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Sublinear Algorithms

LECTURE 16 
Last time
• Lower bound for testing triangle-freeness

Today
• Canonical testers for the dense graph model
• Approximating the average degree

Sofya Raskhodnikova;Boston University



Canonical Tester for Dense Graphs

• Consider any property 𝓟𝓟 of graphs that does not depend on the names of 
the nodes. That is, if 𝐺𝐺 ∈ 𝓟𝓟 and 𝐺𝐺𝐺 is isomorphic to 𝐺𝐺 then 𝐺𝐺′ ∈  𝓟𝓟.

Exercise: Show that if there is an 𝜀𝜀-tester 𝑇𝑇 for 𝓟𝓟 with query complexity 𝑞𝑞(𝜀𝜀,𝑛𝑛), 
then there is a canonical 𝜀𝜀-tester 𝑇𝑇′ for 𝓟𝓟 with query complexity 𝑂𝑂(𝑞𝑞2(𝜀𝜀,𝑛𝑛)).                   
Moreover, if 𝑇𝑇 has 1-sided error, so does 𝑇𝑇𝑇.
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Canonical Tester (Input: 𝜀𝜀,𝑛𝑛;  query access to adjacency matrix of G=(V,E))
1. Sample 𝒔𝒔 nodes uniformly at random.
2. Query all pairs of sampled nodes.
3. Accept or reject based on available information.

To complete triangle-freeness testing lower bound, it is sufficient to prove 

the lower bound Ω 𝑐𝑐
𝜀𝜀
 
𝑐𝑐 log 𝑐𝑐

𝜀𝜀 
for 1-sided error canonical testers.

A lower bound 𝑞𝑞 for canonical tester 
implies a lower bound 𝑞𝑞 for every tester



Exercise
Exercise: Show that if there is an 𝜀𝜀-tester 𝑇𝑇 for 𝓟𝓟 with query complexity 𝑞𝑞(𝜀𝜀,𝑛𝑛), 
then there is a canonical 𝜀𝜀-tester 𝑇𝑇𝑇 for 𝓟𝓟 with query complexity 𝑂𝑂(𝑞𝑞2(𝜀𝜀,𝑛𝑛)).                   
Moreover, if 𝑇𝑇 has 1-sided error, so does 𝑇𝑇𝑇.
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Exercise
Exercise: Show that if there is an 𝜀𝜀-tester 𝑇𝑇 for 𝓟𝓟 with query complexity 𝑞𝑞(𝜀𝜀,𝑛𝑛), 
then there is a canonical 𝜀𝜀-tester 𝑇𝑇𝑇 for 𝓟𝓟 with query complexity 𝑂𝑂(𝑞𝑞2(𝜀𝜀,𝑛𝑛)).                   
Moreover, if 𝑇𝑇 has 1-sided error, so does 𝑇𝑇𝑇.
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Completing the Triangle-Freeness Lower Bound
• A 1-sided error tester can reject only if it finds a triangle.
• Last time: ∃ a graph 𝐺𝐺 that is 𝜀𝜀-far from being tringle free, 

where 𝑝𝑝 = 𝑂𝑂 𝜀𝜀
𝑐𝑐
 
𝑐𝑐 log 𝑐𝑐

𝜀𝜀 
fraction of triples are triangles

• Consider a canonical tester 𝑇𝑇 that samples 𝑞𝑞 vertices.
• Let 𝑋𝑋 be the number of triangles the tester catches.

      𝔼𝔼 𝑋𝑋 = 𝑝𝑝 𝑞𝑞
3 = Θ 𝑝𝑝 ⋅ 𝑞𝑞3

• Suppose 𝑞𝑞 is set so that 𝔼𝔼 𝑋𝑋 ≤ 1/2

• By Markov, Pr[𝑇𝑇  rejects 𝐺𝐺] ≤ Pr 𝑋𝑋 ≥ 1 ≤ 𝔼𝔼 𝑋𝑋 ≤ 1
2

< 2
3

• So, for 𝑇𝑇 to reject with high enough probability, 𝑞𝑞 = Ω 𝑝𝑝−
1
3

5𝑞𝑞 = Ω
𝑐𝑐
𝜀𝜀

 
𝑐𝑐′ log 𝑐𝑐

𝜀𝜀 



Graph Models for Sublinear Algorithms
Dense Graph Model
• Input is represented by adjacency matrix
• Access:        Adjacency queries: Is (𝑖𝑖, 𝑗𝑗) an edge?
• For property testing, distance is normalized by 𝑛𝑛2 or 

