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 Graph property testing (for dense graphs)
» Testing bipartiteness

» Started approximate Max-Cut

Today
* Finish approximate Max-Cut
[Goldreich Goldwasser Ron 98]
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Max Cut in Dense Graphs

e LetG = (V,E) be an undirected n-node graph.

Vq Vs
e Let (V1,V,) be a partition of V.

e(V;,V,) = set of edges crossing the cut



Max Cut in Dense Graphs

e LetG = (V,E) be an undirected n-node graph.

e Let (V1,V,) be a partition of V.
e(V;,V,) = set of edges crossing the cut

e The edge density of the cut,

denoted u(Vy, V,), is Ie(V1;V2)| .

n

e The edge density of the largest cutin G is

G) = max u(l,, V.
u(G) (Vl,Vz)'u( v V2)

Vi




Approximate Max-Cut Problem

[Goldreich Goldwasser Ron 98]

Input: parameter &, access to an undirected graph ¢ = (V, E)
represented by n X n adjacency matrix.

Goal 1: Output an estimate /i such that:
Prlg —u(G)| <€l =2/3

1

e [GGR98]: polye) queries and 0(2p01y(8)) time

Goal 2: Output a partition (1, V) with edge density

M(Vl) VZ) => :u(G) — &
with probability at least 2/3.

e [GGR98]: O (ZPOW(%) + n - poly (i)) time



Greedy Partitioning

e Suppose we have a partition (L{,L,) of L C V.

e |n which part should we place a new node v
to maximize edge density?

e LetI'(v,U) be the number of neighbors of v in U.

e Greedy:IfI'(v,L;) <T(v,L,), place vin Ly;
otherwise, placeitin L,.



Main ldea

e Partition V into sets V) of (almost) equal size. Assume they are of equal size.
e For each set V(Y sample a learning set L™ from the vertices not in V.

« Consider all partitions of L().

y®

(o) (0] Vgi)

A partition of L™ induces a partition of V()
via the greedy rule
A partition sequence (L) = ((L(ll), L(Zl)), . (L(lt), L(zt)))
Induces a partition of V

e Consider all such partitions of ¥V and pick the best.



Preliminary Max-Cut Approximation Algorithm

@rlthm (Input: &, n; query access to adjacency matrix of G=(V,E)) \

1. PartitionV intot = - sets v y@ VO of (almost) equal size.

2. Foreachi € [t], select a set LW of size £ = 32—20 : logl u.i.r. from V\V®.
let L = (L, L@, ., 1®), 8 )

3. For each partition sequence (L) = ((L(ll),L(zl)), - (L(lt),L(zt)))
4, For each i € [t]

5. Partition V& into (Vl(i), Vz(i)) using the greedy rule:
place vin Vl(i) iff I (v, L(li)) <T (v, L(zi)).
6. Let V* = U; Vl(i) and V] = U; Vz(i); calculate u(V{, V).
k Output the cut (V{*, VJ*) with the largest density. /

e Number of partition sequences: (Zf)t _ oo (3)

e Running time: n® - ZPOW@ 0(n?) time for calculating each density



Correctness of Max-Cut Approximation

("Correctness Theorem )
Let (H,, H,) be a partition of V. Think: (H,, Hy) is a max-cut =~ |
W. p. = 5/6 over the choice of L, some partition sequence (L)

Qnduces a partition (V{*, V') of V's. t. u(V{*,VJ*) = u(Hy,H,) — 3¢/4 )

Main Proof Idea: Use a hybrid argument.

* (Hl(O)'HZ(O)) = (Hy, Hy) 4%

e Foralli € [t], partition (Hl(i),Héi)) is
obtained from (Hl(i_l),Hz(i_l)) by

i

repartitioning V® into into (Vl(i), Vz(i)), H, nyGD H, nyG+D

the best out of all partitions

vy

induced by a partition of LO, H, nV® Hy N V®

il

e We will show that when we go from one

VALIYAY

hybrid to the next, the density does not i~th hybrid partition (Hl(i)’ Hz(i))

drop too much (w.h.p.)

oo



Correctness of Max-Cut Approximation

/"Correctness Theorem )
Let (H{, H,) be a partition of I/.
W. p. = 5/6 over the choice of L, some partition sequence (L)

