Sublinear Algorithms Lecture 1

Sofya Raskhodnikova

Boston University

Organizational

Course webpage:

https://cs-people.bu.edu/sofya/sublinear-course/

Use Piazza to ask questions Office hours:

Wednesdays, 1:30PM-3:00PM

Evaluation

- Homework (about 4 assignments)
- Taking lecture notes (once or twice per person)
- Course project and presentation
- Peer grading (PhD students only)
- Class participation

Tentative Topics

Introduction, examples and general techniques.

Sublinear-time algorithms for

- graphs
- strings
- geometric properties of images
- basic properties of functions
- algebraic properties and codes
- metric spaces
- distributions

Tools: probability, Fourier analysis, combinatorics, codes, ...

Sublinear-space algorithms: streaming

Tentative Plan

Introduction, examples and general techniques.

Lecture 1. Background. Testing properties of images and lists.

Lecture 2. Properties of functions and graphs. Sublinear approximation.

Lecture 3-5. Background in probability. Techniques for proving hardness. Other models for sublinear computation.

Motivation for Sublinear-Time Algorithms

Massive datasets

- world-wide web
- online social networks
- genome data
- sales logs
- census data
- high-resolution images
- scientific measurements

Long access time

- communication bottleneck (slow connection)
- implicit data (an experiment per data point)

"Why Gramma, what big data you have!"

Do We Have To Read All the Data?

- What can an algorithm compute if it
 - reads only a tiny portion of the data?
 - runs in sublinear time?

Image source: http://apandre.wordpress.com/2011/01/16/bigdata/

A Sublinear-Time Algorithm

Quality of approximation

Resources

- number of queries
- running time

Goal: Fundamental Understanding of Sublinear Computation

- What computational tasks?
- How to measure quality of approximation?
- What type of access to the input?
- Can we make our computations robust (e.g., to noise or erased data)?

Types of Approximation

Classical approximation

- need to compute a value
 - > output should be close to the desired value
 - > example: average

Property testing

- need to answer YES or NO
 - ➤ Intuition: only require correct answers on two sets of instances that are very different from each other

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: m points, described by a distance matrix D

- D_{ij} is the distance between points i and j
- D satisfies triangle inequality and symmetry (Note: input size is $n=m^2$)
- Let i, j be indices that maximize D_{ij} .
- Maximum D_{ij} is the *diameter*.

Output: (k, ℓ) such that $D_{k\ell} \ge D_{ij}/2$

Algorithm and Analysis

Algorithm (m, D)

- 1. Pick *k* arbitrarily
- 2. Pick ℓ to maximize $D_{k\ell}$
- 3. Output (k, ℓ)
- Approximation guarantee

$$D_{ij} \leq D_{ik} + D_{kj}$$
 (triangle inequality) $\leq D_{k\ell} + D_{k\ell}$ (choice of ℓ + symmetry of D) k $\leq 2D_{k\ell}$

• Running time: $O(m) = O(m = \sqrt{n})$

A rare example of a deterministic sublinear-time algorithm

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

"in the ballpark" vs. "out of the ballpark"

Does the input satisfy the property or is it far from satisfying it?

- for some applications, it is the right question (probabilistically checkable proofs (PCPs), precursor to learning)
- good enough when the data is constantly changing
- fast sanity check to rule out inappropriate inputs

(rejection-based image processing)

Property Tester Definition

 ε -far = differs in many places ($\geq \varepsilon$ fraction of places)

Randomized Sublinear Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a string $w \in \{0,1\}^n$

0 0 0 1 ... 0 1 0 0

Question: Is $w = 00 \dots 0$?

Requires reading entire input.

Approximate version: Is $w = 00 \dots 0$ or

does it have $\geq \varepsilon n$ 1's ("errors")?

Test (n, w)

- 1. Sample $s = 2/\varepsilon$ positions uniformly and independently at random
- 2. If 1 is found, reject; otherwise, accept

Analysis: If $w = 00 \dots 0$, it is always accepted.

Used: $1 - x \le e^{-x}$

If w is ε -far, Pr[error] = Pr[no 1's in the sample] $\leq (1-\varepsilon)^s \leq e^{-\varepsilon s} = e^{-2} < \frac{1}{3}$

Witness Lemma

If a test catches a witness with probability $\geq p$,

then $s = \frac{2}{p}$ iterations of the test catch a witness with probability $\geq 2/3$.

