### Sublinear Algorithms

#### LECTURE 12

#### Last time

- Graph streaming
- Linear sketching for graph connectivity
- $L_0$  sampling

# **Today**

- Graph property testing (for dense graphs)
- Testing bipartiteness
- Approximate Max-Cut [Goldreich Goldwasser Ron 98]



### Testing Properties of Dense Graphs

#### Adjacency matrix model [Goldreich Goldwasser Ron 98]

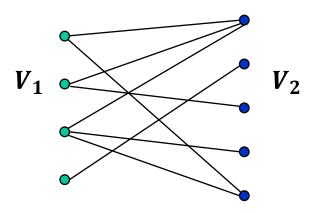
• Input: a graph G represented by  $n \times n$  adjacency matrix A  $dist(G, G') = \frac{\text{number of entries on which } A \text{ and } A' \text{ differ}}{n(n-1)}$ 

Equivalently, for undirected graphs  $dist(G, G') = \frac{\text{number of edges present in exactly one of } G \text{ and } G'}{n(n-1)/2}$ 

• Goal: accept (w.h.p.) if G has property  $\mathcal{P}$ ; reject (w.h.p.) if G is  $\varepsilon$ -far from  $\mathcal{P}$ (that is, at least  $\varepsilon$  fraction of entries in Amust be changed to get a graph satisfying  $\mathcal{P}$ )

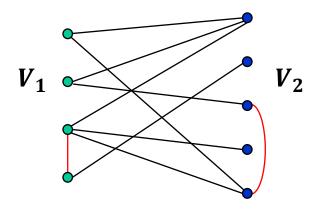
## Bipartite Graphs and Partitions

- A pair  $(V_1, V_2)$  of sets is a partition of V if
  - $V_1$  and  $V_2$  are disjoint subsets of V and
  - $V_1 \cup V_2 = V$
- A graph G = (V, E) is bipartite if there exists a partition  $(V_1, V_2)$  of V such that every edge in E has one endpoint in  $V_1$  and the other in  $V_2$



#### Bipartite Graphs and Partitions

• An edge  $\{u, v\}$  is violating w.r.t. a partition  $(V_1, V_2)$  if either  $u, v \in V_1$  or  $u, v \in V_2$ 



#### **Observation**

If an n-node graph G=(V,E) is  $\varepsilon$ -far from bipartite then, for every partition  $(V_1,V_2)$ , there exist at least  $\varepsilon n(n-1)/2$  violating edges w.r.t.  $(V_1,V_2)$ .

## Testing Bipartiteness

- We can check if a graph is bipartite (exactly)
   in linear time (in the size of the graph) by a BFS
- Today: a bipartiteness tester from [GGR98] that runs in time  $\tilde{O}\left(\frac{1}{\varepsilon^4}\right)$
- The best tester for bipartiteness in [GGR98] runs in time  $\tilde{O}\left(\frac{1}{\varepsilon^3}\right)$
- There is a nonadaptive  $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ -time tester [Alon Krivelelvich 02]
- $\Omega\left(\frac{1}{\varepsilon^2}\right)$  queries for nonadaptive testers  $\Omega\left(\frac{1}{\varepsilon^{1.5}}\right)$  queries for adaptive testers [Bogdanov Trevisan 04]

# First Attempt

Consider an algorithm of the following form

#### **Bipartiteness Tester**

- Sample *t* pairs of nodes uniformly and independently.
- **Reject** iff they rule out all possible partitions of V.
- How large should *t* be?

If G is bipartite, it is always accepted

- Suppose G is  $\varepsilon$ -far from bipartite.
- We would like to rule out all  $2^n$  possible partitions of V
- Fix a partition  $(V_1, V_2)$  of V,

 $\Pr_{\substack{u,v \in [n], u \neq v}} [\{u,v\} \text{ is violating w.r.t.} (V_1,V_2)] \geq \varepsilon$   $BAD(V_1) = \text{event that all } t \text{ pairs are non-violating w.r.t.} (V_1,V_2)$ 

By Observation

$$\Pr[BAD(V_1)] \le (1 - \varepsilon)^t \le e^{-\varepsilon t} \le 1/3 \cdot 2^{-n}$$

if  $t \ge \frac{n \ln 2 + \ln 3}{c}$ 

$$BAD$$
 = event that  $\exists (V_1, V_2)$  s.t. all  $t$  pairs are non-violating w.r.t.  $(V_1, V_2)$   $\Pr[BAD] \le \sum_{V \in V} \Pr[BAD(V_1)] \le 2^n \cdot \frac{1}{3} \cdot 2^{-n} = \frac{1}{3}$  By a union bour

By a union bound

If we wanted to rule out all partitions for a graph on  $\ell$  nodes, would need  $t = \Theta(\ell/\epsilon)$ 

# The $\tilde{O}(1/\epsilon^4)$ -Time Bipartiteness Tester [GGR]

#### Bipariteness Tester (Input: $\varepsilon$ , n and query access to adjacency matrix of G)

- 1. Pick a set of S nodes uniformly and independently,  $|S| = \Theta\left(\frac{1}{\varepsilon^2}\log\frac{1}{\varepsilon}\right)$
- 2. Query all pairs (u, v), where  $u, v \in S$
- 3. If the queried subgraph G' is bipartite, accept; otherwise, reject.

