Sublinear Algorithms

LECTURE 16

Last time
* Lower bound for testing triangle-freeness

Today

 Canonical testers for the dense graph model
» Approximating the average degree

3/25/2025

Sofya Raskhodnikova; Boston University

Canonical Tester for Dense Graphs

~

Canonical Tester (Input: &, n; query access to adjacency matrix of G=(V,E))

1. Sample s nodes uniformly at random.
2. Query all pairs of sampled nodes.

K3' Accept or reject based on available information.)

e Consider any property P of graphs that does not depend on the names of
the nodes. That is, if G € P and G’ is isomorphic to G then G’ € P.

Exercise: Show that if there is an e-tester T for P with query complexity g(&,n),
then there is a canonical e-tester T' for P with query complexity 0(g?(g,n)).
Moreover, if T has 1-sided error, so does T".

A lower bound g for canonical tester
implies a lower bound +/q for every tester

To complete triangle-freeness testing lower bound, it is sufficient to prove

c log g . .
the lower bound () ((S)) for 1-sided error canonical testers.

&

Exercise

Exercise: Show that if there is an e-tester T for P with query complexity q(&,n),
then there is a canonical e-tester T’ for P with query complexity 0(g?(g,n)).
Moreover, if T has 1-sided error, so does T".

Exercise

Exercise: Show that if there is an e-tester T for P with query complexity q(&,n),
then there is a canonical e-tester T’ for P with query complexity 0(g?(g,n)).
Moreover, if T has 1-sided error, so does T".

Completing the Triangle-Freeness Lower Bound

e A 1l-sided error tester can reject only if it finds a triangle.
e lasttime: d agraph G thatis e-far from being tringle free,

c log <

wherep =0 ((5) ‘g) fraction of triples are triangles

C

e Consider a canonical tester T that samples g vertices.
e Let X be the number of triangles the tester catches.

(D _ a3
E[X] = p(g) =0(p-q°)
e Suppose g issetsothat E[X] < 1/2
e By Markov, Pr[T rejects G] < Pr[X = 1] < E[X] < % < %

1
e So, for T to reject with high enough probability, g = (p_g)

=a((6))

Graph Models for Sublinear Algorithms

Dense Graph Model

e Inputis represented by adjacency matrix

e Access: Adjacency queries: Is (i,j) an edge?

e For property testing, distance is normalized by n? or (g)

Bounded Degree Model

e Inputis represented by adjacency lists of length A (degree bound)
e Access: Neighbor queries: What is the ith neighbor of vertex v?
e For property testing, distance is normalized by An

General Graph Model

e Inputis represented by adjacency lists and adjacency matrix, sometimes
with additional data structures

e Access: adjacency, neighbor and degree queries

e For property testing, distance is normalized by m

Approximating the Average Degree

Input: parameters &, n, access to an undirected n-node
graph G = (V, E) represented by adjacency lists.

Queries
e Degree queries: given vertex v, return its degree d(v)
e Neighbor queries: given (v, i), return the i-th neighbor of v

Goal: Return, with probability at least 2/3, an estimate d
of the average degree d = %Zvev d(v)

Estimating the average degree is equivalent to estimating the number of edges:

. 2m
d=—
n

Estimating the Average Degree: Results

e Anestimated is a c-approximation for d if
d<d<c-d
e Assumption:d > 1

o [Feige 06]: (2 + €)-approximation with O (y/n) degree queries
Need (U(n) degree queries to get better than 2-approximation

e [Goldreich Ron 08]: (1 + &)-approximation with O(1/n) degree
and neighbor queries

Simple Lower Bounds

We need Q(n) queries to get a c-approximation to the average of numbers
X1, ., Xn € {0,1,...,n — 1} for any constant c.

Proof: Use Yao’s Minimax. To distinguish between
— all numbers are 1
the average 1s 1

— random ¢ numbers are n-1 and the rest are 1
the averageis > ¢

we need () (g) = Q(n) queries.

But degree sequences are special!

1111111111n-1 n-1 1S not a degree sequence

Simple Lower Bounds

[We need Q(y/n) degree queries to get a c-approximation for any constant c. J

Proof: Use Yao’s Minimax. To distinguish between random isomorphisms of
— amatching of n/2 edges

® e o e o e o e o 0 0—0
@ ® o ® o ® o e o e o—o 521
® e o e o e o e o 0 0—0
- +/cn-cligue and a matching on remaining nodes
® e o e o 0O 0—0
® e o e o 0O 0—0 d>c
® e o e o 0O 0—0

We need () (ﬂ) = Q(x/n) queries.

%I

10

Average: Degree Approximation Guarantee

Pri|d —d|ze-d] <
In particular, d is an unbiased estimator: IE[C?] =d

The approximation guarantee is equivalent to (1 + £)-approximation
(1-¢)-d<d<(1+¢)-d
7 < d - 1+¢ g
T 1—e 1-c¢
1+e

1+ <1+4efore<1/2
1-¢ 1-¢

~

. d . L
Conclusion: T givesa (1 + €')-approximation, where €' = 4¢

Amplification of success probability: If we want error probability 9§,

we repeat the algorithm © (log%) and output the median answer.

11

Average Degree Estimation [Eden Ron Seshadhri]

Main idea: To reduce variance (by reducing the range of degrees),
we will count each edge towards its endpoint with smaller degree.

e Define orderingonV:foru,v € V,wesayu < vif d(u) < d(v) orif
d(u) =d(v) and id(u) < id(v). to break ties
e Orient” the edges towards higher-ID nodeg

»0—>0—>0—»0—>0—>0—>0—>0—>0
e Define N(v) to be the set of neighbors of v.

