Sublinear Algorithms

LECTURE 11

Last time

- Limitations of streaming algorithms
- Communication complexity

Today

- Graph streaming
- Linear sketching for graph connectivity
- L_0 sampling

Graph Streams

- Consider a stream of edges $\langle e_1, ..., e_m \rangle$ defining a graph G with V = [n] and $E = \{e_1, ..., e_m\}$
- Semi-streaming: space restriction of O(n polylog n) bits
- What can we compute about G in this model?

Connected Components

Goal: Compute the number of connected components

Spanning Forest Algorithm

- 1. Initialize a union-find data structure with singletons for all vertices to represent a forest F on [n] with no edges.
- 2. For each edge (u, v), if u and v are in different sets in F, merge their sets.
- 3. Return the number of sets in *F* .

Analysis:

- In the final forest, each set (tree) corresponds to a connected component
- Space: $O(n \log n)$ bits

Dynamic Graph Streams

- Edges can be added and deleted
- Each stream update specifies an edge e and whether it is added or deleted
- Can we still compute connected components?

Graph Sketching: Motivating Example

- There are n people in a social network
- Each has the corresponding row of the adjacency matrix of the network
- Each can write a postcard to Mark Zukerberg
- How many bits should each postcard contain, so that he can determine whether the network is connected w.h.p.?

Today: O(polylog n) bits suffice

Corollary: O(n polylog n) bits suffice to compute whether a dynamic stream of edges corresponds to a connected graph

[Ahn Guha McGregor 12]

First Ingredient: Borůvka's Algorithm

Consider a different (non-streaming) algorithm for computing a spanning forest

Spanning Forest Algorithm 2 (Borůvka's Algorithm)

- 1. Initially put each node in its own component.
- 2. Repeat until no more changes are made:
- 3. For each connected component, pick an incident edge (if one exists).
- 4. Merge all components connected by the selected edges.

Analysis:

- There are at most $\log n$ rounds since in round i=1,2,..., every connected component either grows to size at least 2^i or stops growing.
- The set of selected edges includes a spanning forest of the graph.

Second Ingredient: Sketch for L₀ Sampling

Problem: Given a stream of elements from [N] with insertions and deletions, output an element with nonzero (positive or negative) frequency (w.h.p.).

More general L_p Sampling:

If the final frequency vector is x, return an index $I \in [N]$ and $R \in \mathbb{R}$ with

$$\Pr[I=i] = (1 \pm \varepsilon) \frac{|x_i|^p}{||x_i|^p} + N^{-c} \text{ and } R = (1 \pm \varepsilon) f_I$$

L₀ Sketching

We can select a random matrix $\mathcal{A} \in \mathbb{R}^{O(\log^2 N) \times N}$ such that, for each $x \in \mathbb{R}^N$, with probability at least $1 - \delta$ (for $\delta = 1/\operatorname{poly}(N)$), we can learn (i, x_i) for some $x_i \neq 0$ from $\mathcal{A}x$.

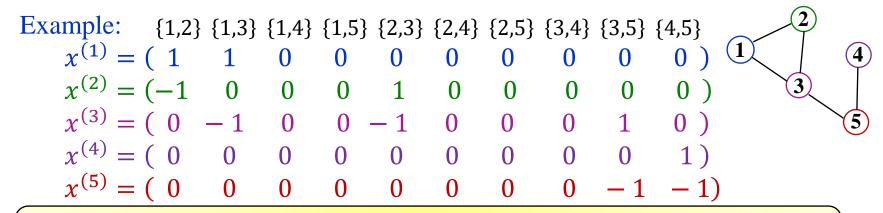
a nonzero entry from each of them from $\mathcal{A}x^{(1)}$, ..., $\mathcal{A}x^{(t)}$ w. p. $\geq 1 - \delta t$.

• Linearity: Given Ax and Ay, we can find a nonzero entry from z = x + y, since Az = A(x + y) = Ax + Ay.

Third Ingredient: Signed Vertex-Edge Vectors

Associate each node $i \in [n]$ with a vector of length $\binom{n}{2}$ indexed by node pairs.

• An entry indexed by a pair $\{i,j\}$ is $\begin{cases} \mathbf{1} & \text{if } \{i,j\} \in E \text{ and } i < j \\ -\mathbf{1} & \text{if } \{i,j\} \in E \text{ and } i > j \end{cases}$ otherwise



Lemma

Nonzero entries of $\sum_{i \in S} x^{(i)}$ correspond to edges between S and V/S.

Proof: An entry of $\sum_{i \in S} x^{(i)}$ indexed by $\{j, k\}$ can be nonzero only if $\{j, k\} \in E$ and it is adjacent to a node in S. But if $j, k \in S$, then this entry is 1 - 1 = 0. So exactly one of j, k is in S.

