Sublinear Algorithms

LECTURE 14

Last time

Approximate Max-Cut

Today

- Testing triangle-freeness
- Regularity Lemma

Project progress reports are due Thursday
Sign up for project meetings

Recall

- We discussed testing bipariteness.
- A graph is bipartite iff it has no odd cycles.

Today: Testing triangle-freeness

(a special case of [Alon Fischer Krivelevich Szegedy 09])

Main tool: Regularity Lemma [Szemerédi 78]

Testing Triangle-Freeness

Input: parameters ε , n, access to undirected graph G=(V,E) represented by $n\times n$ adjacency matrix.

Goal: Accept if G has no triangles; reject w.p. $\geq \frac{2}{3}$ if G is ε -far from triangle-free (at least $\varepsilon \binom{n}{2}$ edges need to be removed to get rid of all triangles).

• [AFKS09]: Time that depends only on ε

Tester

Algorithm (Input: ε , n; query access to adjacency matrix of G=(V,E))

- 1. Repeat s times:
- 2. Sample vertices v_1, v_2, v_3 uniformly at random
- 3. **Reject** if they form a triangle.
- 4. Accept.

How many repetitions suffice?

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every n-node graph that is ε -far from triangle-free contains at least $\delta \cdot \binom{n}{3}$ triangles.

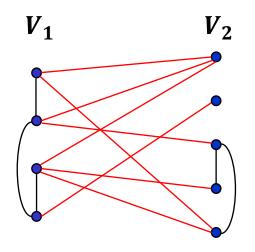
- It is easy to see that if G is ε -far from triangle-free then it has at leas $\varepsilon \binom{n}{2}$ triangles. The lemma is asymptotically better in n.
- By Witness Lemma, setting $s = \frac{2}{\delta}$ yields a tester.

The Regularity Lemma: Density

• Let V_1, V_2 be nonempty disjoint subsets of V. $e(V_1, V_2) = \text{set of edges between } V_1 \text{ and } V_2$

• The edge density of the pair (V_1, V_2) , denoted $d(V_1, V_2)$, is $\frac{|e(V_1, V_2)|}{|V_1| \cdot |V_2|}$.

The probability that a random pair of nodes from different sets is an edge.

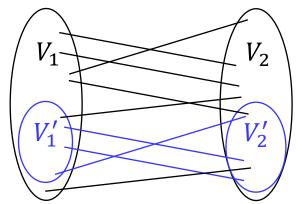


 This is the same definition as in the last lecture, except for normalization, generalized to non-partitions.

Regularity

A pair (V_1, V_2) of disjoint subsets of vertices is γ -regular if $\forall V_1' \subseteq V_1, V_2' \subseteq V_2$, such that $|V_1'| > \gamma |V_1|$ and $|V_2'| > \gamma |V_2|$, $|d(V_1, V_2) - d(V_1', V_2')| < \gamma$.

If the subsets are large then the set pair and the subset pair have similar densities



We expect subsets in a random graph to have this property.

Connections in Regular Pairs

Claim (Most nodes in regular pairs have many neighbors)

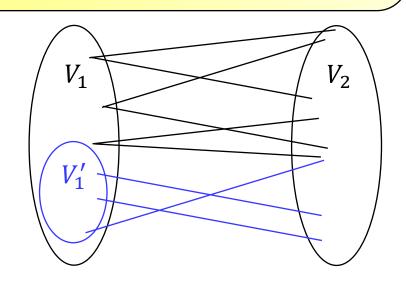
Suppose (V_1, V_2) is a γ -regular pair of density $\geq \eta$.

Consider the set V_1' of nodes in V_1 , each of which has at most $(\eta - \gamma)|V_2|$ neighbors in V_2 . Then $|V_1'| < \gamma |V_1|$.

Proof:

$$d(V_1',V_2) =$$

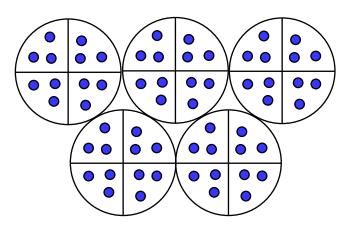
$$d(V_1, V_2) \ge \eta$$
$$|d(V_1, V_2) - d(V_1', V_2)| \ge$$



By γ -regularity of (V_1, V_2) , we conclude that $|V_1'| < \gamma |V_1|$

Equipartions

- An equipartition of a graph is a partition of its vertices into sets that differ in size by at most 1.
- A partition \mathcal{B} is a refinement of a partition \mathcal{A} if every set in \mathcal{B} is a subset of set in \mathcal{A} .



Regularity Lemma

Every large graph G has an equipartition where

- (almost) all pairs of sets are regular,
- the number of parts is not too large.

