Sublinear Algorithms

Last time

- Multipurpose sketches
- Count-min and count-sketch
- Range queries, heavy hitters, quantiles
 Today
- Limitations of streaming algorithms
- Communication complexity

Recall: Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times *i* appears in the stream
- The *p*-th frequency moment is $F_p = ||f||_p^p = \sum_{i=1}^n f_i^p$

 $F_{0} \text{ is the number of nonzero entries of } f \text{ (# of distinct elements)}$ $F_{1} = m \text{ (# of elements in the stream)}$ $F_{2} = \left| \left| f \right| \right|_{2}^{2} \text{ is a measure of non-uniformity}$ used e.g. for anomaly detection in network analysis $F_{\infty} = \max_{i} f_{i} \text{ is the most frequent element}$ We obtained streaming algorithms for F_{0}, F_{1}, F_{2} . What about F_{3} to F_{∞} ?

Communication Complexity

A Method for Proving Lower Bounds

(Randomized) Communication Complexity

Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ_k

One-Way Communication Complexity

Goal: minimize the number of bits Alice sends to Bob.

One-way communication complexity of a function C, denoted $R^{\rightarrow}(C)$, is the communication complexity of the best one-way protocol for computing C.

3-Player One-Way Communication Complexity

Goal: minimize $|m_1| + |m_2|$.

• Require correct output w.p. at least 2/3 over the random string

Converting Streaming Algorithm to CC Protocol

Let ${\boldsymbol{\mathcal{P}}}$ be a streaming problem.

Suppose there is a transformation x → s₁, y → s₂, z → s₃ such that
 𝒫(s₁ ∘ s₂ ∘ s₃) suffices to compute C(x, y, z)

An *s*-bit algorithm *A* for \mathcal{P} gives a 2*s*-bit protocol for *C*

- Alice runs A on s_1 and sends memory state, m_1 , to Bob
- Bob instantiates A with m_1 , runs A on s_2 , sends memory state, m_2 , to Carol
- Carol instantiates A with m₂, runs A on s₃ to get 𝒫(s₁ ∘ s₂ ∘ s₃) and computes C(x, y, z)

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Converting Streaming Algorithm to CC Protocol

Let ${\boldsymbol{\mathcal{P}}}$ be a streaming problem.

Suppose there is a transformation x → s₁, y → s₂, z → s₃ such that
 𝒫(s₁ ∘ s₂ ∘ s₃) suffices to compute C(x, y, z)

An *s*-bit algorithm A for \mathcal{P} gives a 2*s*-bit protocol for C

- If there are p players than the protocol uses (p-1)s bits
- A lower bound *L* for computing *C* implies $b = \Omega\left(\frac{L}{p}\right)$

A lower bound using CC method

Approximating F_{∞}

Application: Approximating F_{∞}

Theorem

Every algorithm that computes 4/3-approximation of F_{∞} (w.p. $\geq 2/3$) needs $\Omega(n)$ space.

Proof: Reduction from Set Disjointness

On input $x, y \in \{0,1\}^n$, players generate $s_1 = \{j : x_j = 1\}$ and $s_2 = \{j : y_j = 1\}$

Example:

$$\begin{array}{c} (0 \ 0 \ 1 \ 1 \ 0 \ 0) \\ (1 \ 0 \ 1 \ 0 \ 1 \ 0) \end{array} \rightarrow \langle 3,4; 1,3,5 \rangle$$

- Then $F_{\infty} = 1$ if x, y represent disjoint sets, and $F_{\infty} = 2$, otherwise. Output $\leq 4/3$ Output $\geq 3/2$
- An *s*-space algorithm implies an *s*-bit protocol:

(1

$$s = \Omega(n)$$

by communication complexity of *Set Disjointness*

A lower bound using CC method

Computing the median of a stream

Index

- Alice gets an *n*-bit string x, and Bob gets an index $j \in [n]$.
- Define $Index(x, j) = x_j$.
- One-way communication complexity of Index(x, j) is $\Omega(n)$

Application: Finding the Median of a Stream

<u>Theorem</u>

Every algorithm that computes the median of an (2n - 1)element stream exactly (w.p. $\geq 2/3$) needs $\Omega(n)$ space.

Proof: Reduction from Index.

- On input $x \in \{0,1\}^n$, Alice generates $s_1 = \{2i + x_i : i \in [n]\}$ Example: $0\ 0\ 1\ 1\ 0\ 1\ 1 \rightarrow \langle 2,4,7,9,10,13,15 \rangle$
- On input $j \in [n]$, Bob generates $s_2 = \{n - j \text{ copies of } 0 \text{ and } j - 1 \text{ copies of } 2n + 2\}$ Example: $j = 2 \rightarrow \langle 0, 0, 0, 0, 0, 16 \rangle$

- Then $median(s_1 \circ s_2) = 2j + x_j$ and $Index(x, j) = 2j + x_j \mod 2$
- An *s*-space algorithm implies an *s*-bit protocol: $s = \Omega(n)$

by 1-way communication complexity of *Index*

A lower bound using CC method

Approximating Frequency Moments

[Bar-Yossef, Jayram, Kumar, Sivakumar 04]

Multi-party Set Disjointness

• Consider a $p \times n$ binary matrix M where each column has weight 0, 1 or p

Example:

