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Sublinear Algorithms

LECTURE 15 
Last time
• Testing triangle-freeness

• Regularity Lemma

• Triangle-removal lemma

Today
• Finish testing triangle-freeness

• Testing other properties of dense graphs

• Lower bound for triangle-freeness

• Behrend’s construction

Sofya Raskhodnikova;Boston University

Sign up for project meetings (if you haven’t yet)



Testing Triangle-Freeness

Input: parameters 𝜀, 𝑛, access to undirected graph 𝐺 = (𝑉, 𝐸) 
represented by 𝑛 × 𝑛 adjacency matrix.

Goal: Accept if 𝐺 has no triangles;                                                    

reject w.p. ≥
2

3
 if 𝐺 is 𝜀-far from triangle-free                                        

(at least 𝜀
𝑛
2

 edges need to be removed to get rid of all triangles).

• [Alon Fischer Krivelevich Szegedy 09]:  Time that depends only on 𝜀
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Tester

How many repetitions suffice?

• By Witness Lemma, setting s = 2/𝛿 yields a tester.
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Algorithm (Input: 𝜀, 𝑛;  query access to adjacency matrix of G=(V,E))

1.  Repeat 𝒔 times:

2.           Sample vertices 𝑣1, 𝑣2, 𝑣3 uniformly at random

3.           Reject if they form a triangle.
4.  Accept.

Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀  such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

 triangles. 



Definitions from Last Lecture

• The edge density of the pair 𝑉1, 𝑉2 ,                                            

denoted 𝑑 𝑉1, 𝑉2 , is 
𝑒 𝑉1,𝑉2

𝑉1 ⋅|𝑉2|
 .

• A pair 𝑉1, 𝑉2  of disjoint subsets of vertices is 𝛾-regular if                     
∀𝑉1

′ ⊆ 𝑉1, 𝑉2
′ ⊆ 𝑉2, such that 𝑉1

′ > 𝛾|𝑉1| and 𝑉2
′ > 𝛾|𝑉2|,

𝑑 𝑉1, 𝑉2 − 𝑑 𝑉1
′, 𝑉2

′ < 𝛾. 
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𝑉1 𝑉2

𝑉1
′ 𝑉2

′



Triangles in a Graph with Three Regular Pairs
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Lemma [Kolmos Simonovits] 

∀𝜂>0, if 𝐴, 𝐵, 𝐶 are disjoint subsets of 𝑉 and each pair of them is 𝛾∆-regular 
with density at least 𝜂  then 𝐺 contains at least 𝛿∆ 𝐴 ⋅ 𝐵 ⋅ |𝐶| triangles, 

where 𝛾∆ = 𝛾∆ 𝜂 =
𝜂

2
 and 𝛿∆ = 𝛿∆ 𝜂 =

1

8
1 − 𝜂 𝜂3 .

𝐵𝐴

𝐶

≥ 𝜂

≥ 𝜂

≥ 𝜂



Proof of the Triangle-Removal Lemma: Idea

Main Idea: Consider a graph 𝐺 which is 𝜀-far from being triangle-free.

• We apply the Regularity Lemma to get a regular partition.

• We carefully remove fewer than 𝜀
𝑛
2

 edges, and show that

     there remains a triangle consisting of edges between regular dense pairs.

• We apply [Kolmos Simonovits] to get many triangles.
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Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀  such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

 distinct triangles. 

𝑉𝑘

𝑉𝑗𝑉𝑖 ≥ 𝜂

≥  𝜂 ≥ 𝜂



Proof of the Triangle-Removal Lemma

Proof: Consider a graph 𝐺 which is 𝜀-far from being triangle-free.

• An edge 𝑢, 𝑣 , where 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑗 is useful if it satisfies:
1.  𝑖 ≠ 𝑗
2.  (𝑉𝑖 , 𝑉𝑗) is 𝜀/8-regular
3.  the density 𝑑 𝑉𝑖 , 𝑉𝑗 ≥ 𝜀/4 

• When we remove all non-useful edges,                                                
there is still a triangle!