𝑛𝑛
2

Bounded Degree Model
• Input is represented by adjacency lists of length Δ (degree bound)
• Access:        Neighbor queries: What is the 𝑖𝑖th neighbor of vertex 𝑣𝑣?
• For property testing, distance is normalized by Δ𝑛𝑛

General Graph Model
• Input is represented by adjacency lists and adjacency matrix, sometimes 

with additional data structures
• Access:        adjacency, neighbor and degree queries
• For property testing, distance is normalized by 𝑚𝑚
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Approximating the Average Degree
Input: parameters 𝜀𝜀,𝑛𝑛, access to an undirected 𝑛𝑛-node                            
graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) represented by adjacency lists.
Queries
• Degree queries: given vertex 𝑣𝑣, return its degree 𝑑𝑑(𝑣𝑣)
• Neighbor queries: given 𝑣𝑣, 𝑖𝑖 , return the 𝑖𝑖-th neighbor of 𝑣𝑣

Goal: Return, with probability at least 2/3,  an estimate 𝑑̂𝑑                                     
of the average degree 𝑑̅𝑑 = 1

𝑛𝑛
∑𝑣𝑣∈𝑉𝑉 𝑑𝑑(𝑣𝑣)
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Estimating the average degree is equivalent to estimating the number of edges: 

𝑑̅𝑑 =
2𝑚𝑚
𝑛𝑛



Estimating the Average Degree: Results

• An estimate 𝑑̂𝑑 is a 𝑐𝑐-approximation for 𝑑̅𝑑 if
𝑑̅𝑑 ≤ 𝑑̂𝑑 ≤ 𝑐𝑐 ⋅ 𝑑̅𝑑

• Assumption: 𝑑̅𝑑 ≥ 1

• [Feige 06]: 2 + 𝜀𝜀 -approximation with �𝑂𝑂 𝑛𝑛  degree queries
     Need Ω(𝑛𝑛) degree queries to get better than 2-approximation
     
• [Goldreich Ron 08]: 1 + 𝜀𝜀 -approximation with �𝑂𝑂 𝑛𝑛  degree 

and neighbor queries
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Simple Lower Bounds

Proof: Use Yao’s Minimax. To distinguish between
– all numbers are 1

– random 𝑐𝑐 numbers are 𝑛𝑛-1 and the rest are 1 

    we need Ω 𝑛𝑛
𝑐𝑐

= Ω 𝑛𝑛  queries.
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the average is 1

the average is   > 𝑐𝑐

But degree sequences are special!

1 1 1 1 1 1 1 1 1 1 𝑛𝑛-1  𝑛𝑛-1        is not a degree sequence

We need Ω 𝑛𝑛  queries to get a 𝑐𝑐-approximation to the average of numbers 
𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ {0,1, … ,𝑛𝑛 − 1} for any constant 𝑐𝑐.



Simple Lower Bounds

Proof: Use Yao’s Minimax. To distinguish between random isomorphisms of
– a matching of 𝑛𝑛/2 edges

– 𝑐𝑐𝑛𝑛-clique and a matching on remaining nodes

     We need Ω 𝑛𝑛
𝑐𝑐

= Ω 𝑛𝑛  queries.
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𝑑̅𝑑 = 1

𝑑̅𝑑 > 𝑐𝑐

We need Ω 𝑛𝑛  degree queries to get a 𝑐𝑐-approximation for any constant 𝑐𝑐.



Average: Degree Approximation Guarantee

• Pr 𝑑̂𝑑 − 𝑑̅𝑑 ≥ 𝜀𝜀 ⋅ 𝑑̅𝑑 ≤ 1
3

• In particular, 𝑑̂𝑑 is an unbiased estimator: 𝔼𝔼 𝑑̂𝑑 = 𝑑̅𝑑
• The approximation guarantee is equivalent to 1 + 𝜀𝜀 -approximation