Regularity Lemma [Szemerédi 78]

 $\forall a, \forall \gamma > 0, \exists T = T(a, \gamma)$ such that if G is a graph with more that T nodes and \mathcal{A} is an equipartition of G into G sets then there is an equipartition G of G into G sets which is a refinement of G satisfying:

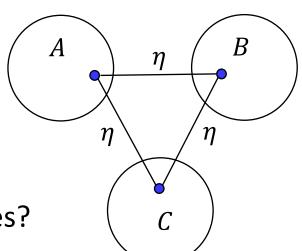
- 1. $a \leq b < T$;
- 2. at most $\gamma {b \choose 2}$ pairs of sets in ${\mathcal B}$ are not γ -regular.

Important: T does not depend on the size of the graph

• But the dependence of T on γ is a tower $2^{2^{...2}}$ of height poly $\left(\frac{1}{\gamma}\right)$

Triangles in a Random Tripartite Graph

- Consider disjoint sets *A*, *B*, *C* of vertices
- Suppose that each pair of nodes from different sets becomes an edge with probability η



- What is the expected number of triangles?
- Let X_{uvw} be an indicator that u, v, w form a triangle.

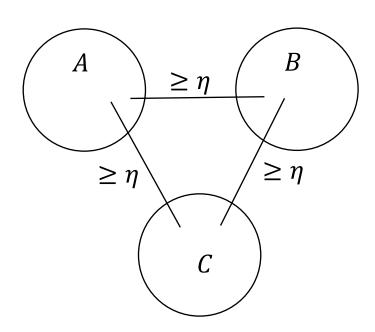
$$\mathbb{E}\left[\sum_{u\in A,v\in B,w\in C}X_{uvw}\right] = \sum_{u\in A,v\in B,w\in C}\mathbb{E}[X_{uvw}] = \eta^3|A|\cdot|B|\cdot|C|$$

Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1 - \eta)\eta^3$.

Proof: A' = the set of nodes in A, each of which has $<(\eta - \gamma^{\Delta})$ neighbors in B.



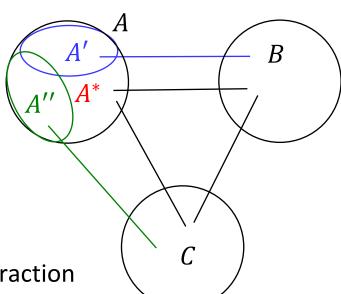
Triangles in a Graph with Three Regular Pairs

Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1 - \eta)\eta^3$.

Proof: A' = the set of nodes in A, each of which has $<(\eta - \gamma^{\Delta}) |B|$ neighbors in B.

- By Claim (most nodes in regular pairs have many neighbors), $|A'| < \gamma^{\Delta} |A|$.
- A''= the set of nodes in A, each of which has $<(\eta \gamma^{\Delta}) |C|$ neighbors in C.
- Analogously, $|A''| < \gamma^{\Delta} |A|$.
- $A^* = A A' A''$
- $|A^*| \ge (1 2\gamma^{\Delta})|A|$
- Each node in A^* is adjacent to $\geq (\eta \gamma^{\Delta})$ fraction of nodes in B and in C



Triangles in a Graph with Three Regular Pairs

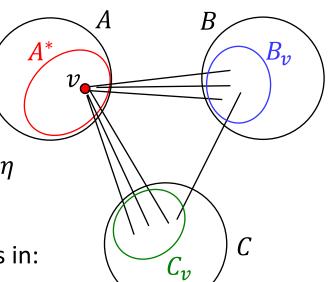
Lemma [Kolmos Simonovits]

 $\forall \eta > 0$, if A, B, C are disjoint subsets of V and each pair of them is γ^{Δ} -regular with density at least η then G contains at least $\delta^{\Delta} |A| \cdot |B| \cdot |C|$ disjoint triangles, where $\gamma^{\Delta} = \gamma^{\Delta}(\eta) = \frac{\eta}{2}$ and $\delta^{\Delta} = \delta^{\Delta}(\eta) = \frac{1}{8}(1 - \eta)\eta^3$.

Proof: Each $v \in A^*$ is adjacent to $\geq (\eta - \gamma^{\Delta})$ fraction of nodes in B and in C

$$|A^*| \ge \left(1 - 2\gamma^{\Delta}\right)|A|$$

- Consider a node $v \in A^*$
- Let B_v be the set of neighbors of v in B.
- Let C_v be the set of neighbors of v in C.
- But (B, C) is γ^{Δ} -regular with density at least η
- Therefore, $d(B_v, C_v) > \eta \gamma^{\Delta} = \frac{\eta}{2}$
- Number of triangles each $v \in A^*$ participates in: Type equation here.