• By [Kolmos Simonovits], there are at least

    𝛿∆ 𝜀

4
⋅ 𝑉𝑖 ⋅ 𝑉𝑗 ⋅ 𝑉𝑘 ≥

1

8
1 −

𝜀

4

𝜀

4

3
⋅

𝑛3

𝑇3

     triangles.
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Triangle-Removal Lemma

∀𝜀∃𝛿 = 𝛿 𝜀  such that every 𝑛-node graph that is 𝜀-far from triangle-free 

contains at least 𝛿 ⋅
𝑛
3

 distinct triangles. 

Claim. Graph 𝐺 has less than 𝜀
𝑛
2

 non-useful edges.

𝑉𝑗𝑉𝑖

𝑉𝑘

≥
𝜀

4

≥
𝜀

4 ≥
𝜀

4

Triangle of useful edges



Testing Other Properties

• We will prove part (2) for triangles.
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Testing Subgraph-Freeness [Alon 02]
Let 𝐻 be a fixed graph on ℎ nodes.  

Let 𝓟𝐻 be the property that 𝐺 does not contain a copy of 𝐻 as a subgraph.

1. If 𝐻 is bipartite:

– There is a 2-sided error tester for 𝓟𝐻 with 𝑂
1

𝜀
 queries.

– There is a 1-sided error tester for 𝓟𝐻 with 𝑂 ℎ2 1

2𝜀

ℎ2/4
 queries.

2.  If 𝐻 is not bipartite, then there exists c > 0, such that every 1-sided 

error tester for 𝓟𝐻 makes Ω(
𝑐

𝜀
 

𝑐 log
𝑐

𝜀
 
) queries.

Polynomial 

in 1/𝜀       

for fixed 𝐻.

Super-polynomial in 

1/𝜀.



Main Combinatorial Tool                                            

for Proving the Lower Bound:

Behrend’s Construction
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Dense Sets of Integers with no Arithmetic Progression

• Behrend’s bound [Behrend 46] is slightly better.

• The best known is Ω
𝑚

22 2 log2 𝑚
log2

1/4
𝑚  [Elkin 10]

Proof idea: Represent integers in [𝑚] as 𝑘-digit numbers base 𝑑,             
where 𝑘 and 𝑑 are parameters.

• For a number 𝑥, view its digits                                                                                  
as coordinates of a point 𝑥0, 𝑥1, … , 𝑥𝑘−1

• Pick points that lie on the same sphere:                                                      

i.e., with fixed 𝑥0
2 + 𝑥1

2 + ⋯ + 𝑥𝑘−1
2

• Then no three of them lie on the same line,                                               
which ensures that no point is                                                                                     
the average of two other points.
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚
  

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.

𝑥 𝑧 𝑦

(𝑥0, 𝑥1, 𝑥2)
𝑥2

𝑥0

𝑟

𝑥1



Proof of Behrend’s Theorem

Proof: For an integer 𝐵 > 0, define a set 

𝑆𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1  and 𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖
2

• All numbers in sets 𝑆𝐵 are less than 𝑑𝑘.

      We set 𝑑𝑘 = 𝑚 to ensure 𝑆𝐵 ⊆ 𝑚  ∀𝐵.
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚
  

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.

Claim

For all 𝐵, the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵 is 𝑥 = 𝑦 = 𝑧.



Proof of Claim

For an integer 𝐵 > 0, define a set 

𝑆𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1  and 𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖
2

Proof: Suppose 𝑥 + 𝑦 = 2𝑧 for some 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵.

• Representing 𝑥, 𝑦, 𝑧 base 𝑑, we get 

෍

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 + ෍

𝑖=0

𝑘−1

𝑦𝑖𝑑𝑖 = 2 ෍

𝑖=0

𝑘−1

𝑧𝑖𝑑𝑖

• Since 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are less than 𝑑/2 for all 𝑖, there are no carries.

