Sublinear Algorithms

LECTURE 15

Last time
* Testing triangle-freeness
 Regularity Lemma

* Triangle-removal lemma

Today

* Finish testing triangle-freeness

» Testing other properties of dense graphs
 L_ower bound for triangle-freeness

» Behrend’s construction

Sigm up for project meetings (if you haven’t yes)
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Testing Triangle-Freeness

Input: parameters &, n, access to undirected graph ¢ = (V,E)
represented by n X n adjacency matrix.

Goal: Accept if G has no triangles;
reject w.p. = % if G is e-far from triangle-free

(at least & (721

e [Alon Fischer Krivelevich Szegedy 09]: Time that depends only on ¢

) edges need to be removed to get rid of all triangles).



Tester

~

Algorithm (Input: &, n; query access to adjacency matrix of G=(T,E))

1. Repeat s times:

2. Sample vertices v, V,, V3 uniformly at random
3. Reject if they form a triangle.
K4. Accept. /

How many repetitions suffice?

/Triangle-RemovaI Lemma

Vedd = 6(¢) such that every n-node graph that is e-far from triangle-free

: n .
\contams at least § - (3) triangles.

e By Witness Lemma, setting s = 2/6 yields a tester.



Definitions from Last Lecture

e The edge density of the pair (I3, V5),

. |e(V,V2)|
denoted d(V4,V,), is AN

e Apair (Vq,V,) of disjoint subsets of vertices is y-regular if
vV €V, V, €V, suchthat |V{| > y|V;| and |V,| > y|V;],

[d(Vy, V) —d(V1, V)| <.



Triangles in a Graph with Three Regular Pairs

/Lemma [Kolmos Simonovits] I

vn>0, if A, B, C are disjoint subsets of V and each pair of them is y*-regular
with density at least 5 then G contains at least 62 |A]| - |B]| - |C| triangles,

1
where y2 = y2(n) = gand 6% =8%(n) = 5(1 —nn3.




Proof of the Triangle-Removal Lemma: ldea

/Triangle-RemovaI Lemma A

Vedd = §(&) such that every n-node graph that is e-far from triangle-free

Kcontalns at least 9 - (3) distinct triangles.

Main Idea: Consider a graph G which is e-far from being triangle-free.
e We apply the Regularity Lemma to get a regular partition.

e We carefully remove fewer than ¢ (n) edges, and show that

2
there remains a triangle consisting of edges between regular dense pairs.

e We apply [Kolmos Simonovits] to get many triangles.




Proof of the Triangle-Removal Lemma

/Triangle-RemovaI Lemma A

Vedd = §(&) such that every n-node graph that is e-far from triangle-free

Kcontalns at least 9 - (3) distinct triangles.

Proof: Consider a graph G which is e-far from being triangle-free.

e Anedge (u,v), whereu € V; and v € V; is useful if it satisfies:
1. i #]j
2. (W, V;)is g/8-regular
3. the density d(Vi, V,) > c/4

2) non-useful edges_] Triangle of useful edges

e When we remove all non-useful edges,
there is still a triangle!

By [Kolmos Simonovits], there are at least

[ Claim. Graph G has less than ¢ (n

88 (5) - Wil - wd =3 (1-9) (§) - 5
triangles.




Testing Other Properties

ﬂsting Subgraph-Freeness [Alon 02] \

Let H be a fixed graph on h nodes.
Let P be the property that G does not contain a copy of H as a subgraph.

1. If H is bipartite:

Polynomial
inl/e

L \h?/4 for fixed H.

— There is a 1-sided error tester for Py with O <h2 (Z) > queries.

— There is a 2-sided error tester for Py with O G) queries.

2. If H is not bipartite, then there exists ¢ > 0, such that every 1-sided

c\¢log g - -
\ error tester for P makes Q((;) ) queries. Super-pol>/nom|al In /
1/e.

e We will prove part (2) for triangles.
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Main Combinatorial Tool
for Proving the Lower Bound:
Behrend’s Construction
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Dense Sets of Integers with no Arithmetic Progression

( Behrend’s Theorem A
c . m
> C >
For all integer m = 1, there exists a set S € [m] such that |S| = —afon
(and the only solutiontox +y = 2zforx,y,z€ Sisx =y = z. )
e Behrend’s bound [Behrend 46] is slightly better. X A y
@ @ @

e The best known is () (ZZJE\/TTOgW log;/4 m) [Elkin 10]

Proof idea: Represent integers in [m] as k-digit numbers base d,
where k and d are parameters.

e For a number x, view its digits
as coordinates of a point (xg, X1, ..., X—1)

e Pick points that lie on the same sphere:
i.e., with fixed x& + x2 + - + x¢_,
e Then no three of them lie on the same line,

which ensures that no point is
the average of two other points.

13



Proof of Behrend’s Theorem

( Behrend’s Theorem A
For all integer m = 1, there exists a set S € [m] such that |S| = ZSJmn;W
(and the only solutiontox +y = 2zforx,y,z€ Sisx =y = z. )
Proof: For an integer B > 0, define a set
k—1 i k—1
Sp = Z x;d!:each x; € {O, T 1} and B = z x?
i1=0 =0

e All numbers in sets Sg are less than d¥.
We set d® = m to ensure Sz € [m] VB.
(Claim
LFor all B, the only solutiontox +y = 2zforx,y,z€ Sgisx =y = z.

