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Sublinear Algorithms

LECTURE 10 
Last time
• Multipurpose sketches

• Count-min and count-sketch

• Range queries, heavy hitters, quantiles

Today
• Limitations of streaming algorithms

• Communication complexity

Sofya Raskhodnikova;Boston University



Recall: Frequency Moments Estimation

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),                              
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

• The 𝑝-th frequency moment is 𝐹𝑝 = 𝑓
𝑝

𝑝
= σ𝑖=1

𝑛 𝑓𝑖
𝑝

 𝐹0 is the number of nonzero entries of 𝑓 (# of distinct elements)

 𝐹1 = 𝑚 (# of elements in the stream)

 𝐹2 = 𝑓
2

2
 is a measure of non-uniformity                                              

            used e.g. for anomaly detection in network analysis

 𝐹∞ = max
𝑖

𝑓𝑖 is the most frequent element

We obtained streaming algorithms for 𝐹0, 𝐹1, 𝐹2. 

What about 𝐹3 to 𝐹∞?
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Communication Complexity

A Method for Proving Lower Bounds



(Randomized) Communication Complexity
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Compute 𝐶 𝑥, 𝑦

0100

11

001

⋯

0011

BobAlice

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal:  minimize the number of bits exchanged.

• Communication complexity of a protocol is the maximum number of bits 
exchanged by the protocol.

• Communication complexity of a function 𝐶, denoted 𝑅(𝐶), is the 
communication complexity of the best protocol for computing C.

Partially based on slides by Eric Blais



Example: Set Disjointness 𝐷𝐼𝑆𝐽𝒌
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Theorem [Kalyanasundaram Schmitger 92, Razborov 92] 

𝑅 DISJ𝑘 ≥ Ω 𝑘  for all 𝑘 ≤
𝑛

2
. 

Compute 𝐷𝐼𝑆𝐽𝑘 𝑆, 𝑇

                = ቊ
𝒂𝒄𝒄𝒆𝒑𝒕 if 𝑆 ∩ 𝑇 = ∅
𝒓𝒆𝒋𝒆𝒄𝒕 otherwise

BobAlice

𝐼𝑛𝑝𝑢𝑡: 𝑆 ⊆ [𝑛], 𝑆 = 𝑘. Input: 𝑇 ⊆ [𝑛], 𝑇 = 𝑘

1101000101110101110101010110…



One-Way Communication Complexity
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Compute 𝐶 𝑥, 𝑦

𝑚1

BobAlice

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑦

1101000101110101110101010110…

𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal:  minimize the number of bits Alice sends to Bob.

One-way communication complexity of a function 𝐶, denoted 𝑅→(𝐶), is the 
communication complexity of the best one-way protocol for computing C.



3-Player One-Way Communication Complexity
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𝑆ℎ𝑎𝑟𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑟𝑖𝑛𝑔

Goal:  minimize 𝑚1 + |𝑚2|.

• Require correct output w.p. at least 2/3 over the random string

CarolAlice

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑧
Input: 𝑦

𝑚1 𝑚2

1101000101110101110101010110…

Bob

Compute

 𝐶 𝑥, 𝑦, 𝑧



Converting Streaming Algorithm to CC Protocol
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An 𝑠-bit algorithm 𝐴 for 𝓟 gives a 2𝑠-bit protocol for 𝐶

• Alice runs 𝐴 on 𝑠1 and sends memory state, 𝑚1, to Bob

• Bob instantiates 𝐴 with 𝑚1, runs 𝐴 on 𝑠2, sends memory state, 𝑚2, to Carol

• Carol instantiates 𝐴 with 𝑚2, runs 𝐴 on 𝑠3 to get 𝓟(𝑠1 ∘ 𝑠2 ∘ 𝑠3) and 
computes 𝐶(𝑥, 𝑦, 𝑧)

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑧
Input: 𝑦

𝑚1 𝑚2

Let 𝓟 be a streaming problem. 

• Suppose there is a transformation 𝑥 → 𝑠1, 𝑦 → 𝑠2, 𝑧 → 𝑠3 such that    
𝓟(𝑠1 ∘ 𝑠2 ∘ 𝑠3) suffices to compute 𝐶(𝑥, 𝑦, 𝑧)

Compute

 𝐶 𝑥, 𝑦, 𝑧

𝑠1 𝑠2 𝑠3

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf



Converting Streaming Algorithm to CC Protocol
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An 𝑠-bit algorithm 𝐴 for 𝓟 gives a 2𝑠-bit protocol for 𝐶

• If there are 𝑝 players than the protocol uses 𝑝 − 1 𝑠 bits

• A lower bound 𝐿 for computing 𝐶 implies 𝑏 = Ω
𝐿

𝑝

𝐼𝑛𝑝𝑢𝑡:  𝑥 Input: 𝑧
Input: 𝑦

𝑚1 𝑚2

Let 𝓟 be a streaming problem. 

