Sublinear Algorithms

LECTURE 16

Last time

Lower bound for testing triangle-freeness

Today

- Canonical testers for the dense graph model
- Approximating the average degree

Canonical Tester for Dense Graphs

Canonical Tester (Input: ε , n; query access to adjacency matrix of G=(V,E))

- 1. Sample s nodes uniformly at random.
- 2. Query all pairs of sampled nodes.
- 3. Accept or reject based on available information.
- Consider any property \mathcal{P} of graphs that does not depend on the names of the nodes. That is, if $G \in \mathcal{P}$ and G' is isomorphic to G then $G' \in \mathcal{P}$.

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

A lower bound q for canonical tester implies a lower bound \sqrt{q} for every tester

To complete triangle-freeness testing lower bound, it is sufficient to prove

the lower bound
$$\Omega\left(\left(\frac{c}{\varepsilon}\right)^{c\log\frac{c}{\varepsilon}}\right)$$
 for 1-sided error canonical testers.

Exercise

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

Exercise

Exercise: Show that if there is an ε -tester T for \mathcal{P} with query complexity $q(\varepsilon,n)$, then there is a canonical ε -tester T' for \mathcal{P} with query complexity $O(q^2(\varepsilon,n))$. Moreover, if T has 1-sided error, so does T'.

Completing the Triangle-Freeness Lower Bound

- A 1-sided error tester can reject only if it finds a triangle.
- Last time: \exists a graph G that is ε -far from being tringle free, where $p = O\left(\left(\frac{\varepsilon}{c}\right)^{c\log\frac{c}{\varepsilon}}\right)$ fraction of triples are triangles
- Consider a canonical tester T that samples q vertices.
- Let *X* be the number of triangles the tester catches.

$$\mathbb{E}[X] = p\binom{q}{3} = \Theta(p \cdot q^3)$$

- Suppose q is set so that $\mathbb{E}[X] \leq 1/2$
- By Markov, $\Pr[T \text{ rejects } G] \le \Pr[X \ge 1] \le \mathbb{E}[X] \le \frac{1}{2} < \frac{2}{3}$
- So, for T to reject with high enough probability, $q = \Omega\left(p^{-\frac{1}{3}}\right)$

$$q = \Omega\left(\left(\frac{c}{\varepsilon}\right)^{c'\log\frac{c}{\varepsilon}}\right)$$

Graph Models for Sublinear Algorithms

Dense Graph Model

- Input is represented by adjacency matrix
- Access: Adjacency queries: Is (i, j) an edge?
- For property testing, distance is normalized by n^2 or $\binom{n}{2}$

Bounded Degree Model

- Input is represented by adjacency lists of length Δ (degree bound)
- Access: Neighbor queries: What is the ith neighbor of vertex v?
- For property testing, distance is normalized by Δn

General Graph Model

- Input is represented by adjacency lists and adjacency matrix, sometimes with additional data structures
- Access: adjacency, neighbor and degree queries
- For property testing, distance is normalized by m

Approximating the Average Degree

Input: parameters ε , n, access to an undirected n-node graph G = (V, E) represented by adjacency lists.

Queries

- **Degree queries:** given vertex v, return its degree d(v)
- Neighbor queries: given (v, i), return the i-th neighbor of v

Goal: Return, with probability at least 2/3, an estimate \hat{d} of the average degree $\bar{d} = \frac{1}{n} \sum_{v \in V} d(v)$

Estimating the average degree is equivalent to estimating the number of edges:

$$\bar{d} = \frac{2m}{n}$$

Estimating the Average Degree: Results

- An estimate \hat{d} is a c-approximation for \overline{d} if $\overline{d} \leq \hat{d} \leq c \cdot \overline{d}$
- Assumption: $\bar{d} \geq 1$
- [Feige 06]: $(2 + \varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree queries Need $\Omega(n)$ degree queries to get better than 2-approximation
- [Goldreich Ron 08]: $(1+\varepsilon)$ -approximation with $\tilde{O}(\sqrt{n})$ degree and neighbor queries

Simple Lower Bounds

We need $\Omega(n)$ queries to get a c-approximation to the average of numbers $x_1, \dots, x_n \in \{0,1,\dots,n-1\}$ for any constant c.