ﬁgorithm (Input: &, n; degree and neighbor query access to G=(V,E)) \

1. Setk = g -y/n and initialize X; = 0 forall i € [k]
2. Fori=1tokdo
a. Sample avertexu € V u.i.r. and query its degree d(u)

b. Sample avertex v € N(u) u.i.r. by making a neighbor query to v.
c. lfu<w,setX; =2d(u)

51
Q Return d = = Yep) Xi /

12

Outdegree Lemma

Let d* (u) denote the number of neighbors v of u with u < v.

(Outdegree Lemma w
_ vertices with
LFor all vertices v, the outdegree d*(v) < v2m. J the highest degree
Proof: L H
*—0—0—>0—>0—>0—>0—>0—>0—>0

e Let H € V be the set of the v2m vertices I\ J

with highest rank according to <. Y
e LetL=V\H. vZm

1. Considerv € H.
d* (v) is the number of neighbors of v of rank higher than v.

v is among the v2m vertices of the highest rank, so d™ (v) < v2m
2. Consider v € L. Allu € H, by definition, have degree at least d (v).

Then the sum of all degrees, 2m, is greater than v2m - d(v).

2m
dtW < d(w) < —— =2m
(v) o V

13

Analysis: Expectation

ﬁlgorithm (Input: ¢, n; vertex and neighbor query access to ¢=(V,£)) \

1. Setk = i—f - y/n and initialize X; = 0 for all i € [k]
2. Fori=1tokdo
a. Sample avertexu € V u.i.r. and query its degree d(u)
b. Sample a vertex v € N(u) u.i.r. by making a neighbor query to v.

c. lfu<wv,setX; =2d(u)

51
Q. Return d = — - Xe i Xi /

e Letd™(u) denote the number of neighbors v of u with u < v.

e Let X denote one of the variables X;. (They all have the same distribution.)
e Let U denote the random variable equal to the node u sampled in Step 2a.

E[X] = E[E[X|U]] By the compact form of the Law of Total Expectation

E[x|U] = L9 24 = 2d+(U). d*(U) is # of neighbors v of U for

d(U)
| 1 o which X = 2d(U)
E[X] = E[2d* (V)] = 2 z —dtw) == =d

uev

14

Reminders:

AnalySiS: Val"iance d*(u) = the # of neighbors v of u with u < v.
RV X denotes X;.

e Var[X] =] (E [X])Z <[E[X2] RV U = the node u sampled in Step 2a.

E[X
« E[X?] = [E[x?|U]] By the compact form of the Law of Total Expectation
d

. E[X2|U] = d(g’)) (2d(V))" = 4d*(U) - d(U).

(Outdegree Lemma w

e E[X?] = E[4d*(U) - d(U)] LW d*(v) < VZm J

< E[4-vV2m-d(U)]

= 4\2m - E[d(1)] By linearity of expectation
— 4\2m - d. By definition of expectation

We get that Var[X] < 4vV2m - d

15

Analysis: Putting It All Together

ﬁl\lgorithm (Input: ¢, n; vertex and neighbor query access to G=(V,E)) \

a.
b.
C.

1. Setk——

2. Fori= 1tokdo
Sample a vertex u € V u.i.r. and query its degree d(u)

Sample a vertex v € N(u) u.i.r. by making a neighbor query to v,
Ifu <v,setX; =2d(u)

'Zie[k] Xi

Q. Returnd = %

n and initialize X; = 0 for all i € [k]

d™ (u) = the # of neighbors v of u with u < v.
RV X denotes X;.

e E|d]|=E[X

. Var[d]

e Prlld—d|=¢c-d|=Pr||[d-E[d]|=¢-d]| <

Var[X]

l=d

< 4+2m-d

4\/ 2m -

k

2. d2

T k

42m-n

RV U = the node u sampled in Step 2a.

By Chebyshev
Assumption
¢ Varl|d] i>1
— (ed)?
Our choice of k
4n 4m |, 1 /A
— = < §

“k-€2-2m k-g2-+/2m k-gz-\/i 3\/5_ 16

Approximating the Average Degree: Run Time

ﬂlgorithm (Input' &g, n; vertex and neighbor query access to ¢G=(V,E))

<

1. Setk == -+/nandinitialize X; = 0 for all i € [k]

2. Fori= 1tokdo
a. Sample avertexu € V u.i.r. and query its degree d(u)

b. Sample avertexv € N(u) u.i.r. by making a neighbor query to v.
c. lfu<wv,setX; =2du)

Q. Return d = % + Die[i] Xi

Running time:

to get Pr[|d d|>e d]

wlr—\

17

	Sublinear Algorithms
	Canonical Tester for Dense Graphs
	Exercise
	Exercise
	Completing the Triangle-Freeness Lower Bound
	Graph Models for Sublinear Algorithms
	Approximating the Average Degree
	Estimating the Average Degree: Results
	Simple Lower Bounds
	Simple Lower Bounds
	Average: Degree Approximation Guarantee
	Average Degree Estimation [Eden Ron Seshadhri]
	Outdegree Lemma
	Analysis: Expectation
	Analysis: Variance
	Analysis: Putting It All Together
	Approximating the Average Degree: Run Time

