +em with error probability 6

Range Queries

* We could estimate f|; ;) by f; + fis1t+...+f;
But errors add up: need too much space to keep accurate enough estimates
ldea: We could estimate counts for some intervals directly by grouping i, ..., j

v

How many intervals do we need so that
each interval is a sum of O(log n) original intervals?

Dyadic Intervals

/ " \

1] EA
Tl/ Tl\ n n /37’l ;
L Bl k] e
7\ 7\ 7\ /N
, \ /...\
1 2 n—1 n

lgn+1
levels

e Exercise: Each interval [i, j] is a sum of at most 2 Ig n dyadic intervals.

e Such a representation of an interval is its dyadic decomposition.

Count-Min Strikes Back

ﬁange Query Algorithm \

1. Construct lgn + 1 Count-Min sketches, one for each level such that
for all intervals I at that level, our estimate f; for f; satisfies
Prlfi<fisfi+tem|<1-6
2. Toanswer arange query [i,], let I, ..., I} be its dyadic decomposition

k Return f[i,j] = f,l TR +f}k /

e Correctness: Pr[f[i,j] < f < fii,1 + em(2 lgn)] >1—-46(21gn)

e Space:

Multiply the old space complexity by logn and divide € and § by log n:

1 logn
0 (log2 n (logn + logm) Elog g >

~ ¢pm

emand fi1j-1] < = +em

e Quantile Query: For ¢ € [0, 1] find j with f; j; =
m
=2
We can approximate median via binary search of range queries.

Approximate Median: Find j such that fj; j; =

Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For ¢ € (g, 1), find a set S that
— includes all i with f; = ¢m
— excludes all j with f; < (¢ — &)m
q Heavy Hitters Algorithm)
1. Construct Ign + 1 Count-Min sketches for levels of dyadic tree, as before

2. Toanswer query ¢, mark the root. Going level-by-level from the root,
mark children I of marked nodes if f; = ¢m

\3. Return all marked leaves /

Correctness: If f; = ¢m, then for all ancestors I of the leaf i,
fizfiz¢m
e |f we ensure that Pr[point query overestimates by > em]< 6 /n,
then, by union bound, all point queries are correctw.p. =1 — 6

e There are at most 1/¢ indices i with f; = ¢m
Thus, 0(¢~1logn) time suffices for post-processing

10

CR-Precis: Deterministic Count-Min [Ganguly Majumder 07]

Use deterministic hash functions:
hj(a) = a mod pj, where p; is the j-th prime, for j € [t]
Analysis: Fix i* € [n]. Define z4, ..., z; such that Cjn;i*) = fir + 2, thatis,
i#i*:h (D=h;(i*)
e Claim: Foreachi # i*, we have h;(i) = h;(i*) for at most logn primes p;
by Chinese Remainder Theorem

o Thus, Y12z = 2j2ifi = Xi2jfi < X filogn = mlogn

mlogn
fl*—mlnc h(l*)—mln(fl +z;) = fir +rrel%r%z < fix + .
J

. Wesett=TtogetfiSfiSfi+8m

2

~

e Requires keepingat mostt-p, =0 (

n) counters since p; = O(tlogt)

g2

11

Count-Sketch: Count-Min+AMS combined

/Count-Sketch Y
1. Inaddition to h;: [n] — [b], use hash functions r;: [n] —» {—1,1} @
2. Maintain tb counters ¢, = Zi;hj(i)=k7"j(i)fi
Q. To answer a point query i, return f; =median(r1 (D C1n, i) ...,rt(i)ct,ht(i))/
Claim. E [r-(i)c- :] = f; and Var [r-(i)c- :] <2 vyje [t]
' JA R () i WG = Y
e By Chebyshev, for b = 2/¢2,
> ¢c./ _
[f (l)cjh (1) € FZ] szZ 3

e By Chernoff, fort = 0(log1/6)

Pr||fi— fil = eJE| <6

12

Count-Sketch: Proof of Claim

[Count-Sketch: fl =median(r1 (i)cl,hl(i), ree s Tt(i)ct,ht(i))J

Claim. [E [q(i)cj’hj(i)] = f; and Var[rt(i)ct,ht(i)] <= VjeE|[t]

F;
b

Proof: Fixi = i* and j € [b]. We omit subscripts j.

e Foralli #i" letX; = {

e Expectation: E[r(i*) ch(i*)] =E

Variance:

Var[r(i*) chn] < E

= E

ESM

1 ifh(i) = h(i")
0 otherwise

SN

£+) rOraOXf,

> rOraxf,

RNEIS

Y XEfE Y rOrGOXXfife| =2

i£k

2

v

by 2-wise independence

1V

13

Count-Sketch: Count-Min+AMS combined

/Count-Sketch N\

v

1. Inaddition to h;j: [n] — [b], use hash functions 7;: [n] - {—1,1}

Maintain tb counters Cik = Zi;hj(i)=k7}'(i)ﬁ

2
Q. To answer a point query i, return f; =median(r1 (D C1n, i) ...,rt(i)ct,ht(i))/

e Fixi* € [n].
e LletZ = ¢y — fi* be the overestimation error. by 2-wise independence
|
: . : \’
e Foralli #i% letX; = = = —
oraftF LA {O otherwise E[Xi] = Pr{r@) = h(")] b

Z = ZX fi E[Z] = z E[X;] - zf‘ < bylinearit_yof

expectation

[#i* S
e By Markov’s inequality, if b = 2 /¢ then
E[Z] 1 1
Pr[Z = em] < <—<-<
em &b 2

14