• Suppose there is a transformation 𝑥 → 𝑠1, 𝑦 → 𝑠2, 𝑧 → 𝑠3 such that    
𝓟(𝑠1 ∘ 𝑠2 ∘ 𝑠3) suffices to compute 𝐶(𝑥, 𝑦, 𝑧)

Compute

 𝐶 𝑥, 𝑦, 𝑧

𝑠1 𝑠2 𝑠3

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf



A lower bound using CC method

Approximating 𝐹∞



Application: Approximating 𝑭∞

Proof: Reduction from Set Disjointness

On input 𝑥, 𝑦 ∈ 0,1 𝑛, players generate 𝑠1 = {𝑗: 𝑥𝑗 = 1} and 𝑠2 = {𝑗: 𝑦𝑗 = 1}

• Then 𝐹∞ = 1 if 𝑥, 𝑦 represent disjoint sets, and 𝐹∞ = 2, otherwise. 

• An 𝑠-space algorithm implies an 𝑠-bit protocol:
𝑠 = Ω 𝑛
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Example: 0 0 1 1 0 0
(1 0 1 0 1 0)

→ 〈3,4; 1,3,5〉

by communication complexity of 𝑆𝑒𝑡 𝐷𝑖𝑠𝑗𝑜𝑖𝑛𝑡𝑛𝑒𝑠𝑠

Output ≤ 4/3

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Output ≥ 3/2

Theorem

Every algorithm that computes 4/3-approximation of 𝐹∞ 
(w.p. ≥2/3) needs Ω(𝑛) space.



A lower bound using CC method

Computing the median of a stream



Index

• Alice gets an 𝑛-bit string 𝑥, and Bob gets an index 𝑗 ∈ [𝑛].

• Define 𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑗) = 𝑥𝑗.

• One-way communication complexity of 𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑗) is Ω 𝑛
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Application: Finding the Median of a Stream
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Proof: Reduction from Index.

• On input 𝑥 ∈ 0,1 𝑛, Alice generates 𝑠1 = {2𝑖 + 𝑥𝑖: 𝑖 ∈ [𝑛]}

• On input 𝑗 ∈ [𝑛], Bob generates 

𝑠2 = 𝑛 −  𝑗 copies of 0 and 𝑗 −  1 copies of 2𝑛 +  2

• Then 𝑚𝑒𝑑𝑖𝑎𝑛 𝑠1 ∘ 𝑠2 = 2𝑗 + 𝑥𝑗 and Index 𝑥, 𝑗 = 2𝑗 + 𝑥𝑗  𝑚𝑜𝑑 2

• An 𝑠-space algorithm implies an 𝑠-bit protocol:
𝑠 = Ω 𝑛

Theorem

Every algorithm that computes the median of an (2𝑛 − 1)-
element stream exactly (w.p. ≥2/3) needs Ω(𝑛) space.

Example: 0 0 1 1 0 1 1 → 〈2,4,7,9,10,13,15〉

Example: 𝑗 = 2 → 〈0,0,0,0,0,16〉

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

by 1-way communication

complexity of 𝐼𝑛𝑑𝑒𝑥



A lower bound using CC method

Approximating Frequency Moments
[Bar-Yossef, Jayram, Kumar, Sivakumar 04]



Multi-party Set Disjointness

• Consider a 𝑝 × 𝑛 binary matrix 𝑀 where each column has weight 0, 1 or 𝑝

0 0 1
1 0 1
0
0

0
0

1
1

 1 0 0
 0 1 0

 
0
0

0
0

0
1

• The input of player 𝑖 is row 𝑖 of 𝑀

𝐷𝐼𝑆𝐽 𝑝 𝑀 = ቊ
0 if there is a column of 1s 
1 otherwise

• Communication complexity of 𝐷𝐼𝑆𝐽 𝑝 𝑀  is Ω
𝑛

𝑝

16

1
4

3

5

6

Example:

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf



Application: Frequency Moments for 𝒌 > 𝟐

Proof: Reduction from multi-party Set Disjointness

• On input 𝑀 ∈ 0,1 𝑝×𝑛, player 𝑖 generates 𝑠𝑖 = {𝑗: 𝑀𝑖𝑗 = 1}

• If all columns have weight 0 or 1 then 𝐹𝑘 = σ𝑖=1
𝑛 𝑓𝑖

𝑘 ≤ 𝑛

• If there is a column of weight 𝑝 then 𝐹𝑘 ≥ 𝑝𝑘

• A 2-approximation of 𝐹𝑘 distinguishes the cases if 𝑝𝑘 > 4𝑛 ⇔ 𝑝 > 4𝑛
1

𝑘 

• An 𝑠-space algorithm implies 𝑠(𝑝 − 1)-bit protocol:

𝑠 = Ω
𝑛

𝑝2
= Ω

𝑛

4𝑛
2
𝑘

= Ω 𝑛1−
2
𝑘
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Every algorithm that 2-approximaes 𝐹𝑘 (w.p. ≥2/3) needs Ω 𝑛1−
2

𝑘 spaceThm.

1
4

3

5

6

Example: 0 0 1
1 0 1
0
0

0
0

1
1

 1 0 0
 0 1 0

 
0
0

0
0

0
1

→ 〈3,4; 1,3,5; 3; 3,6〉

by communication complexity of 𝐷𝐼𝑆𝐽(𝑝) for constant 𝑘 
Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf



A lower bound using CC method

Distinct Elements



Gap Hamming

• Alice and Bob get 𝑛-bit strings 𝑥 and 𝑦, respectively.