What to Write on the Postcard

- Person at node i sends: $\mathcal{A}_1 x^{(i)}, \dots, \mathcal{A}_{\log n} x^{(i)}$, where $\mathcal{A}_1, \dots, \mathcal{A}_{\log n}$ are independent random matrices for L_0 sampling
- Mark Zukerberg simulates Borůvka's Algorithm:
 - Identify an incident edge from each node i by finding a nonzero entry of $x^{(i)}$ from $\mathcal{A}_1 x^{(i)}$

Nonzero entries correspond to incident edges

– In round t, identify an incident edge from each component S, by finding a nonzero entry of $\sum_{i \in S} x_i$ from

$$\sum_{i \in S} \mathcal{A}_t x^{(i)} = \mathcal{A}_t \sum_{i \in S} x_i$$

L₀ Sketching: Main Idea

- For each $j \in \{0, ..., \log N\}$, independently sample a 2-wise independent hash function $h_j: [N] \to \{0, ..., 2^j 1\}$ Each element i of [N] is in S_j w.p. 2^{-j}
- Each h_j implicitly defines the set $S_j = \{i \in [N]: h_j(i) = 0\}$

To sketch each vector x, for all $S \in \{S_0, ..., S_{\log N}\}$, compute

$$a = \sum_{i \in S} ix_i$$
; $b = \sum_{i \in S} x_i$; estimate $d = (1 \pm 0.1) ||x_S||_0$ with $\delta = N^{-O(1)}$

Our distinct elements estimator works in streams with deletions, too!

To output the index of a nonzero entry of \boldsymbol{x}

Only one x_i is nonzero

• Select the smallest j^* with S_{j^*} such that $d=1\pm 0.1$ (if one exists)

Then
$$a = ix_i$$
 and $b = x_i$

• Return a/b

Analysis

Lemma

Let $P = \{i \in [N]: x_i \neq 0\}$ be positions of nonzero entries.

For some $j \in \{0, ..., \log N\}$, we have $\Pr[|P \cap S_j| = 1] \ge 1/8$.

Proof: Pick *j* such that
$$2^{j-2} \le |P| \le 2^{j-1}$$
. Then $1/4 \le |P| \cdot 2^{-j} \le 1/2$

$$\Pr[|P \cap S_j| = 1] = \sum_{i \in P} \Pr[i \in S_j, k \notin S_j \, \forall k \in P \setminus \{i\}]$$

$$= \sum_{i \in P} \Pr[i \in S_j] \cdot \Pr[k \notin S_j \, \forall k \in P \setminus \{i\} \mid i \in S_j]$$

By Product Rule

$$\geq \sum_{i \in P} \frac{1}{2^{j}} \cdot \left(1 - \sum_{k \in P \setminus \{i\}} \Pr[k \in S_j \mid i \in S_j]\right)$$

By a union bound

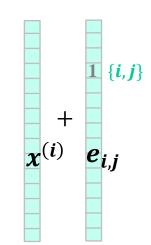
$$\geq \sum_{i\in P} \frac{1}{2^{j}} \cdot \left(1 - \sum_{k\in P\setminus\{i\}} \Pr[k\in S_j]\right)$$

$$\geq \frac{|P|}{2^{j}} \cdot \left(1 - \frac{|P|}{2^{j}}\right) \geq \frac{1}{4} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{8}$$

By
$$1/4 \le |P| \cdot 2^{-j} \le 1/2$$

From Postcards to Streaming Algorithm

- Space to store each hash function: $O(\log N) = O(\log n)$
- Number of hash functions is polylog(n)
- Each message uses polylog(n) bits
- Total space: n polylog(n)



• To insert an edge $\{i, j\}$, where i < j:

$$\begin{aligned} \mathcal{A}_t x^{(i)} &\leftarrow \mathcal{A}_t x^{(i)} + \mathcal{A}_t e_{i,j} \\ \mathcal{A}_t x^{(j)} &\leftarrow \mathcal{A}_t x^{(j)} - \mathcal{A}_t e_{i,j} \end{aligned}$$

where $e_{i,j}$ is the vector of length $\binom{n}{2}$ with exactly one nonzero entry

• To delete an edge $\{i, j\}$, where i < j:

$$\mathcal{A}_t x^{(i)} \leftarrow \mathcal{A}_t x^{(i)} - \mathcal{A}_t e_{i,j}$$
$$\mathcal{A}_t x^{(j)} \leftarrow \mathcal{A}_t x^{(j)} + \mathcal{A}_t e_{i,j}$$

Streaming Puzzles

- Find the mode, assuming it occurs more than 1/2 of the time.
- Find all elements that occur at least 1/4 of the time, assuming they exist.