—
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Proof of Claim

For an integer B > 0, define a set

k-1 i k-1
SB = indi:eachxi € {0, ...,E— 1} and B = lez
i=0 i=0

(Claim

LFor all B, the only solutiontox +y = 2zforx,y,z€ Sgisx =y = Z.J

y

Proof: Suppose x +y = 2z forsome x,y,z € Sp.

e Representing x,y, z base d, we get
k_

1 k—1 k—1
e Since x;,y;, z; are less than d /2 for all i, there are no carries.

Thatis, (xg, X1, .o, Xg—1) + Vo, Vs o0 Vi—1) = 2(20, 21, e ) Zi—1)
But these three points are on a sphere,
so one can be the average of the other two only if they are identical.
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Proof of Behrend’s Theorem: Setting Parameters

( Behrend’s Theorem A
For all integer m = 1, there exists a set S € [m] such that |S| = ZSJmn:gW
(and the only solutiontox +y = 2zforx,y,z€ Sisx =y = z. )
Proof: For an integer B > 0, define a set
k—1 i k—1
Sp = Z x;d!:each x; € {O, T 1} and B = z x?
i1=0 =0

e Setd® =mandd = 2V1/2108™M Then | =

e How many possibilities for B?

e How many numbers are in all sets Sg?

e By an averaging argument, at least one of the sets has size at least
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Testing Triangle-Freeness

Input: parameters &, n, access to undirected graph ¢ = (V,E)
represented by n X n adjacency matrix.

Goal: Accept if G has no triangles;
reject w.p. = % if G is e-far from triangle-free

n
(at least & (2) edges need to be removed to get rid of all triangles).

e [Alon Fischer Krivelevich Szegedy 09]: Time that depends only on ¢

e Goal

" Lower Bound for Testing Triangle-Freeness [Alon 02]

Testing triangle-freeness with 1-sided error requires super-polynomial
dependence on 1/¢.

clog < /
b Q <(5) 8) queries for some ¢ > 0
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Canonical Tester for Dense Graphs

~

Canonical Tester (Input: &, n; query access to adjacency matrix of G=(V,E))

1. Sample s nodes uniformly at random.
2. Query all pairs of sampled nodes.

3. Accept or reject based on available information.
\ P ’ 4

e Consider any property P of graphs that does not depend on the names of
the nodes. Thatis, if G € P and G’ is isomorphic to G then G' € P.

Exercise: Show that if there is an e-tester T for 2P with query complexity g(g,n),
then there is a canonical e-tester T’ for P with query complexity 0(g?(g,n)).
Moreover, if T has 1-sided error, so does T'.

A lower bound g for canonical tester
implies a lower bound /q for every tester

&

. . c\¢log g
Sufficient to prove our lower bound Q (—)

for 1-sided error canonical testers. 5



Goal for Proving the Lower bound

A 1-sided error tester can reject only if it finds a triangle.

Suppose we construct a graph G that is e-far from being tringle
free, where p fraction of triples are triangles for some small p.

Consider a canonical tester T that samples g vertices.
Let X be the number of triangles the tester catches.

_ (1) _ o3
E[X] = p(3) =0(-q°)
Suppose q is set so that E[X] < 1/2
By Markov, Pr[T rejects G| < Pr|X = 1] < E|X]

IA
N
wIN

/\/\
Nl

So, for T to reject with high enough probability, g

o clogg
Sufficient to ensure p = 0 (G) )
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Recall: Arithmetic-Progression-Free Sets

" Behrend’s Theorem

For all integer m = 1, there exists a set S € [m] such that |S| =

(and the only solutiontox + y = 2zforx,y,z€ Sisx =y = z.

m

g vlogz m

e We will use such a set S to construct a graph that is
— far from triangle free
— has relatively few triangles
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Initial Graph Construction

Let S < [m] be a set from Behrend’s Thm
We construct a tripartite graph with

m, 2m, and 3m nodes in the three parts
Intended triangles

] i+s
i

i+ 2s
No other triangles:
If (i,i +x,i + x + y) is a triangle, then
x€S,yeES,andx+y =2zforz€eS
But then x = y = z by construction of S

All triangles are edge disjoint: each edge participates in exactly one triangle.

23



Parameters of the Initial Construction

e Number of nodes, n

6m
e Number of edges

3m - |S|
e Number of (edge-disjoint) triangles, T

m - |S|
e Distance to triangle-freeness

Necessary and sufficient to remove

one edge from each triangle,
because they are edge-disjoint.

m=o(m)=0(2) =e ()

Not constant!
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Blowup of a Graph

To construct a b-blowup of a graph,
— make b copies of each node;
— make two copies (of different nodes) adjacent
iff their originals are adjacent.

25



Parameters of the Blowup Construction

e Number of nodes, n
6mb
e Number of edges
3m - |S] - b?
e Number of triangles
m-|S|- b3
e Number of (edge-disjoint) triangles, T
m-|S|- b?
e Distance to triangle-freeness

@_ ®<(m-b)2)_®(m) _@(Sm

. M p— 1
e Giveneandn, pickmsothate =0 (8 Tog m

e Fraction of triples that are triangles:
m-|S|-b3 m-|S]

n3 m3

~y
~
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Conclusion: Triangle-Freeness

e The query complexity of testing triangle-freeness with 1-sided
error depends only on ¢

(and is independent of the size of the graph).

e However, the dependence is super-polynomialin 1/¢

27
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