• Hamming distance 𝐻𝑎𝑚(𝑥, 𝑦) is the number of positions on which 𝑥 and 𝑦 
differ.

• Output: 𝐻𝑎𝑚(𝑥, 𝑦) with additive error 𝑛 w.p. ≥ 2/3

• Communication complexity of 𝐻𝑎𝑚(𝑥, 𝑦) is Ω 𝑛

 even when |𝑥| and |𝑦| are known to both players

19
Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf



Application: Distinct Elements

Proof: Reduction from Gap Hamming

On input 𝑥, 𝑦 ∈ 0,1 𝑛, players generate 𝑠1 = {𝑗: 𝑥𝑗 = 1} and 𝑠2 = {𝑗: 𝑦𝑗 = 1}

• Then 2𝐹0 = 𝑥 + 𝑦 + 𝐻𝑎𝑚(𝑥, 𝑦)

• When |𝑥| is known to Bob,                                                                                        
(1 + 𝜀)-approximation of 𝐹0 gives an additive approximation to Ham 𝑥, 𝑦

𝜀 ⋅
𝑥 + 𝑦 + 𝐻𝑎𝑚 𝑥, 𝑦

2
≤ 𝜀𝑛 ≤ 𝑛

• An 𝑠-space algorithm implies an 𝑠-bit protocol:

𝑠 = Ω 𝑛 = Ω
1

𝜀2

20

Thm.

Example: 0 0 1 1 0 0
(1 0 1 0 1 0)

→ 〈3,4; 1,3,5〉

by communication complexity of 𝐺𝑎𝑝 𝐻𝑎𝑚𝑚𝑖𝑛𝑔

for 𝜀 ≤ 1/ 𝑛

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Every algorithm (1 + 𝜀)-approximing 𝐹0 (w.p. ≥2/3) needs Ω 1/𝜀2  space



Proving New CC Lower Bounds

Lower Bound for Gap Hamming



A Lower Bound for Gap Hamming

• Alice and Bob get 𝑛-bit strings 𝑥 and 𝑦, respectively.

• Hamming distance 𝐻𝑎𝑚(𝑥, 𝑦) is the number of bits on which 𝑥 and 𝑦 differ.

• Output: 𝐻𝑎𝑚(𝑥, 𝑦) with additive error 𝑛 w.p. ≥ 2/3

Proof: Reduction from Index

• Alice gets 𝑧 ∈ 0,1 𝑡, Bob gets 𝑗 ∈ [𝑡]

• Assumption: 𝑧 = 𝑡/2 and |𝑧| is odd

• Alice and Bob pick uniformly random 𝑟 ∈ −1,1 𝑡 using public randomness

• Let 𝑟 ⋅ 𝑧 denote σ𝑖∈ 𝑛 𝑟𝑖𝑧𝑖

• Alice computes 𝑠𝑔𝑛 𝑟 ⋅ 𝑧 ; Bob computes 𝑠𝑔𝑛(𝑟𝑗)

22
Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Theorem

One way communication complexity 𝑅→ of 𝐻𝑎𝑚(𝑥, 𝑦) is 
Ω 𝑛



Reduction from Index to Gap Hamming

Proof: Alice gets 𝑧 ∈ 0,1 𝑡, Bob gets 𝑗 ∈ [𝑡]

• Assumption: 𝑧 = 𝑡/2 and |𝑧| is odd

• Alice and Bob pick uniformly random 𝑟 ∈ −1,1 𝑡 using public randomness

• Alice computes 𝑠𝑔𝑛 𝑟 ⋅ 𝑧 ; Bob computes 𝑠𝑔𝑛(𝑟𝑗)

• Alice and Bob repeat 𝑛 = 25𝑡/𝑐2 times to construct each bit

• If 𝑧𝑗 = 0 then 𝔼 𝐻𝑎𝑚 𝑥, 𝑦 =

• If 𝑧𝑗 = 1 then 𝔼 𝐻𝑎𝑚 𝑥, 𝑦 =

23
Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Lemma

There exists a constant 𝑐 > 0 such that

Pr 𝑠𝑔𝑛 𝑟 ⋅ 𝑧 = 𝑠𝑔𝑛 𝑟𝑗 = ൝
𝟏/𝟐 if 𝑧𝑗 = 0

𝟏/𝟐 + 𝒄/ 𝒕 otherwise



Proof of Lemma

Proof: Let A denote the event in the lemma

• If 𝑧𝑗 = 0 

• If 𝑧𝑗 = 1

24
Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/lowerbounds-1.pdf

Lemma

There exists a constant 𝑐 > 0 such that

Pr 𝑠𝑔𝑛 𝑟 ⋅ 𝑧 = 𝑠𝑔𝑛 𝑟𝑗 = ൝
𝟏/𝟐 if 𝑧𝑗 = 0

𝟏/𝟐 + 𝒄/ 𝒕 otherwise
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