#### Query complexity and running time:

If G is bipartite, it is always accepted

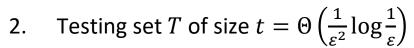
- We can check whether G' is bipartite with a BFS.
- Query and time complexity:  $O\left(\binom{|S|}{2}\right) = O\left(\frac{1}{\varepsilon^4}\log^2\frac{1}{\varepsilon}\right)$

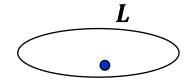
#### Correctness: Main Idea

• Assume G is  $\varepsilon$ -far from bipartite

#### Main idea behind the analysis:

- Break the samples *S* into two sets:
  - 1. Learning set L of size  $\ell = \Theta\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$





- Every partition of the learning set L induces a partition of (most of) V
- We use T to check for violating pairs w.r.t. such partitions

## Correctness: Partitions of L and V

• A node v is covered by a set L if v has a neighbor in L.

### Correctness: Partitions of L and V

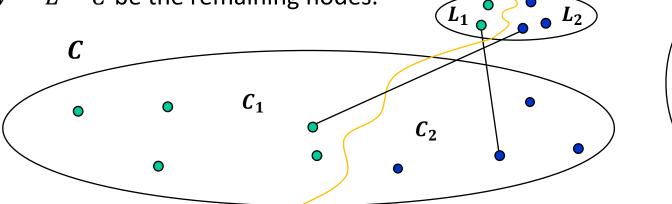
• A node v is covered by a set L if v has a neighbor in L.

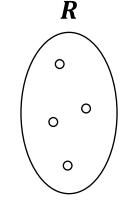
• Let C be the set of nodes in G covered by L and R = V - L - C be the remaining nodes. C

A partition of L induces a partition of C

### Correctness: Influential Nodes

- A node v is covered by a set L if v has a neighbor in L.
- Let C be the set of nodes in G covered by L and R = V L C be the remaining nodes.





A partition of L induces a partition of C

• A node is influential if its degree is at least  $\frac{\varepsilon n}{8}$ .

Most of the edges in the graph are between influential nodes. We don't want to miss them.

## Correctness: Analysis of the Learning Set L

#### Lemma 1

Let  $BAD_L$  be the event that  $\geq \frac{\varepsilon n}{8}$  influential nodes are in R (i.e., not covered by L).  $\Pr[BAD_L] \leq 1/6$ 

Proof: For each influential node v, define the indicator random variable

$$X_v = \begin{cases} 1 & \text{if } v \text{ is not covered by } L \\ 0 & \text{otherwise} \end{cases}$$

$$v \text{ has degree} \geq \frac{\varepsilon n}{8} \qquad |L| = \Theta\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$$

$$\Pr[X_v = 1] \leq \left(1 - \frac{\varepsilon}{8}\right)^{|L|} \leq e^{-\frac{\varepsilon|L|}{8}} \leq \frac{\varepsilon}{48}$$
• Let  $X = \sum_v X_v$ . Then  $\Pr[BAD_L] = \Pr\left[X \geq \frac{\varepsilon n}{8}\right]$ 

$$\mathbb{E}[X] = \sum_v \mathbb{E}[X_v] \leq \frac{\varepsilon n}{48}$$

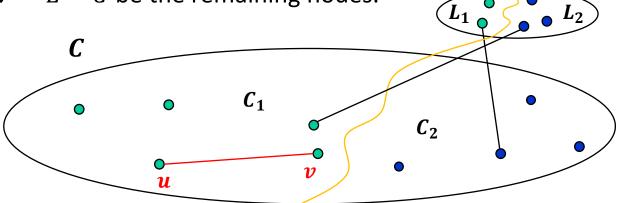
 $\Pr\left[X \ge \frac{\varepsilon n}{8}\right] \le \frac{\mathbb{E}[X]}{\varepsilon n/8} \le \frac{1}{6}$ 

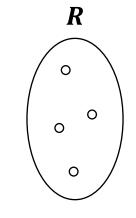
By Markov's inequality

# Correctness: Witness w.r.t. $(L_1, L_2)$

• A node v is covered by a set L if v has a neighbor in L.

• Let C be the set of nodes in G covered by L and R = V - L - C be the remaining nodes.