Randomized Approximation: a Toy Example

Input: a string $w \in \{0,1\}^n$

0 0 0 1 ... 0 1 0 0

Goal: Estimate the fraction of 1's in w (like in polls)

It suffices to sample $s=1/\varepsilon^2$ positions and output the average to get the fraction of 1's $\pm \varepsilon$ (i.e., additive error ε) with probability 2/3

Hoeffding Bound

Let $Y_1, ..., Y_s$ be independently distributed random variables in [0,1].

Let
$$Y = \frac{1}{s} \cdot \sum_{i=1}^{s} Y_i$$
 (called *sample mean*). Then $\Pr[|Y - E[Y]| \ge \varepsilon] \le 2e^{-2s\varepsilon^2}$.

$$\begin{aligned} \mathbf{Y_i} &= \text{value of sample } i. \text{ Then E}[\mathbf{Y}] = \frac{1}{s} \cdot \sum_{i=1}^{s} \mathrm{E}[\mathbf{Y_i}] = (\text{fraction of 1's in } w) \\ & \mathrm{Pr}[|(\text{sample mean}) - (\text{fraction of 1's in } w)| \geq \varepsilon] \\ & \leq 2e^{-2s\varepsilon^2} = 2e^{-2} < 1/3 \\ & \uparrow \end{aligned}$$
 Apply Hoeffding Bound substitute $s = 1 / \varepsilon^2$

Property Testing

Simple Examples

Testing Properties of Images

Pixel Model

Input: $n \times n$ matrix of pixels (0/1 values for black-and-white pictures)

Query: point (i_1, i_2)

Answer: color of (i_1, i_2)

Testing if an Image is a Half-plane [R03]

A half-plane or ε -far from a half-plane?

 $O(1/\varepsilon)$ time

 $\frac{1}{4}$ -far from a half-plane

 $\frac{1}{4}$ -far from a half-plane

Strategy

"Testing by implicit learning" paradigm

- Learn the outline of the image by querying a few pixels.
- Test if the image conforms to the outline by random sampling, and reject if something is wrong.

Half-plane Test

Claim. The number of sides with different corners is 0, 2, or 4.

Algorithm

1. Query the corners.

Half-plane Test: 4 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

• If it is 4, the image cannot be a half-plane.

Algorithm

- 1. Query the corners.
- 2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

 If all corners have the same color, the image is a half-plane if and only if it is unicolored.

Algorithm

- Query the corners.
- 2. If all corners have the same color c, test if all pixels have color c (as in Toy Example 1).

Half-plane Test: 2 Bi-colored Sides

Claim. The number of sides with different corners is 0, 2, or 4.

Analysis

- The area outside of $W \cup B$ has $\leq \varepsilon n^2/2$ pixels.
- If the image is a half-plane, W contains only white pixels and B contains only black pixels.
- If the image is ε -far from half-planes, it has $\ge \varepsilon n^2/2$ wrong pixels in $W \cup B$.
- By Witness Lemma, $4/\varepsilon$ samples suffice to catch a wrong pixel.

Algorithm

- 1. Query the corners.
- 2. If # of sides with different corners is 2, on both sides find 2 different pixels within distance $\varepsilon n/2$ by binary search.
- 3. Query $4/\varepsilon$ pixels from $W \cup B$
- **4.** Accept iff all W pixels are white and all B pixels are black.

Testing if an Image is a Half-plane [R03]

A half-plane or ε -far from a half-plane?

