
3/7/2025

Sublinear Algorithms

LECTURE 13
Last time
• Graph property testing (for dense graphs)

• Testing bipartiteness

• Started approximate Max-Cut

Today
• Finish approximate Max-Cut

[Goldreich Goldwasser Ron 98]

Sofya Raskhodnikova; Boston University

Project progress reports due Thursday after spring break

Sign up for project meetings

Max Cut in Dense Graphs

• Let 𝐺 = (𝑉, 𝐸) be an undirected 𝑛-node graph.

• Let 𝑉1, 𝑉2 be a partition of 𝑉.

 𝑒 𝑉1, 𝑉2 = set of edges crossing the cut

2

1
2

𝑽𝟏 𝑽𝟐

Max Cut in Dense Graphs

• Let 𝐺 = (𝑉, 𝐸) be an undirected 𝑛-node graph.

• Let 𝑉1, 𝑉2 be a partition of 𝑉.

 𝑒 𝑉1, 𝑉2 = set of edges crossing the cut

• The edge density of the cut,

denoted 𝜇 𝑉1, 𝑉2 , is
𝑒 𝑉1,𝑉2

𝑛2 .

• The edge density of the largest cut in 𝐺 is
𝜇 𝐺 = max

𝑉1,𝑉2

𝜇 𝑉1, 𝑉2

3

1
2

𝑽𝟏 𝑽𝟐

Approximate Max-Cut Problem

[Goldreich Goldwasser Ron 98]

Input: parameter 𝜀, access to an undirected graph 𝐺 = (𝑉, 𝐸)
represented by 𝑛 × 𝑛 adjacency matrix.

Goal 1: Output an estimate Ƹ𝜇 such that:
Pr Ƹ𝜇 − 𝜇 𝐺 ≤ 𝜀 ≥ 2/3

• [GGR98]: poly
1

𝜀
 queries and 𝑂(2

𝑝𝑜𝑙𝑦
1

𝜀) time

Goal 2: Output a partition 𝑉1, 𝑉2 with edge density

𝜇 𝑉1, 𝑉2 ≥ 𝜇 𝐺 − 𝜀

 with probability at least 2/3.

• [GGR98]: 𝑂 2
𝑝𝑜𝑙𝑦

1

𝜀 + 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜀
 time

4

1
2

Greedy Partitioning

• Suppose we have a partition 𝐿1, 𝐿2 of 𝐿 ⊂ 𝑉.

• In which part should we place a new node 𝑣
to maximize edge density?

• Let Γ(𝑣, 𝑈) be the number of neighbors of 𝑣 in 𝑈.

• Greedy: If Γ 𝑣, 𝐿1 ≤ Γ 𝑣, 𝐿2 , place 𝑣 in 𝐿1;
otherwise, place it in 𝐿2.

5

1
2

𝑳𝟏 𝑳𝟐

𝒗

Main Idea

• Partition 𝑉 into sets 𝑉 𝑖 of (almost) equal size.

• For each set 𝑉 𝑖 , sample a learning set 𝐿 𝑖 from the vertices not in 𝑉 𝑖 .

• Consider all partitions of 𝐿 𝑖 .

• Consider all such partitions of 𝑉 and pick the best.

6

A partition of 𝐿 𝑖 induces a partition of 𝑉 𝑖

via the greedy rule

1
2

𝑳 𝒊

𝑽 𝒊

𝑳𝟏
𝒊 𝑳𝟐

𝒊

𝑽𝟏
𝒊

𝑽𝟐
𝒊

Assume they are of equal size.

A partition sequence 𝜋 𝐿 = 𝐿1
1

, 𝐿2
1

, … , 𝐿1
𝑡

, 𝐿2
𝑡

induces a partition of 𝑉

Preliminary Max-Cut Approximation Algorithm

7

Algorithm (Input: 𝜀, 𝑛; query access to adjacency matrix of G=(V,E))

1. Partition 𝑉 into 𝑡 =
4

𝜀
 sets 𝑉(1), 𝑉(2), … , 𝑉(𝑡) of (almost) equal size.

2. For each 𝑖 ∈ 𝑡 , select a set 𝐿(𝑖) of size ℓ =
320

𝜀2 ⋅ log
1

𝜀
 u.i.r. from 𝑉\V 𝑖 .