Proof: Use Yao's Minimax. To distinguish between

- all numbers are 1 the average is 1
- random c numbers are n-1 and the rest are 1 the average is > c

we need
$$\Omega\left(\frac{n}{c}\right) = \Omega(n)$$
 queries.

But degree sequences are special!

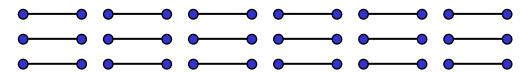
1 1 1 1 1 1 1 1 1 1 1 *n*-1 *n*-1 is not a degree sequence

Simple Lower Bounds

We need $\Omega(\sqrt{n})$ degree queries to get a c-approximation for any constant c.

Proof: Use Yao's Minimax. To distinguish between random isomorphisms of

- a matching of n/2 edges



$$\bar{d} = 1$$

- \sqrt{cn} -clique and a matching on remaining nodes

$$\bar{d} > c$$

We need $\Omega\left(\frac{\sqrt{n}}{\sqrt{c}}\right) = \Omega(\sqrt{n})$ queries.

Average: Degree Approximation Guarantee

- $\Pr[|\hat{d} \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}$
- In particular, \hat{d} is an *unbiased* estimator: $\mathbb{E}[\hat{d}] = \bar{d}$
- The approximation guarantee is equivalent to $(1 + \varepsilon)$ -approximation

$$(1 - \varepsilon) \cdot \bar{d} \le \hat{d} \le (1 + \varepsilon) \cdot \bar{d}$$
$$\bar{d} \le \frac{\hat{d}}{1 - \varepsilon} \le \frac{1 + \varepsilon}{1 - \varepsilon} \cdot \bar{d}$$

$$\frac{1+\varepsilon}{1-\varepsilon} \le 1 + \frac{2\varepsilon}{1-\varepsilon} \le 1 + 4\varepsilon$$
 for $\varepsilon \le 1/2$

Conclusion: $\frac{\hat{d}}{1-\varepsilon}$ gives a $(1+\epsilon')$ -approximation, where $\epsilon'=4\varepsilon$

• Amplification of success probability: If we want error probability δ , we repeat the algorithm $\Theta\left(\log\frac{1}{\delta}\right)$ and output the median answer.

Average Degree Estimation [Eden Ron Seshadhri]

Main idea: To reduce variance (by reducing the range of degrees), we will count each edge towards its endpoint with smaller degree.

- Define ordering on V: for $u, v \in V$, we say u < v if d(u) < d(v) or if d(u) = d(v) and id(u) < id(v). to break ties
- ``Orient'' the edges towards higher-ID nodes
- Define N(v) to be the set of neighbors of v.

Algorithm (Input: ε , n; degree and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If u < v, set $X_i = 2d(u)$
- 3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Outdegree Lemma

Let $d^+(u)$ denote the number of neighbors v of u with u < v.

Outdegree Lemma

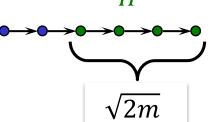
For all vertices v, the outdegree $d^+(v) < \sqrt{2m}$.

vertices with the highest degree

Proof:

- Let $H \subseteq V$ be the set of the $\sqrt{2m}$ vertices with highest rank according to \prec .
- Let $L = V \setminus H$.
- 1. Consider $v \in H$. $d^+(v)$ is the number of neighbors of v of rank higher than v. v is among the $\sqrt{2m}$ vertices of the highest rank, so $d^+(v) < \sqrt{2m}$
- 2. Consider $v \in L$. All $u \in H$, by definition, have degree at least d(v). Then the sum of all degrees, 2m, is greater than $\sqrt{2m} \cdot d(v)$.

$$d^{+(v)} \le d(v) < \frac{2m}{\sqrt{2m}} = \sqrt{2m}$$



Analysis: Expectation

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If u < v, set $X_i = 2d(u)$
- 3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$
- Let $d^+(u)$ denote the number of neighbors v of u with u < v.
- Let X denote one of the variables X_i . (They all have the same distribution.)
- Let U denote the random variable equal to the node u sampled in Step 2a.