A partition of *L* induces a partition of *C* 

• An edge (u, v) is a witness w.r.t. a partition  $(L_1, L_2)$  if  $u, v \in C_1$  or  $u, v \in C_2$ 

## Correctness: Analysis of the Learning Set L

#### Lemma 2

If  $BAD_L$  does not occur then for every partition  $(L_1, L_2)$  of L, then at least  $\frac{\varepsilon}{4}$  fraction of node pairs are witnesses w.r.t.  $(L_1, L_2)$ .

Proof: Consider any partition  $(V_1, V_2)$  of V s.t.  $V_1 \cap L = L_1$  and  $V_2 \cap L = L_2$ 

• By Observation,  $\geq \frac{\varepsilon n(n-1)}{2}$  violating edges w.r.t.  $(V_1, V_2)$ 

| Violated edges incident to        | Number of nodes | Degree | Number of violating edges |
|-----------------------------------|-----------------|--------|---------------------------|
| Influential nodes in <i>R</i>     |                 |        |                           |
| Non-influential nodes in <i>R</i> |                 |        |                           |
| Nodes in L                        |                 |        |                           |

- Then:  $\geq \frac{\varepsilon n(n-1)}{2} \frac{\varepsilon n(n-1)}{8} \frac{\varepsilon n(n-1)}{8} \frac{\varepsilon n(n-1)}{8} \geq \frac{\varepsilon n(n-1)}{8}$  violating edges between nodes in C
- Each such edge is a witness w.r.t.  $(L_1, L_2)$

# Correctness: Analysis of the Training Set T

View samples from T as pairs  $(v_1, v_2), (v_3, v_4), \dots, (v_{|T|-1}, v_{|T|})$ 

#### Lemma 3

Let  $BAD_T$  = event that there is a partion of L such that no pair  $(v_{2i-1}, v_{2i})$  is a witness w.r.t. that partition.

$$\Pr[BAD_T | \overline{BAD_L}] \le 1/6$$

Proof: Fix a partition  $(L_1, L_2)$  of L, which defines a partition of C.

• The probability that no pair  $(v_{2i-1}, v_{2i})$  is a witness w.r.t.  $(L_1, L_2)$  is

$$\geq \frac{\varepsilon n(n-1)}{8}$$
 pairs out of  $\frac{n(n-1)}{2}$  are witnesses (by Lemma 2)

$$\leq \left(1 - \frac{\varepsilon}{4}\right)^{|T|/2} \leq e^{-\frac{\varepsilon|T|}{8}} \leq \frac{2^{-|L|}}{6}$$

Since 
$$|T| = \Theta\left(\frac{1}{\varepsilon}|L|\right)$$

• Since there are  $2^{|L|}$  partitions of L,

$$\Pr[BAD_T|\overline{BAD_L}] \le 2^{|L|} \cdot \frac{2^{-|L|}}{6} = \frac{1}{6}$$

By a union bound

#### Correctness: Putting It All Together

• Recall that G is  $\varepsilon$ -far

Pr[*G* is accepted]

$$\leq \Pr[BAD_L] + \Pr[BAD_T \mid \overline{BAD_L}] \cdot \Pr[\overline{BAD_L}]$$

By product rule

$$\leq \frac{1}{6} + \frac{1}{6} \cdot 1$$

$$\leq \frac{1}{3}$$

By Lemmas 1 and 3

- We got: run time  $\tilde{O}\left(\frac{1}{\varepsilon^4}\right)$
- Exercise: improve to  $\tilde{O}\left(\frac{1}{\varepsilon^3}\right)$

### Bipartiteness in the Streaming Model

A bipartite double-cover of G=(V,E) is a graph G'=(V',E'), where for each node  $v\in V$ , we add two nodes,  $v_1$  and  $v_2$ , to V'; For each edge  $(u,v)\in E$ , we add two edges,  $(v_1,u_2)$  and  $(v_2,u_1)$ , to E'.

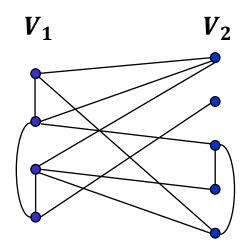
#### Lemma

G is bipartiate iff the number of connected components in G' is twice the number of connected components in G

We can solve bipartiteness exactly (w.h.p.) in the semi-streaming model.

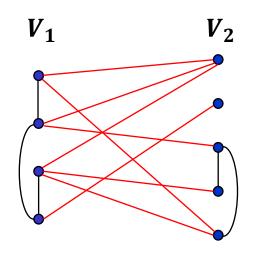
#### Max Cut in Dense Graphs

- Let G = (V, E) be an undirected n-node graph.
- Let  $(V_1, V_2)$  be a partition of V.  $e(V_1, V_2)$  = set of edges crossing the cut



### Max Cut in Dense Graphs

- Let G = (V, E) be an undirected n-node graph.
- Let  $(V_1, V_2)$  be a partition of V.  $e(V_1, V_2)$  = set of edges crossing the cut
- The edge density of the cut, denoted  $\mu(V_1,V_2)$ , is  $\frac{|e(V_1,V_2)|}{n^2}$  .