1 − 𝜀𝜀 ⋅ 𝑑̅𝑑 ≤ 𝑑̂𝑑 ≤ 1 + 𝜀𝜀 ⋅ 𝑑̅𝑑

𝑑̅𝑑 ≤
𝑑̂𝑑

1 − 𝜀𝜀
≤

1 + 𝜀𝜀
1 − 𝜀𝜀

⋅ 𝑑̅𝑑
1+𝜀𝜀
1−𝜀𝜀

≤ 1 + 2𝜀𝜀
1−𝜀𝜀

≤ 1 + 4𝜀𝜀 for 𝜀𝜀 ≤ 1/2

       Conclusion:
�𝑑𝑑

1−𝜀𝜀
 gives a 1 + 𝜖𝜖′ -approximation, where 𝜖𝜖′ = 4𝜀𝜀

• Amplification of success probability: If we want error probability 𝛿𝛿,

       we repeat the algorithm Θ log 1
𝛿𝛿

 and output the median answer.
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Average Degree Estimation [Eden Ron Seshadhri]

Main idea: To reduce variance (by reducing the range of degrees),                    
we will count each edge towards its endpoint with smaller degree.
• Define ordering on 𝑉𝑉: for 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉, we say 𝑢𝑢 ≺ 𝑣𝑣 if  𝑑𝑑 𝑢𝑢 < 𝑑𝑑(𝑣𝑣) or if 

𝑑𝑑 𝑢𝑢 = 𝑑𝑑 𝑣𝑣  𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖(𝑢𝑢) < 𝑖𝑖𝑖𝑖(𝑣𝑣).
• ``Orient’’ the edges towards higher-ID nodes
• Define 𝑁𝑁(𝑣𝑣) to be the set of neighbors of 𝑣𝑣.
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Algorithm (Input: 𝜀𝜀,𝑛𝑛; degree and neighbor query access to G=(V,E))

1. Set 𝑘𝑘 = 12
𝜀𝜀2
⋅ 𝑛𝑛 and initialize 𝑋𝑋𝑖𝑖 = 0 for all 𝑖𝑖 ∈ [𝑘𝑘]

2. For 𝑖𝑖 = 1 to 𝑘𝑘 do
a. Sample a vertex 𝑢𝑢 ∈ 𝑉𝑉 u.i.r. and query its degree 𝑑𝑑(𝑢𝑢)
b. Sample a vertex 𝑣𝑣 ∈ 𝑁𝑁(𝑢𝑢) u.i.r. by making a neighbor query to 𝑣𝑣.
c. If 𝑢𝑢 ≺ 𝑣𝑣, set 𝑋𝑋𝑖𝑖 = 2𝑑𝑑(𝑢𝑢)

3. Return 𝑑̂𝑑 = 1
𝑘𝑘
⋅ ∑𝑖𝑖∈ 𝑘𝑘 𝑋𝑋𝑖𝑖

to break ties



Outdegree Lemma
Let 𝑑𝑑+ 𝑢𝑢  denote the number of neighbors 𝑣𝑣 of 𝑢𝑢 with 𝑢𝑢 ≺ 𝑣𝑣.

Proof: 

• Let 𝐻𝐻 ⊆ 𝑉𝑉 be the set of the 2𝑚𝑚 vertices                                                                  
with highest rank according to ≺.

• Let 𝐿𝐿 = 𝑉𝑉\H.
1. Consider 𝑣𝑣 ∈ 𝐻𝐻.                                                                                                    

𝑑𝑑+(𝑣𝑣) is the number of neighbors of 𝑣𝑣 of rank higher than 𝑣𝑣.
        𝑣𝑣 is among the 2𝑚𝑚 vertices of the highest rank, so 𝑑𝑑+ 𝑣𝑣 < 2𝑚𝑚
2. Consider 𝑣𝑣 ∈ 𝐿𝐿. All 𝑢𝑢 ∈ 𝐻𝐻, by definition, have degree at least 𝑑𝑑(𝑣𝑣).
        Then the sum of all degrees, 2𝑚𝑚, is greater than 2𝑚𝑚 ⋅ 𝑑𝑑(𝑣𝑣).

𝑑𝑑+ 𝑣𝑣 ≤ 𝑑𝑑 𝑣𝑣 <
2𝑚𝑚
2𝑚𝑚

= 2𝑚𝑚
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2𝑚𝑚

𝐻𝐻𝐿𝐿

vertices with 
the highest degree

Outdegree Lemma
 For all vertices 𝑣𝑣, the outdegree 𝑑𝑑+ 𝑣𝑣 < 2𝑚𝑚.