      That is, 𝑥0, 𝑥1, … , 𝑥𝑘−1 + 𝑦0, 𝑦1, … , 𝑦𝑘−1 = 2 𝑧0, 𝑧1, … , 𝑧𝑘−1

      But these three points are on a sphere,         

      so one can be the average of the other two  only if they are identical.
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Claim

For all 𝐵, the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆𝐵 is 𝑥 = 𝑦 = 𝑧.

𝒙

𝒛

𝒚



Proof of Behrend’s Theorem: Setting Parameters

Proof: For an integer 𝐵 > 0, define a set 

𝑆𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖𝑑𝑖 : each 𝑥𝑖 ∈ 0, … ,
𝑑

2
− 1  and 𝐵 = ෍

𝑖=0

𝑘−1

𝑥𝑖
2

• Set 𝑑𝑘 = 𝑚 and 𝑑 = 2 1/2⋅log 𝑚. Then 𝑘 =

• How many possibilities for 𝐵?

• How many numbers are in all sets 𝑆𝐵?

• By an averaging argument, at least one of the sets has size at least
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Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

23 log2 𝑚
  

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.



Testing Triangle-Freeness

Input: parameters 𝜀, 𝑛, access to undirected graph 𝐺 = (𝑉, 𝐸) 
represented by 𝑛 × 𝑛 adjacency matrix.

Goal: Accept if 𝐺 has no triangles;                                                    

reject w.p. ≥ 2
3
 if 𝐺 is 𝜀-far from triangle-free                                        

(at least 𝜀
𝑛
2

 edges need to be removed to get rid of all triangles).

• [Alon Fischer Krivelevich Szegedy 09]:  Time that depends only on 𝜀

• Goal
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1
2

Lower Bound for Testing Triangle-Freeness [Alon 02]

 Testing triangle-freeness with 1-sided error requires super-polynomial 
dependence on 1/𝜀.

Ω
𝑐

𝜀
 

𝑐 log
𝑐

𝜀
 

queries for some 𝑐 > 0



Canonical Tester for Dense Graphs

• Consider any property 𝓟 of graphs that does not depend on the names of 
the nodes. That is, if 𝐺 ∈ 𝓟 and 𝐺′ is isomorphic to 𝐺 then 𝐺′ ∈  𝓟.

Exercise: Show that if there is an 𝜀-tester 𝑇 for 𝓟 with query complexity 𝑞(𝜀,𝑛), 
then there is a canonical 𝜀-tester 𝑇′ for 𝓟 with query complexity 𝑂(𝑞2(𝜀,𝑛)).                   
Moreover, if 𝑇 has 1-sided error, so does 𝑇′.
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Canonical Tester (Input: 𝜀, 𝑛;  query access to adjacency matrix of G=(V,E))

1. Sample 𝒔 nodes uniformly at random.

2. Query all pairs of sampled nodes.

3. Accept or reject based on available information.

Sufficient to prove our lower bound Ω
𝑐

𝜀
 

𝑐 log
𝑐

𝜀
 

for 1-sided error canonical testers.

A lower bound 𝑞 for canonical tester 

implies a lower bound 𝑞 for every tester



Goal for Proving the Lower bound

• A 1-sided error tester can reject only if it finds a triangle.

• Suppose we construct a graph 𝐺 that is 𝜀-far from being tringle 
free, where 𝑝 fraction of triples are triangles for some small 𝑝.

• Consider a canonical tester 𝑇 that samples 𝑞 vertices.

• Let 𝑋 be the number of triangles the tester catches.

      𝔼 𝑋 = 𝑝
𝑞
3

= Θ 𝑝 ⋅ 𝑞3

• Suppose 𝑞 is set so that 𝔼 𝑋 ≤ 1/2

• By Markov, Pr[𝑇  rejects 𝐺] ≤ Pr 𝑋 ≥ 1 ≤ 𝔼 𝑋 ≤
1

2
<

2

3

• So, for 𝑇 to reject with high enough probability, 𝑞 = Ω 𝑝−
1

3
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Sufficient to ensure  𝑝 = 𝑂
𝜀

𝑐
 

𝑐 log
𝑐

𝜀
 



Recall: Arithmetic-Progression-Free Sets

• We will use such a set 𝑆 to construct a graph that is

– far from triangle free

– has relatively few triangles

22

Behrend’s Theorem

For all integer 𝑚 ≥ 1, there exists a set 𝑆 ⊆ [𝑚] such that 𝑆 ≥
𝑚

8 log2 𝑚
  

and the only solution to 𝑥 + 𝑦 = 2𝑧 for 𝑥, 𝑦, 𝑧 ∈ 𝑆 is 𝑥 = 𝑦 = 𝑧.