 $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$

- The input of player *i* is row *i* of *M* $DISJ^{(p)}(M) = \begin{cases} 0 & \text{if there is a column of 1s} \\ 1 & \text{otherwise} \end{cases}$
- Communication complexity of $DISJ^{(p)}(M)$ is $\Omega\left(\frac{n}{p}\right)$

Application: Frequency Moments for k > 2

Thm. Every algorithm that 2-approximaes F_k (w.p. $\geq 2/3$) needs $\Omega(n^{1-\frac{2}{k}})$ space

Proof: Reduction from multi-party Set Disjointness

• On input $M \in \{0,1\}^{p \times n}$, player *i* generates $s_i = \{j: M_{ij} = 1\}$

Example:

$$\begin{pmatrix}
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{pmatrix} \rightarrow \langle 3,4;1,3,5;3;3,6 \rangle$$

- If all columns have weight 0 or 1 then $F_k = \sum_{i=1}^n f_i^k \le n$
- If there is a column of weight p then $F_k \ge p^k$
- A 2-approximation of F_k distinguishes the cases if $p^k > 4n \Leftrightarrow p > (4n)^{\frac{1}{k}}$
- An *s*-space algorithm implies s(p-1)-bit protocol:

$$s = \Omega\left(\frac{n}{p^2}\right) = \Omega\left(\frac{n}{(4n)^{\frac{2}{k}}}\right) = \Omega\left(n^{1-\frac{2}{k}}\right)$$

by communication complexity of $DISI^{(p)}$ for constant k

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

A lower bound using CC method

Distinct Elements

Gap Hamming

- Alice and Bob get *n*-bit strings *x* and *y*, respectively.
- Hamming distance Ham(x, y) is the number of positions on which x and y differ.
- Output: Ham(x, y) with additive error \sqrt{n} w.p. $\geq 2/3$
- Communication complexity of Ham(x, y) is Ω(n)
 even when |x| and |y| are known to both players

Application: Distinct Elements

Thm. Every algorithm $(1 + \varepsilon)$ -approximing F_0 (w.p. $\geq 2/3$) needs $\Omega(1/\varepsilon^2)$ space

Proof: Reduction from Gap Hamming

On input $x, y \in \{0,1\}^n$, players generate $s_1 = \{j : x_j = 1\}$ and $s_2 = \{j : y_j = 1\}$

Example: $(0\ 0\ 1\ 1\ 0\ 0)$ $(1\ 0\ 1\ 0\ 1\ 0)$ $\rightarrow \langle 3,4;1,3,5 \rangle$

- Then $2F_0 = |x| + |y| + Ham(x, y)$
- When |x| is known to Bob, $(1 + \varepsilon)$ -approximation of F_0 gives an additive approximation to $\operatorname{Ham}(x, y)$ $\varepsilon \cdot \frac{|x| + |y| + \operatorname{Ham}(x, y)}{2} \le \varepsilon n \le \sqrt{n}$ for $\varepsilon \le 1/\sqrt{n}$
- An *s*-space algorithm implies an *s*-bit protocol:

$$s = \Omega(n) = \Omega\left(\frac{1}{\varepsilon^2}\right)$$

by communication complexity of *Gap Hamming*

Based on Andrew McGregor's slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Proving New CC Lower Bounds

Lower Bound for Gap Hamming

A Lower Bound for Gap Hamming

- Alice and Bob get *n*-bit strings *x* and *y*, respectively.
- Hamming distance Ham(x, y) is the number of bits on which x and y differ.
- Output: Ham(x, y) with additive error \sqrt{n} w.p. $\geq 2/3$

Theorem

One way communication complexity R^{\rightarrow} of Ham(x, y) is $\Omega(n)$

Proof: Reduction from Index

- Alice gets $z \in \{0,1\}^t$, Bob gets $j \in [t]$
- Assumption: |z| = t/2 and |z| is odd
- Alice and Bob pick uniformly random $r \in \{-1,1\}^t$ using public randomness
- Let $r \cdot z$ denote $\sum_{i \in [n]} r_i z_i$
- Alice computes $sgn(r \cdot z)$; Bob computes $sgn(r_j)$

Reduction from Index to Gap Hamming

Proof: Alice gets $z \in \{0,1\}^t$, Bob gets $j \in [t]$

- Assumption: |z| = t/2 and |z| is odd
- Alice and Bob pick uniformly random $r \in \{-1,1\}^t$ using public randomness
- Alice computes $sgn(r \cdot z)$; Bob computes $sgn(r_j)$

LemmaThere exists a constant c > 0 such that $\Pr[sgn(r \cdot z) = sgn(r_j)] = \begin{cases} 1/2 & \text{if } z_j = 0 \\ 1/2 + c/\sqrt{t} & \text{otherwise} \end{cases}$

- Alice and Bob repeat $n = 25t/c^2$ times to construct each bit
- If $z_j = 0$ then $\mathbb{E}[Ham(x, y)] =$
- If $z_j = 1$ then $\mathbb{E}[Ham(x, y)] =$

Proof of Lemma

Lemma

There exists a constant c > 0 such that

$$\Pr[sgn(r \cdot z) = sgn(r_j)] = \begin{cases} 1/2 & \text{if } z_j = 0\\ 1/2 + c/\sqrt{t} & \text{otherwise} \end{cases}$$

Proof: Let A denote the event in the lemma

- If $z_j = 0$
- If $z_j = 1$