Let 𝐿 = 𝐿 1 , 𝐿 2 , … , 𝐿 𝑡 .

3. For each partition sequence 𝜋 𝐿 = 𝐿1
1

, 𝐿2
1

, … , 𝐿1
𝑡

, 𝐿2
𝑡

4. For each 𝑖 ∈ 𝑡

5. Partition 𝑉 𝑖 into 𝑉1
𝑖

, 𝑉2
𝑖

 using the greedy rule:

 place 𝑣 in 𝑉1
𝑖

 iff Γ 𝑣, 𝐿1
(𝑖)

≤ Γ 𝑣, 𝐿2
𝑖

.

6. Let 𝑉1
𝜋 = 𝑖ڂ 𝑉1

𝑖
 and 𝑉2

𝜋 = 𝑖ڂ 𝑉2
𝑖

; calculate 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 .

7. Output the cut 𝑉1
𝜋 , 𝑉2

𝜋 with the largest density.

• Number of partition sequences: 2ℓ 𝑡
= 2

𝑝𝑜𝑙𝑦
1

𝜀

• Running time: 𝑛2 ⋅ 2
𝑝𝑜𝑙𝑦

1

𝜀 𝑂 𝑛2 time for calculating each density

Correctness of Max-Cut Approximation

8

Main Proof Idea: Use a hybrid argument.

• 𝐻1
0

, 𝐻2
0

= 𝐻1, 𝐻2

• For all 𝑖 ∈ [𝑡], partition 𝐻1
𝑖

, 𝐻2
𝑖

 is

obtained from 𝐻1
𝑖−1

, 𝐻2
𝑖−1

 by

repartitioning 𝑉 𝑖 into into 𝑉1
𝑖

, 𝑉2
𝑖

,

the best out of all partitions

induced by a partition of 𝐿 𝑖 .

• We will show that when we go from one
hybrid to the next, the density does not
drop too much (w.h.p.)

Correctness Theorem

Let 𝐻1, 𝐻2 be a partition of 𝑉.

W. p. ≥ 5/6 over the choice of 𝐿, some partition sequence 𝜋(𝐿)

induces a partition 𝑉1
𝜋 , 𝑉2

𝜋 of 𝑉 s. t. 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 ≥ 𝜇 𝐻1, 𝐻2 − 3𝜀/4

Think: 𝐻1, 𝐻2 is a max-cut

𝑽𝟏
𝟏

𝑽𝟐
𝟏

𝑽𝟏
𝒊 𝑽𝟐

𝒊

⋮

𝑯𝟏 ∩ 𝑽 𝒊+𝟏 𝑯𝟐 ∩ 𝑽 𝒊+𝟏

𝑯𝟏 ∩ 𝑽 𝒕 𝑯𝟐 ∩ 𝑽 𝒕

⋮

𝑖-th hybrid partition 𝐻1
𝑖

, 𝐻2
𝑖

Correctness of Max-Cut Approximation

9

Proof: Consider 𝑖 ∈ [𝑡] and fix learning sets 𝐿 1 , … , 𝐿 𝑖−1 .

• Let 𝐵𝑖 be the event that 𝜇 𝐻1
𝑖

, 𝐻2
𝑖

< 𝜇 𝐻1
𝑖−1

, 𝐻2
𝑖−1

−
3𝜀

4𝑡

• Then, by a union bound,

Pr ራ

𝑖

𝐵𝑖 ≤ 𝑡 ⋅
1

6𝑡
=

1

6

Correctness Theorem

Let 𝐻1, 𝐻2 be a partition of 𝑉.

W. p. ≥ 5/6 over the choice of 𝐿, some partition sequence 𝜋(𝐿)

induces a partition 𝑉1
𝜋 , 𝑉2

𝜋 of 𝑉 s. t. 𝜇 𝑉1
𝜋 , 𝑉2

𝜋 ≥ 𝜇 𝐻1, 𝐻2 − 3𝜀/4

Main Lemma

Pr 𝐵𝑖 ≤
1

6𝑡
 , where the probability is taken over the choice of 𝐿 𝑖 .

Big Picture

When we go from hybrid 𝑖 − 1 to hybrid 𝑖, only nodes in 𝑉 𝑖 get repartitioned.