Initial Graph Construction

• Let 𝑆 ⊂ [𝑚] be a set from Behrend’s Thm

• We construct a tripartite graph with

     𝑚, 2𝑚, and 3𝑚 nodes in the three parts

• Intended triangles

• No other triangles:

      If (𝑖, 𝑖 + 𝑥, 𝑖 + 𝑥 + 𝑦) is a triangle, then

          𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆, and 𝑥 + 𝑦 = 2𝑧 for 𝑧 ∈ 𝑆

       But then 𝑥 = 𝑦 = 𝑧 by construction of S

• All triangles are edge disjoint: each edge participates in exactly one triangle.

23

𝟏

⋮

𝟐

𝒎

⋮

𝟏

𝟐

2𝒎

⋮

𝟏

𝟐

3𝒎

∀𝒊 ∈ 𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝒔

∀𝒊 ∈ 𝟐𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝒔

∀𝒊 ∈ 𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝟐𝒔

𝒊

𝒊 + 𝟐𝒔

𝒊 + 𝒔



Parameters of the Initial Construction

• Number of nodes, 𝑛

            6𝑚

• Number of edges

           3𝑚 ⋅ |𝑆|

• Number of (edge-disjoint) triangles, 𝑇

            𝑚 ⋅ |𝑆|

• Distance to triangle-freeness

𝑇
𝑛
2

= Θ
𝑚⋅ 𝑆

𝑚2 = Θ
𝑆

𝑚
= Θ

1

8 log 𝑚

      Not constant!

24

𝟏

⋮

𝟐

𝒎

⋮

𝟏

𝟐

2𝒎

⋮

𝟏

𝟐

3𝒎

∀𝒊 ∈ 𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝒔

∀𝒊 ∈ 𝟐𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝒔

∀𝒊 ∈ 𝒎
∀𝒔 ∈ 𝑺

𝒊

𝒊 + 𝟐𝒔

Necessary and sufficient to remove 

one edge from each triangle,

because they are edge-disjoint.



Blowup of a Graph 

To construct a 𝑏-blowup of a graph,

– make 𝑏 copies of each node; 

– make two copies (of different nodes) adjacent

     iff their originals are adjacent.
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Parameters of the Blowup Construction

• Number of nodes, 𝑛
            6𝑚𝑏
• Number of edges
           3𝑚 ⋅ 𝑆 ⋅ 𝑏2

• Number of triangles
            𝑚 ⋅ |𝑆| ⋅ 𝑏3

• Number of (edge-disjoint) triangles, 𝑇
            𝑚 ⋅ |𝑆| ⋅ 𝑏2

• Distance to triangle-freeness
𝑇
𝑛
2

= Θ
𝑚⋅ 𝑆 ⋅𝑏2

𝑚⋅𝑏 2 = Θ
𝑆

𝑚
= Θ

1

8 log 𝑚

• Given 𝜀 and 𝑛, pick 𝑚 so that 𝜀 = Θ
1

8 log 𝑚
 and 𝑏 =

𝑛

6𝑚

• Fraction of triples that are triangles: 

≈
𝑚 ⋅ 𝑆 ⋅ 𝑏3

𝑛3
≈

𝑚 ⋅ 𝑆

𝑚3
=

𝑆

𝑚2
=

𝜀

𝑚
<

1

𝑚

26

𝒎
2𝒎

3𝒎



Conclusion: Triangle-Freeness

• The query complexity of testing triangle-freeness with 1-sided 
error depends only on 𝜀                                                                 
(and is independent of the size of the graph).

• However, the dependence is super-polynomial in 1/𝜀
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