
Sublinear Algorithms

LECTURE 17 
Last time
• Canonical testers for the dense graph model

• Approximating the average degree

Today
• Finish approximating the average degree

• Testing linearity of Boolean functions

                  [Blum Luby Rubinfeld]

Sofya Raskhodnikova;Boston University 1



Average Degree Estimation [Eden Ron Seshadhri]

Intuition: To reduce variance,                                                                                     
we will ``count’’ each edge towards its endpoint with smaller degree.

• Define ordering on 𝑉: for 𝑢, 𝑣 ∈ 𝑉, we say 𝑢 ≺ 𝑣 if  𝑑 𝑢 < 𝑑(𝑣) or if 
𝑑 𝑢 = 𝑑 𝑣  𝑎𝑛𝑑 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣).

• ``Orient’’ the edges towards higher-degree nodes
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Algorithm (Input: 𝜀, 𝑛; degree and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do

a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)

b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.

c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

to break ties

Define 𝑁(𝑣) to be the set of neighbors of 𝑣.

vertices with 

higher degree



Outdegree Lemma

Let 𝑑+ 𝑢  denote the number of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

Proof: 

• Let 𝐻 ⊆ 𝑉 be the set of the 2𝑚 vertices                                                                  
with highest rank according to ≺.

• Let 𝐿 = 𝑉\H.

1. Consider 𝑣 ∈ 𝐻.                                                                                                    
𝑑+(𝑣) is the number of neighbors of 𝑣 of rank higher than 𝑣.

        𝑣 is among the 2𝑚 vertices of the highest rank, so 𝑑+ 𝑣 < 2𝑚

2. Consider 𝑣 ∈ 𝐿. All 𝑢 ∈ 𝐻, by definition, have degree at least 𝑑(𝑣).

        Then the sum of all degrees, 2𝑚, is greater than 2𝑚 ⋅ 𝑑(𝑣).

𝑑+ 𝑣 ≤ 𝑑 𝑣 <
2𝑚

2𝑚
= 2𝑚
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2𝑚

𝐻𝐿

vertices with 

the highest degree

Outdegree Lemma
 For all vertices 𝑣, the outdegree 𝑑+ 𝑣 < 2𝑚.



Analysis: Expectation

• Let 𝑑+ 𝑢  denote the number of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

• Let 𝑋 denote one of the variables 𝑋𝑖. (They all have the same distribution.)

• Let 𝑈 denote the random variable equal to the node 𝑢 sampled in Step 2a.

      𝔼 𝑋 = 𝔼 𝔼 𝑋 𝑈

      𝔼 𝑋 𝑈 =
𝑑+ 𝑈

𝑑 𝑈
⋅ 2𝑑 𝑈 = 2𝑑+ 𝑈 .

𝔼 𝑋 = 𝔼 2𝑑+ 𝑈 = 2 

𝑢∈𝑉

1

𝑛
⋅ 𝑑+ 𝑢 =

2𝑚

𝑛
= ҧ𝑑 
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Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

By the compact form of the Law of Total Expectation

𝑑+ 𝑈  is # of neighbors 𝑣 of 𝑈 for

which  𝑋 = 2𝑑 𝑈   



Analysis: Variance

• Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 < 𝔼 𝑋2

• 𝔼 𝑋2 = 𝔼 𝑋2 𝑈

• 𝔼 𝑋2 𝑈 =
𝑑+ 𝑈

𝑑 𝑈
⋅ 2𝑑 𝑈

2
= 4𝑑+ 𝑈 ⋅ 𝑑 𝑈 .

• 𝔼 𝑋2 = 𝔼 4𝑑+ 𝑈 ⋅ 𝑑 𝑈  

< 𝔼 4 ⋅ 2𝑚 ⋅ 𝑑 𝑈  

= 4 2𝑚 ⋅ 𝔼 𝑑 𝑈  

= 4 2𝑚 ⋅ ҧ𝑑. 

We get that            Var 𝑋 < 4 2𝑚 ⋅ ҧ𝑑.
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By the compact form of the Law of Total Expectation

Reminders:

𝑑+ 𝑢 =  the # of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

RV 𝑋 denotes 𝑋𝑖. 

RV 𝑈 = the node 𝑢 sampled in Step 2a.

Outdegree Lemma 

∀𝑣,  𝑑+ 𝑣 < 2𝑚.

By linearity of expectation

By definition of expectation



Analysis: Putting It All Together

• 𝔼 መ𝑑 = 𝔼 𝑋 = ҧ𝑑

• Var መ𝑑 =
Var 𝑋

𝑘
≤

4 2𝑚⋅ ത𝑑

𝑘

• Pr መ𝑑 − ҧ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 = Pr መ𝑑 − 𝔼 መ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 ≤
Var 𝑑

𝜀⋅ ത𝑑 2

≤
4 2𝑚 ⋅ ҧ𝑑

𝑘 ⋅ 𝜀2 ⋅ ҧ𝑑2
=

4 2𝑚 ⋅ 𝑛

𝑘 ⋅ 𝜀2 ⋅ 2𝑚
=

4𝑛

𝑘 ⋅ 𝜀2 ⋅ 2𝑚
=

4 𝑛

𝑘 ⋅ 𝜀2 ⋅ ҧ𝑑
=

1

3 ҧ𝑑
≤

1

3
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Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

𝑑+ 𝑢 =  the # of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

RV 𝑋 denotes 𝑋𝑖. 