Qnduces a partition (V{*, V') of V's. t. u(V{*,VJ*) = u(Hy,H,) — 3¢/4 )

Proof: Consider i € [t] and fix learning sets LD, ..., LG,

e Let B; be the event that u (Hl(i), Hz(i)) <u (H1(i_1)' Hz(i_l)) - i_i

(Main Lemma

—

LPr[Bi] < é , where the probability is taken over the choice of L.

o

i

e Then, by a union bound,

1
<t -—=

, 1
: =%t 6




Big Picture

When we go from hybrid i — 1 to hybrid i, only nodes in y @ get repartitioned.
e LetR, = N\VO nH Y and R, = \VD n g
o LetlP =1OnHVand LY = 1O 0 Y

10



Proof of Main Lemma

r(v.1}") _r(r))
' B n

e Anodev € VW isgood w.r.t. (L(li),L(zi)) if < g Vj € {1,2}

e Learning set LW is good if < §|V(i)| nodes in V® are bad w.r.t. (L(li), L(Zi))
(Claim
L Fix i € [t]. The probability that L™ is bad is at most é. J

F(U, Rl) _ F(U, RZ)

e Anodev € VW jsbalanced w.r.t. (Ry, Ry) if

( Observation )
LAII unbalanced nodes that are good w.r.t. (L(li),L(zi)) are placed correctly. J

<

S | m

n n

Proof: Suppose w.l.0.g. that I'(v, R;) < I'(v, R,) for a good unbalanced node v

v is unbalanced v is good
£ i r'(v,R,) T(v,R;y) £ (F (U; L(zl)) N g) (F (U» L(ll)) e)
4 n n a '4 8 '4 8

So, I (v, L(li)) <T (v, L(zi)), and v is placed correctly.
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Density Loss from Repartitioning 40
when (L(i),L(zi)) is good
Number of edgeslost

3¢€
Total: = - n?
4t

3&

Recall: B; is the event that u (Hl(i), Hz(i)) <u (Hl(i_l), Héi_l)) '

e Event B; can occur only when (L(li), L(zi)) is bad.
It remains to show that (L(li), L(zi)) Is bad with probability at most é.

12



Probability of a Bad Learning Set

e Anodev e V®is good w.r.t. (L(ll),L(l)) if

e Learning set L™V is good if < |V(l)| nodes in V¥ are bad w.r.t. (L(l) L(Zi))
[ Claim. Fix i € [t]. The probability that L is bad is at most E'

Proof: Let L) = {vq, ..., vp}. Recall that it is chosen u.i.r. from V\V(i)

o Fi ) '
Fixv € V27, Forall j € {0,1}, ” 1,  ifvy isaneigbor of vin R;
0, otherwise
" F( L) 1 T R])
Then X; = - Yy X) - and E[X;] = Zke JE[Xxf| = =L
Pr[vis bad] < Pr [|X1 E[X{]] > § or |X; —E[X;]| > 81
< 2Pr||X, — E[X]| > 8] by union bound and symmetry
by Hoeffdin € g2¢
4 : <2-2exp —2(—) ) =4exp| —— £_3201n1 t:f
. 8 | 32 g2 ¢ €
— 410 <_-._ : :
€ 1 Gt when ¢ is sufficently small

< . 1
by Markov Pr [> 2 fraction of nodes in V) are bad] < —

ot



Improved Max-Cut Approximation Algorithm

@thm (Input: &, n; query access to adjacency matrix of G=(V,F ))\

1. Partition Vintot = 4/¢ sets VD, V(@) | V® of (almost) equal size.

2. Foreachi € [t], selelect a set L® of size £ = D), log% u.i.r. from

M\VO.  LetL = (LW, L@, .., L®). i
64-tf

Select u.i.r. § of sizem = —
For each partition sequence (L) = ((L(ll), L(zl)), . (L(lt), L(Zt)))
For eachi € [t]
Partition S into (Sl(i),Sz(i)) using the greedy rule:
add vto S\ iffI'(v,L;) < T'(v,Ly).

7. Let ST = Ul-Sl(i) and S5 = Ul-S(i); calculate

I

#I(S:{'[’ Sé‘[)=|{k:{SZI{—llSZk}Ee(SI[:S;T)}|

m/2
kOutput max, 1 (ST,57) J

e We can also out put the cut of VV induced by m with max u’ 14
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