Analysis: Expectation

• Let 𝑑𝑑+ 𝑢𝑢  denote the number of neighbors 𝑣𝑣 of 𝑢𝑢 with 𝑢𝑢 ≺ 𝑣𝑣.
• Let 𝑋𝑋 denote one of the variables 𝑋𝑋𝑖𝑖. (They all have the same distribution.)
• Let 𝑈𝑈 denote the random variable equal to the node 𝑢𝑢 sampled in Step 2a.
      𝔼𝔼 𝑋𝑋 = 𝔼𝔼 𝔼𝔼 𝑋𝑋 𝑈𝑈

      𝔼𝔼 𝑋𝑋 𝑈𝑈 = 𝑑𝑑+ 𝑈𝑈
𝑑𝑑 𝑈𝑈

⋅ 2𝑑𝑑 𝑈𝑈 = 2𝑑𝑑+ 𝑈𝑈 .

𝔼𝔼 𝑋𝑋 = 𝔼𝔼 2𝑑𝑑+ 𝑈𝑈 = 2 �
𝑢𝑢∈𝑉𝑉

1
𝑛𝑛
⋅ 𝑑𝑑+ 𝑢𝑢 =

2𝑚𝑚
𝑛𝑛

= 𝑑̅𝑑 
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Algorithm (Input: 𝜀𝜀,𝑛𝑛; vertex and neighbor query access to G=(V,E))
1. Set 𝑘𝑘 = 12

𝜀𝜀2
⋅ 𝑛𝑛 and initialize 𝑋𝑋𝑖𝑖 = 0 for all 𝑖𝑖 ∈ [𝑘𝑘]

2. For 𝑖𝑖 = 1 to 𝑘𝑘 do
a. Sample a vertex 𝑢𝑢 ∈ 𝑉𝑉 u.i.r. and query its degree 𝑑𝑑(𝑢𝑢)
b. Sample a vertex 𝑣𝑣 ∈ 𝑁𝑁(𝑢𝑢) u.i.r. by making a neighbor query to 𝑣𝑣.
c. If 𝑢𝑢 ≺ 𝑣𝑣, set 𝑋𝑋𝑖𝑖 = 2𝑑𝑑(𝑢𝑢)

3. Return 𝑑̂𝑑 = 1
𝑘𝑘
⋅ ∑𝑖𝑖∈ 𝑘𝑘 𝑋𝑋𝑖𝑖

By the compact form of the Law of Total Expectation

𝑑𝑑+ 𝑈𝑈  is # of neighbors 𝑣𝑣 of 𝑈𝑈 for
which  𝑋𝑋 = 2𝑑𝑑 𝑈𝑈   



Analysis: Variance

• Var 𝑋𝑋 = 𝔼𝔼 𝑋𝑋2 − 𝔼𝔼 𝑋𝑋 2 < 𝔼𝔼 𝑋𝑋2

• 𝔼𝔼 𝑋𝑋2 = 𝔼𝔼 𝑋𝑋2 𝑈𝑈

• 𝔼𝔼 𝑋𝑋2 𝑈𝑈 = 𝑑𝑑+ 𝑈𝑈
𝑑𝑑 𝑈𝑈

⋅ 2𝑑𝑑 𝑈𝑈 2 = 4𝑑𝑑+ 𝑈𝑈 ⋅ 𝑑𝑑 𝑈𝑈 .

• 𝔼𝔼 𝑋𝑋2 = 𝔼𝔼 4𝑑𝑑+ 𝑈𝑈 ⋅ 𝑑𝑑 𝑈𝑈  

< 𝔼𝔼 4 ⋅ 2𝑚𝑚 ⋅ 𝑑𝑑 𝑈𝑈  

= 4 2𝑚𝑚 ⋅ 𝔼𝔼 𝑑𝑑 𝑈𝑈  

= 4 2𝑚𝑚 ⋅ 𝑑̅𝑑. 

We get that            Var 𝑋𝑋 < 4 2𝑚𝑚 ⋅ 𝑑̅𝑑.
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By the compact form of the Law of Total Expectation

Reminders:
𝑑𝑑+ 𝑢𝑢 =  the # of neighbors 𝑣𝑣 of 𝑢𝑢 with 𝑢𝑢 ≺ 𝑣𝑣.
RV 𝑋𝑋 denotes 𝑋𝑋𝑖𝑖. 
RV 𝑈𝑈 = the node 𝑢𝑢 sampled in Step 2a.

Outdegree Lemma 

∀𝑣𝑣,  𝑑𝑑+ 𝑣𝑣 < 2𝑚𝑚.