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|U]]$$
 By the compact form of the Law of Total Expectation

$$\mathbb{E}[X|U] = \frac{d^+(U)}{d(U)} \cdot 2d(U) = 2d^+(U).$$

$$2m - \text{which } X = 2d(U)$$

$$\mathbb{E}[X] = \mathbb{E}[2d^{+}(U)] = 2\sum_{u \in V} \frac{1}{n} \cdot d^{+}(u) = \frac{2m}{n} = \bar{d}$$

Analysis: Variance

Reminders:

 $d^+(u) = \text{ the # of neighbors } v \text{ of } u \text{ with } u < v.$

RV X denotes X_i .

RV U = the node u sampled in Step 2a.

•
$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 < \mathbb{E}[X^2]$$

•
$$\mathbb{E}[X^2] = \left[\mathbb{E}[X^2|U] \right]$$

By the compact form of the Law of Total Expectation

•
$$\mathbb{E}[X^2|U] = \frac{d^+(U)}{d(U)} \cdot (2d(U))^2 = 4d^+(U) \cdot d(U).$$

•
$$\mathbb{E}[X^2] = \mathbb{E}[4d^+(U) \cdot d(U)]$$

$$<\mathbb{E}\left[4\cdot\sqrt{2m}\cdot d(U)\right]$$

$$=4\sqrt{2m}\cdot\mathbb{E}[d(U)]$$

$$=4\sqrt{2m}\cdot \bar{d}$$

We get that $Var[X] < 4\sqrt{2m} \cdot \bar{d}$.

Outdegree Lemma

$$\forall v, d^+(v) < \sqrt{2m}.$$

By linearity of expectation

By definition of expectation

Analysis: Putting It All Together

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If u < v, set $X_i = 2d(u)$
- 3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$
- $\mathbb{E}[\hat{d}] = \mathbb{E}[X] = \bar{d}$

 $d^+(u) = \text{ the \# of neighbors } v \text{ of } u \text{ with } u < v.$

Our choice of *k*

RV X denotes X_i .

By Chebyshev

RV U = the node u sampled in Step 2a.

•
$$\operatorname{Var}[\hat{d}] = \frac{\operatorname{Var}[X]}{k} \le \frac{4\sqrt{2m} \cdot \bar{d}}{k}$$

• $\Pr[|\hat{d} - \bar{d}| \ge \varepsilon \cdot \bar{d}] = \Pr[|\hat{d} - \mathbb{E}[\hat{d}]| \ge \varepsilon \cdot \bar{d}] \le \frac{\operatorname{Var}[\hat{d}]}{(\varepsilon \cdot \bar{d})^2}$

$$\leq \frac{4\sqrt{2m} \cdot \bar{d}}{k \cdot \varepsilon^2 \cdot \bar{d}^2} = \frac{4\sqrt{2m} \cdot n}{k \cdot \varepsilon^2 \cdot 2m} = \frac{4n}{k \cdot \varepsilon^2 \cdot \sqrt{2m}} = \frac{4\sqrt{n}}{k \cdot \varepsilon^2 \cdot \sqrt{\bar{d}}} \stackrel{!}{=} \frac{1}{3\sqrt{\bar{d}}} \stackrel{!}{\leq} \frac{1}{3\sqrt{\bar{d}}}$$

Approximating the Average Degree: Run Time

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\varepsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If u < v, set $X_i = 2d(u)$
- 3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Running time:

$$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$$

to get
$$\Pr[|\hat{d} - \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}$$