• The edge density of the largest cut in G is  $\mu(G) = \max_{(V_1,V_2)} \mu(V_1,V_2)$ 

#### Approximate Max-Cut Problem

#### [Goldreich Goldwasser Ron 98]

Input: parameter  $\varepsilon$ , access to an undirected graph G=(V,E) represented by  $n\times n$  adjacency matrix.

Goal 1: Output an estimate  $\hat{\mu}$  such that:

$$\Pr[|\hat{\mu} - \mu(G)| \le \varepsilon] \ge 2/3$$

• [GGR98]: poly $\left(\frac{1}{\varepsilon}\right)$  queries and  $O(2^{poly\left(\frac{1}{\varepsilon}\right)})$  time

Goal 2: Output a partition  $(V_1, V_2)$  with edge density

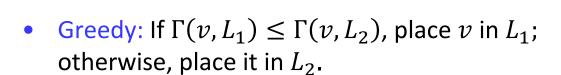
$$\mu(V_1, V_2) \ge \mu(G) - \varepsilon$$

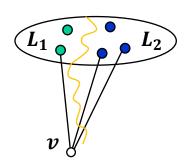
with probability at least 2/3.

• [GGR98]: 
$$O\left(2^{poly\left(\frac{1}{\varepsilon}\right)} + n \cdot poly\left(\frac{1}{\varepsilon}\right)\right)$$
 time

## Greedy Partitioning

- Suppose we have a partition  $(L_1, L_2)$  of  $L \subset V$ .
- In which part should we place a new node v to maximize edge density?
- Let  $\Gamma(v, U)$  be the number of neighbors of v in U.

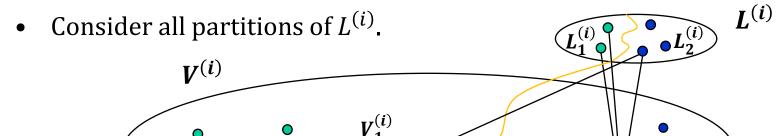




#### Main Idea

• Partition V into sets  $V^{(i)}$  of (almost) equal size. Assume they are of equal size.

• For each set  $V^{(i)}$ , sample a learning set  $L^{(i)}$  from the vertices not in  $V^{(i)}$ .



A partition of  $L^{(i)}$  induces a partition of  $V^{(i)}$  via the greedy rule

 $V_2^{(i)}$ 

A partition sequence 
$$\pi(L) = \left( \left( L_1^{(1)}, L_2^{(1)} \right), \dots, \left( L_1^{(t)}, L_2^{(t)} \right) \right)$$
 induces a partition of  $V$ 

• Consider all such partitions of *V* and pick the best.

# Preliminary Max-Cut Approximation Algorithm

#### Algorithm (Input: $\varepsilon$ , n; query access to adjacency matrix of G=(V,E))

- 1. Partition V into  $t = 4/\varepsilon$  sets  $V^{(1)}, V^{(2)}, ..., V^{(t)}$  of (almost) equal size.
- 2. For each  $i \in [t]$ , select a set  $L^{(i)}$  of size  $\ell = \frac{1}{\varepsilon^2} \cdot \log \frac{1}{\varepsilon}$  u.i.r. from  $V \setminus V^{(i)}$ . Let  $L = (L^{(1)}, L^{(2)}, \dots, L^{(t)})$ .
- 3. For each partition sequence  $\pi(L) = \left( \left( L_1^{(1)}, L_2^{(1)} \right), \dots, \left( L_1^{(t)}, L_2^{(t)} \right) \right)$
- 4. For each  $i \in [t]$
- Partition  $V^{(i)}$  into  $\left(V_1^{(i)}, V_2^{(i)}\right)$  using the greedy rule: place v in  $V_1^{(i)}$  iff  $\Gamma\left(v, L_1^{(i)}\right) \leq \Gamma\left(v, L_2^{(i)}\right)$ .
- 6. Let  $V_1^{\pi} = \bigcup_i V_1^{(i)}$  and  $V_2^{\pi} = \bigcup_i V_2^{(i)}$ ; calculate  $\mu(V_1^{\pi}, V_2^{\pi})$ .
- 7. Output the cut  $(V_1^{\pi}, V_2^{\pi})$  with the largest density.
- Number of partition sequences:  $\left(2^{\ell}\right)^t = 2^{poly\left(\frac{1}{\varepsilon}\right)}$
- Running time:  $n^2 \cdot 2^{poly(\frac{1}{\varepsilon})}$   $O(n^2)$  time for calculating each density