 $O(1/\varepsilon)$ time

Other Results on Testing Properties of Images

Pixel Model

Convexity [Berman Murzabulatov R 18]

Convex or ε -far from convex?

$$O(1/\varepsilon)$$
 time

Connectedness [Berman Murzabulatov R Ristache 24]

Connected or ε -far from connected?

$$O(1/\varepsilon^{3/2} \sqrt{\log 1/\varepsilon})$$
 time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template or is ε -far?

time independent of image size

Properties of sparse images [Ron Tsur 10]

Testing if a List is Sorted

Input: a list of n numbers $x_1, x_2, ..., x_n$

- Question: Is the list sorted? Requires reading entire list: $\Omega(n)$ time
- Approximate version: Is the list sorted or ε -far from sorted? (An ε fraction of x_i 's must be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: $O((\log n)/\varepsilon)$ time $\Omega(\log n)$ queries
- Best known bounds:

$$\Theta(\log (\varepsilon n)/\varepsilon)$$
 time

[Belovs, Chakrabarty Dixit Jha Seshadhri 15]

Testing Sortedness: Attempts

1. **Test**: Pick a uniformly random $i \in \{1, ..., n-1\}$ and reject if $x_i > x_{i+1}$.

Fails on:

à 1/2-far from sorted

2. **Test**: Pick uniformly random i < j in $\{1, ..., n\}$ and reject if $x_i > x_j$.

Fails on:

 \tilde{A} 1/2-far from sorted

Is a List Sorted or ε-far from Sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

 $\leq n \log n$ edges

- by adding a few "shortcut" edges (i, j) for i < j
- where each pair of vertices is connected by a path of length at most 2

Is a List Sorted or *\varepsilon*-far from Sorted?

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

- Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.
- If i is an endpoint of a violated edge, call x_i bad. Otherwise, call it good.

Claim 1. All good numbers x_i are sorted.

Proof: Consider any two good numbers, x_i and x_j .

They are connected by a path of (at most) two satisfied edges (i, k), (k, j)

$$\Rightarrow x_i \leq x_k \text{ and } x_k \leq x_i$$

$$\Rightarrow x_i \leq x_j$$

Is a List Sorted or *\varepsilon*-far from Sorted?

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and reject if $x_i > x_j$.

Analysis:

- Call an edge (i,j) violated if $x_i > x_j$, and satisfied otherwise.
- If i is an endpoint of a violated edge, call x_i bad. Otherwise, call it good.

Claim 1. All good numbers x_i are sorted.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ε -far from sorted, it has $\geq \varepsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \frac{\varepsilon n}{2}$ violated edges out of $n \log n$.

Is a List Sorted or *\varepsilon*-far from Sorted?

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.

Analysis:

• Call an edge (i,j) violated if $x_i > x_j$, and satisfied otherwise.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n)/\varepsilon$ edges from 2-spanner.

Algorithm

Sample $\frac{4 \log n}{\mathcal{E}}$ edges (i,j) from the 2-spanner and **reject** if $x_i > x_j$.

Guarantee: All sorted lists are accepted.

All lists that are ²-far from sorted are rejected with probability 2/3.

Time: $O((\log n)/\varepsilon)$

Generalization

Observation:

The same test/analysis apply to any edge-transitive property of a list of numbers that allows extension.

- A property is edge-transitive if
 - it can be expressed in terms conditions on ordered pairs of numbers

it is transitive: whenever (x, y) and (y, z) satisfy (1), so does (x, z)2)

- A property allows extension if
 - any function that satisfies (1) on a subset of the numbers can be extended to a function with the property

Testing if a Function is Lipschitz [Jha R]

A function $f: D \to R$ is Lipschitz if it has Lipschitz constant 1: that is, if for all x,y in D, $distance_R(f(x), f(y)) \le distance_D(x, y)$.

Consider $f: \{1,...,n\} \rightarrow \mathbb{R}$:

nodes = points in the domain; edges = points at distance 1 node labels = values of the function

The Lipschitz property is *edge-transitive*:

- 1. a pair (x,y) is **good** if $|f(y)-f(x)| \le |y-x|$
- 2. (x,y) and (y,z) are good (x,z) is good
- \mathcal{L} It also allows extension for the range R.

resting if a function $f: \{1,...,n\} \to \mathbb{R}$ is Lipschitz takes $O((\log n)/^2)$ time.

Properties of a List of n Numbers

- Sorted or ε -far from sorted?
- Lipschitz (does not change too drastically) or ε -far from satisfying the Lipschitz property?

$$O\left(\frac{\log n}{\varepsilon}\right)$$
 time

Tight bound:
$$\Theta\left(\frac{\log(\varepsilon n)}{\varepsilon}\right)$$
 [Chakrabarty Dixit Jha Seshadhri 15, Belovs 18]