By linearity of expectation

By definition of expectation



Analysis: Putting It All Together

• 𝔼𝔼 𝑑̂𝑑 = 𝔼𝔼 𝑋𝑋 = 𝑑̅𝑑

• Var 𝑑̂𝑑 = Var 𝑋𝑋
𝑘𝑘

≤ 4 2𝑚𝑚⋅ �𝑑𝑑
𝑘𝑘

• Pr 𝑑̂𝑑 − 𝑑̅𝑑 ≥ 𝜀𝜀 ⋅ 𝑑̅𝑑 = Pr 𝑑̂𝑑 − 𝔼𝔼 𝑑̂𝑑 ≥ 𝜀𝜀 ⋅ 𝑑̅𝑑 ≤ Var �𝑑𝑑
𝜀𝜀⋅ �𝑑𝑑 2

≤
4 2𝑚𝑚 ⋅ 𝑑̅𝑑
𝑘𝑘 ⋅ 𝜀𝜀2 ⋅ 𝑑̅𝑑2

=
4 2𝑚𝑚 ⋅ 𝑛𝑛
𝑘𝑘 ⋅ 𝜀𝜀2 ⋅ 2𝑚𝑚

=
4𝑛𝑛

𝑘𝑘 ⋅ 𝜀𝜀2 ⋅ 2𝑚𝑚
=

4 𝑛𝑛

𝑘𝑘 ⋅ 𝜀𝜀2 ⋅ 𝑑̅𝑑
=

1

3 𝑑̅𝑑
≤

1
3
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Algorithm (Input: 𝜀𝜀, 𝑛𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘𝑘 = 12
𝜀𝜀2
⋅ 𝑛𝑛 and initialize 𝑋𝑋𝑖𝑖 = 0 for all 𝑖𝑖 ∈ [𝑘𝑘]

2. For 𝑖𝑖 = 1 to 𝑘𝑘 do
a. Sample a vertex 𝑢𝑢 ∈ 𝑉𝑉 u.i.r. and query its degree 𝑑𝑑(𝑢𝑢)
b. Sample a vertex 𝑣𝑣 ∈ 𝑁𝑁(𝑢𝑢) u.i.r. by making a neighbor query to 𝑣𝑣.
c. If 𝑢𝑢 ≺ 𝑣𝑣, set 𝑋𝑋𝑖𝑖 = 2𝑑𝑑(𝑢𝑢)

3. Return 𝑑̂𝑑 = 1
𝑘𝑘
⋅ ∑𝑖𝑖∈ 𝑘𝑘 𝑋𝑋𝑖𝑖

𝑑𝑑+ 𝑢𝑢 =  the # of neighbors 𝑣𝑣 of 𝑢𝑢 with 𝑢𝑢 ≺ 𝑣𝑣.
RV 𝑋𝑋 denotes 𝑋𝑋𝑖𝑖. 
RV 𝑈𝑈 = the node 𝑢𝑢 sampled in Step 2a.

By Chebyshev

Our choice of 𝑘𝑘

Assumption 
𝑑̅𝑑 ≥ 1



Approximating the Average Degree: Run Time

Running time:

𝑂𝑂
𝑛𝑛
𝜀𝜀2

to get   Pr 𝑑̂𝑑 − 𝑑̅𝑑 ≥ 𝜀𝜀 ⋅ 𝑑̅𝑑 ≤ 1
3
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Algorithm (Input: 𝜀𝜀, 𝑛𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘𝑘 = 12
𝜀𝜀2
⋅ 𝑛𝑛 and initialize 𝑋𝑋𝑖𝑖 = 0 for all 𝑖𝑖 ∈ [𝑘𝑘]

2. For 𝑖𝑖 = 1 to 𝑘𝑘 do
a. Sample a vertex 𝑢𝑢 ∈ 𝑉𝑉 u.i.r. and query its degree 𝑑𝑑(𝑢𝑢)
b. Sample a vertex 𝑣𝑣 ∈ 𝑁𝑁(𝑢𝑢) u.i.r. by making a neighbor query to 𝑣𝑣.
c. If 𝑢𝑢 ≺ 𝑣𝑣, set 𝑋𝑋𝑖𝑖 = 2𝑑𝑑(𝑢𝑢)

3. Return 𝑑̂𝑑 = 1
𝑘𝑘
⋅ ∑𝑖𝑖∈ 𝑘𝑘 𝑋𝑋𝑖𝑖
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