• Let 𝑅1 = 𝑉\V 𝑖 ∩ 𝐻1
𝑖−1

 and 𝑅2 = 𝑉\V 𝑖 ∩ 𝐻2
𝑖−1

• Let 𝐿1
𝑖

= 𝐿 𝑖 ∩ 𝐻1
𝑖−1

 and 𝐿2
𝑖

= 𝐿 𝑖 ∩ 𝐻2
𝑖−1

10

𝑯𝟏
𝒊−𝟏

𝑯𝟐
𝒊−𝟏

𝑽𝟏
𝒊

𝑽𝟐
𝒊

𝑳𝟏
𝒊

𝑳𝟐
𝒊

𝑹𝟏
𝑹𝟐

Proof of Main Lemma

• A node 𝑣 ∈ 𝑉 𝑖 is good w.r.t. 𝐿1
𝑖

, 𝐿2
𝑖

 if
Γ 𝑣, 𝐿𝑗

𝑖

ℓ
−

Γ 𝑣, 𝑅𝑗

𝑛
≤

𝜀

8
 ∀𝑗 ∈ {1,2}

• Learning set 𝐿 𝑖 is good if ≤
𝜀

4
𝑉 𝑖 nodes in 𝑉 𝑖 are bad w.r.t. 𝐿1

𝑖
, 𝐿2

𝑖

• A node 𝑣 ∈ 𝑉 𝑖 is balanced w.r.t. 𝑅1, 𝑅2 if
Γ 𝑣, 𝑅1

𝑛
−

Γ 𝑣, 𝑅2

𝑛
≤

𝜀

4

Proof: Suppose w.l.o.g. that Γ 𝑣, 𝑅1 < Γ(𝑣, 𝑅2) for a good unbalanced node 𝑣

𝜀

4
<

Γ 𝑣, 𝑅2

𝑛
−

Γ 𝑣, 𝑅1

𝑛
≤

Γ 𝑣, 𝐿2
𝑖

ℓ
+

𝜀

8
−

Γ 𝑣, 𝐿1
𝑖

ℓ
−

𝜀

8

So, Γ 𝑣, 𝐿1
𝑖

< Γ 𝑣, 𝐿2
𝑖

, and 𝑣 is placed correctly.

11

Claim

Fix 𝑖 ∈ [𝑡]. The probability that 𝐿 𝑖 is bad is at most
1

6𝑡
.

Observation

All unbalanced nodes that are good w.r.t. 𝐿1
𝑖

, 𝐿2
𝑖 are placed correctly.

𝑣 is unbalanced 𝑣 is good

Density Loss from Repartitioning 𝑽 𝒊

when 𝐿1
𝑖

, 𝐿2
𝑖

 is good

Total:
3𝜀

4𝑡
⋅ 𝑛2

• Recall: 𝐵𝑖 is the event that 𝜇 𝐻1
𝑖

, 𝐻2
𝑖

< 𝜇 𝐻1
𝑖−1

, 𝐻2
𝑖−1

−
3𝜀

4𝑡

• Event 𝐵𝑖 can occur only when 𝐿1
𝑖

, 𝐿2
𝑖

 is bad.

• It remains to show that 𝐿1
𝑖

, 𝐿2
𝑖

 is bad with probability at most
1

6𝑡
.