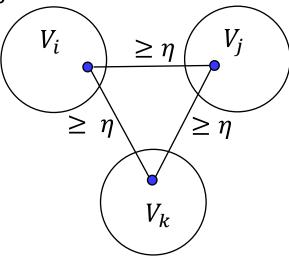
Proof of the Triangle-Removal Lemma: Idea

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every n-node graph that is ε -far from triangle-free contains at least $\delta \cdot \binom{n}{3}$ distinct triangles.

Main Idea: Consider a graph G which is ε -far from being triangle-free.

- We apply the Regularity Lemma to get a regular partition.
- We carefully remove fewer than $\varepsilon \binom{n}{2}$ edges, and show that there remains a triangle consisting of edges between regular dense pairs.
- We apply [Kolmos Simonovits] to get many triangles.



Proof of the Triangle-Removal Lemma

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every *n*-node graph that is ε -far from triangle-free contains at least $\delta \cdot \binom{n}{3}$ distinct triangles.

Proof: Consider a graph G which is ε -far from being triangle-free.

Start with an equipartition \mathcal{A} of G with $4/\varepsilon$ sets.

Apply the regularity lemma with $a=4/\varepsilon$ and $\gamma=\min(\varepsilon/4,\gamma^{\Delta}(\varepsilon/4))=\varepsilon/8$

- By Regularity Lemma, \mathcal{A} can be refined into equipartition $\mathcal{B}=\{V_1,\ldots,V_h\}$:
 - 1. $\frac{4}{\varepsilon} \le b \le T$ $|V_i| = \frac{n}{b} \in \left[\frac{n}{T}, \frac{\varepsilon n}{4}\right]$ for all $i \in [b]$ 2. at most $\gamma \cdot {b \choose 2}$ pairs among V_1, \dots, V_b are not γ -regular
- An edge (u, v), where $u \in V_i$ and $v \in V_i$ is useful if it satisfies:
 - 1. $i \neq i$
 - 2. (V_i, V_i) is γ -regular
 - 3. the density $d(V_i, V_i) \ge \varepsilon/4$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

Proof of Claim

- An edge (u, v), where $u \in V_i$ and $v \in V_j$ is useful if it satisfies:
 - 1. $i \neq j$
 - 2. (V_i, V_j) is γ -regular
 - 3. the density $d(V_i, V_j) \ge \varepsilon/4$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

Edges violating	Number of such edges
Condition 1	
Condition 2	
Condition 3	

Total:
$$\frac{7\varepsilon}{8} \cdot \binom{n}{2} < \varepsilon \binom{n}{2}$$

Proof of the Triangle-Removal Lemma

Triangle-Removal Lemma

 $\forall \varepsilon \exists \delta = \delta(\varepsilon)$ such that every n-node graph that is ε -far from triangle-free contains at least $\delta \cdot \binom{n}{3}$ distinct triangles.

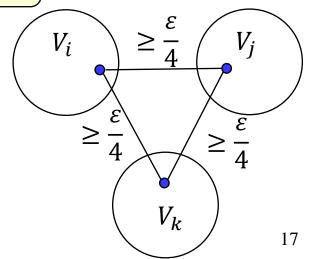
Proof: Consider a graph G which is ε -far from being triangle-free.

- An edge (u, v), where $u \in V_i$ and $v \in V_i$ is useful if it satisfies:
 - 1. $i \neq j$
 - 2. (V_i, V_j) is $\varepsilon/8$ -regular
 - 3. the density $d(V_i, V_i) \ge \varepsilon/4$

Claim. Graph G has less than $\varepsilon \binom{n}{2}$ non-useful edges.

Triangle of useful edges

- When we remove all non-useful edges, there is still a triangle!
- By [Kolmos Simonovits], there are at least $\delta^{\Delta}\left(\frac{\varepsilon}{4}\right)\cdot |V_i|\cdot |V_j|\cdot |V_k| \geq \frac{1}{8}\Big(1-\frac{\varepsilon}{4}\Big)\Big(\frac{\varepsilon}{4}\Big)^3\cdot \frac{n^3}{T^3}$ triangles.



Testing Other Properties

Testing Subgraph-Freeness [Alon 02]

Let *H* be a fixed graph on *h* nodes.

Let \mathcal{P}_H be the property that G does not contain a copy of H as a subgraph.

- 1. If *H* is bipartite:
 - There is a 2-sided error tester for \mathcal{P}_H with $O\left(\frac{1}{\varepsilon}\right)$ queries.

Polynomial in $1/\varepsilon$ for fixed H. queries.

- There is a 1-sided error tester for \mathcal{P}_H with $O\left(h^2\left(\frac{1}{2\varepsilon}\right)^{h^2/4}\right)$ queries.
- 2. If H is not bipartite, then there exists c > 0, such that every 1-sided error tester for \mathcal{P}_H makes $\Omega(\left(\frac{c}{\varepsilon}\right)^{c\log\frac{c}{\varepsilon}})$ queries. Super-polynomial in $1/\varepsilon$.
- We will prove part (2) for triangles.