RV 𝑈 = the node 𝑢 sampled in Step 2a.

By Chebyshev

Our choice of 𝑘

Assumption 
ҧ𝑑 ≥ 1



Approximating the Average Degree: Run Time

Running time:

𝑂
𝑛

𝜀2

to get   Pr መ𝑑 − ҧ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 ≤
1

3
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Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖



Technical Writing Tips: Citations

• Be generous in acknowledging the source of your ideas.

• Use dblp to get citations in the bibtex format.

• Fix issues with capitalization in BibTeX items by using {curly braces}:             
e.g., ``{LCAs} for {Lipschitz} functions.’’                                                                       
(You should also add dollar signs                                                                                            
around math expressions).

• If there are multiple versions of the paper, cite the most recently published 
one. (Archival versions are not considered published).

 -- journal > conference > archival preprint

            

 -- Beware of paper mergers.

• When you cite multiple papers, give multiple arguments to the same \cite 
command. The result will look like, for example: [BLR93,GGR98].
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Because manually typing BibTeX is a rite of passage only once. 

After that, it’s just masochism.

Don’t be a citation scrooge. If someone inspired you, give them credit.

BibTeX deserves LaTeX, too.

Dblp likes to lowercase Everything 

Like It’s Stuck in the ’90s.

> that PDF on someone’s website called “final_final_revised3_REAL.pdf”



Technical Writing Questions

For each of the sentences,1 specify what needs fixing and how you’d fix it.

1. 𝐴 found 𝑝𝑠𝑞𝑢𝑎𝑟𝑒 𝑓-violated squares and 𝑞𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑔-violated triangles.

2. We proved interesting results in our project. We will describe them 
below. We focus on the lower bounds.

3. Given a 𝑛-node graph 𝐺, design an efficient algorithm that estimates 
the average degree of 𝐺 up to a factor of 22

4. If this works for any function, our algorithm will succeed.

5. We note that we plan to spend some of the future time devoting it to 
coming up with the right notion of the model.

6. Let’s eat grandma.
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.1 Any resemblance to sentences in course projects is purely coincidental.

.2 The reason we cannot beat the factor of 2 is...



Linear Functions Over Finite Field 𝔽2 
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A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear if 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2

– Other accepted notation for 𝔽2: 𝐺𝐹2 and  ℤ2

– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

 𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

001001 

011001  

010000       

+

example



Testing If a Boolean Function Is Linear
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question: 

Is the function linear or 𝜀-far from linear 

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Today: can answer in 𝑂
1

𝜀
 time



Motivation

• Linearity test is one of the most celebrated testing algorithms
– A special case of many important property tests

– Computations over finite fields are used in 

• Cryptography

• Coding Theory

– Originally designed for program checkers and self-correctors

– Low-degree testing is needed in constructions of Probabilistically 
Checkable Proofs (PCPs)

• Used for proving inapproximability

• Main tool in the correctness proof: Fourier analysis of Boolean 
functions
– Powerful and widely used technique in understanding the structure of 

Boolean functions

13



Equivalent Definitions of Linear Functions
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Definition. 𝑓 is linear if 𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ 𝔽2

 ⇕ 

𝑓 𝑥1, … , 𝑥𝑛 = σ𝑖∈S 𝑥𝑖 for some 𝑆 ⊆ 𝑛 .

Definition′. 𝑓 is linear if 𝑓 𝒙 + 𝒚 = 𝑓 𝒙 + 𝑓(𝒚) for all 𝒙, 𝒚 ∈ 0,1 𝑛.

• Definition ⇒ Definition′ 

 𝑓 𝒙 + 𝒚 = σ𝑖∈𝑆 𝒙 + 𝒚 𝑖 = σ𝑖∈𝑆(𝑥𝑖 + 𝑦𝑖) = σ𝑖∈𝑆 𝑥𝑖 + σ𝑖∈𝑆 𝑦𝑖 = 𝑓 𝒙 + 𝑓 𝒚 .

• Definition′ ⇒ Definition 

Let 𝛼𝑖 = 𝑓((0, … , 0,1,0, … , 0

𝑒𝑖

))

 Repeatedly apply Definition′: 

𝑓 𝑥1, … , 𝑥𝑛 = 𝑓 σ𝑥𝑖𝑒𝑖 = σ𝑥𝑖𝑓 𝑒𝑖 = σ𝛼𝑖𝑥𝑖 .

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

[𝑛] is a shorthand  for {1, … 𝑛}



Linearity Test [Blum Luby Rubinfeld 90]
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1. Pick 𝒙 and 𝒚 independently and uniformly at random from 0,1 𝑛.