12

Type of cut-edges Number of edges lost

Incident to good

unbalanced nodes

Incident to bad

unbalanced nodes

Incident to balanced nodes

Between nodes of 𝑽 𝒊

Probability of a Bad Learning Set

• A node 𝑣 ∈ 𝑉 𝑖 is good w.r.t. 𝐿1
𝑖

, 𝐿2
𝑖

 if
Γ 𝑣, 𝐿𝑗

𝑖

ℓ
−

Γ 𝑣, 𝑅𝑗

𝑛
≤

𝜀

8
 ∀𝑗 ∈ {1,2}

• Learning set 𝐿 𝑖 is good if ≤
𝜀

4
𝑉 𝑖 nodes in 𝑉 𝑖 are bad w.r.t. 𝐿1

𝑖
, 𝐿2

𝑖

Proof: Let 𝐿 𝑖 = {𝑣1, … , 𝑣ℓ}. Recall that it is chosen u.i.r. from 𝑉\V 𝑖

• Fix 𝑣 ∈ 𝑉 𝑖 . For all 𝑗 ∈ 0,1 ,
 let 𝑋𝑗

𝑘 = ቊ
1, if 𝑣𝑘 is a neigbor of 𝑣 in 𝑅𝑗

0, otherwise

Then 𝑋𝑗 =
1

ℓ
σ𝑘∈[ℓ] 𝑋𝑗

𝑘 =
Γ 𝑣, 𝐿𝑗

𝑖

ℓ

Pr 𝑣 is bad ≤ Pr 𝑋1 − 𝔼 𝑋1 >
𝜀

8
 or 𝑋2 − 𝔼 𝑋2 >

𝜀

8

≤ 2 Pr 𝑋1 − 𝔼 𝑋1 >
𝜀

8

≤ 2 ⋅ 2 exp −2
𝜀

8

2

ℓ = 4 exp −
𝜀2ℓ

32

= 4𝜀10 ≤
𝜀

4
⋅

1

6𝑡

Claim. Fix 𝑖 ∈ [𝑡]. The probability that 𝐿 𝑖 is bad is at most
1

6𝑡
.

by union bound and symmetry

by Hoeffding

and 𝔼 𝑋𝑗 =
1

ℓ
 σ𝑘∈[ℓ] 𝔼 𝑋𝑗

𝑘 =
Γ 𝑣, 𝑅𝑗

𝑛

ℓ =
320

𝜀2 ln
1

𝜀
𝑡 =

4

𝜀

when 𝜀 is sufficently small

by Markov
Pr >

𝜀

4
 fraction of nodes in 𝑉 𝑖 are bad ≤

1

6𝑡

Improved Max-Cut Approximation Algorithm

• We can also out put the cut of 𝑉 induced by 𝜋 with max 𝜇′
14

Algorithm (Input: 𝜀, 𝑛; query access to adjacency matrix of G=(V,E))

1. Partition 𝑉 into 𝑡 = 4/𝜀 sets 𝑉(1), 𝑉(2), … , 𝑉(𝑡) of (almost) equal size.

2. For each 𝑖 ∈ 𝑡 , selelect a set 𝐿(𝑖) of size ℓ =
320

𝜀2 ⋅ log
1

𝜀
 u.i.r. from

𝑉\V 𝑖 . Let 𝐿 = 𝐿 1 , 𝐿 2 , … , 𝐿 𝑡 .

3. Select u.i.r. 𝑆 of size 𝑚 =
64⋅𝑡ℓ

𝜀2

4. For each partition sequence 𝜋 𝐿 = 𝐿1
1

, 𝐿2
1

, … , 𝐿1
𝑡

, 𝐿2
𝑡

5. For each 𝑖 ∈ 𝑡

6. Partition 𝑆 𝑖 into 𝑆1
𝑖

, 𝑆2
𝑖

 using the greedy rule:

 add 𝑣 to 𝑆1
𝑖

 iff Γ 𝑣, 𝐿1 ≤ Γ 𝑣, 𝐿2 .

7. Let 𝑆1
𝜋 = 𝑖ڂ 𝑆1

𝑖
 and 𝑆2

𝜋 = 𝑖ڂ 𝑆2
𝑖

; calculate

𝜇′ 𝑆1
𝜋 , 𝑆2

𝜋 =
𝑘: 𝑠2𝑘−1,𝑠2𝑘 ∈𝑒 𝑆1

𝜋,𝑆2
𝜋

𝑚/2

8. Output max𝜋 𝜇′ 𝑆1
𝜋 , 𝑆2

𝜋

	Slide 1: Sublinear Algorithms
	Slide 2: Max Cut in Dense Graphs
	Slide 3: Max Cut in Dense Graphs
	Slide 4: Approximate Max-Cut Problem
	Slide 5: Greedy Partitioning
	Slide 6: Main Idea
	Slide 7: Preliminary Max-Cut Approximation Algorithm
	Slide 8: Correctness of Max-Cut Approximation
	Slide 9: Correctness of Max-Cut Approximation
	Slide 10: Big Picture
	Slide 11: Proof of Main Lemma
	Slide 12: Density Loss from Repartitioning bold italic cap V to the , open paren bold italic i. , close paren , end superscript
	Slide 13: Probability of a Bad Learning Set
	Slide 14: Improved Max-Cut Approximation Algorithm