2. Set 𝒛 = 𝒙 + 𝒚 and query 𝑓on 𝒙, 𝒚, and 𝒛. Accept iff 𝑓 𝒛 = 𝑓 𝒙 + 𝑓 𝒚 .
 

Analysis

If 𝑓is linear, BLR always accepts. 

If 𝑓 is 𝜀-far from linear then > 𝜀 fraction of pairs 𝒙 and 𝒚 fail BLR test.

• Then, by Witness Lemma (Lecture 1), 2/𝜀 iterations suffice.

BLR Test (ε, query access to 𝑓)

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]



Analysis Technique: 
Fourier Expansion



Representing Functions as Vectors

Stack the 2𝑛 values of 𝑓(𝒙) and treat it as a vector in {0,1}2𝑛
. 

  𝑓 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

   

𝑓(0000)
𝑓(0001)
𝑓(0010)
𝑓(0011)
𝑓(0100)

⋅
⋅
⋅

𝑓(1101)
𝑓(1110)
𝑓(1111)
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Linear functions

There are 2𝑛 linear functions: one for each subset 𝑆 ⊆ [𝑛]. 

 𝜒∅ =

0
0
0
0
0
⋅
⋅
⋅
0
0
0

 ,  𝜒 1 =

0
1
0
1
0
⋅
⋅
⋅
1
0
1

 ,  ⋯ ⋯,  𝜒 𝑛 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0
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Parity on the positions indexed by set 𝑆 is 𝜒𝑆 𝑥1, … , 𝑥𝑛 = 

𝑖∈S

𝑥𝑖



Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

• Vectors in 0,1 2𝑛
      ⟶       Vectors in ℝ2𝑛

.

• 0/False ⟶ 1           1/True ⟶ -1.

• Addition (mod 2) ⟶ Multiplication in ℝ.

• Boolean function: 𝑓 ∶ −1, 1 𝑛 → {−1,1}.

• Linear function 𝜒𝑆∶ −1, 1 𝑛 → {−1,1} is given by 𝜒𝑆 𝒙 = ς𝑖∈𝑆 𝑥𝑖.
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Benefit 1 of New Notation

• The dot product of 𝑓 and 𝑔 as vectors in −1,1 2𝑛
:

(# 𝒙’s such that 𝑓 𝒙 = 𝑔(𝒙)) − (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

= 2𝑛 − 2 ⋅ (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

𝑓, 𝑔 =
1

2𝑛
dot product of 𝑓 and 𝑔 as vectors

   = avg
𝒙∈ −1,1 𝑛

𝑓 𝒙 𝑔 𝒙 = 𝔼
𝒙∈ −1,1 𝑛

[ 𝑓 𝒙 𝑔 𝒙 ].

𝑓, 𝑔 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝑔)

20

Inner product of functions 𝑓, 𝑔 ∶ −1, 1 𝑛 → {−1, 1}

disagreements between 𝑓 and 𝑔



Benefit 2 of New Notation

• If 𝑆 ≠ 𝑇 then 𝜒𝑆 and 𝜒𝑇 are orthogonal:  𝜒𝑆, 𝜒𝑇 = 0. 

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ 

      (w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖 ) 

      where 𝒙 𝑖  is 𝒙 with the 𝑖th bit flipped.

– Each such pair contributes 𝑎𝑏 − 𝑎𝑏 = 0 to 𝜒𝑆, 𝜒𝑇 . 

– Since all 𝒙’s are paired up, 𝜒𝑆, 𝜒𝑇 = 0.

• Recall that there are 2𝑛 linear functions 𝜒𝑆 .

• 𝜒𝑆, 𝜒𝑆 = 1
– In fact, 𝑓, 𝑓 = 1 for  all 𝑓 ∶ −1, 1 𝑛 → −1, 1 .

– (The  norm of 𝑓, denoted 𝑓 , is  𝑓, 𝑓  )

21

𝒙

𝒙 𝑖

𝜒𝑆    𝜒𝑇

+1
−1
+1
+𝑎
+1

⋅
⋅
⋅

−𝑎
+1
−1
−1

−1
+1
+1
𝑏

+1
⋅
⋅
⋅
𝑏

−1
+1
+1

The functions 𝜒𝑆 𝑆⊆ 𝑛  form an orthonormal basis for ℝ2𝑛
.Claim.



Idea: Work in the basis 𝜒𝑆 𝑆⊆ 𝑛 , so it is easy to see how close a specific 

function 𝑓 is to each of the linear functions.

Every function 𝑓 ∶ −1, 1 𝑛 →  ℝ is uniquely expressible as a linear 
combination (over ℝ) of the 2𝑛 linear functions:

where መ𝑓 𝑆 = 𝑓, 𝜒𝑆  is the Fourier Coefficient of 𝑓 on set 𝑆.

Proof: 𝑓 can be written uniquely as a linear combination of basis vectors:

𝑓 = 

𝑆⊆ 𝑛

𝑐𝑆 ⋅ 𝜒𝑆

It remains to prove that 𝑐𝑆= መ𝑓 𝑆  for all 𝑆.

መ𝑓 𝑆 = 𝑓, 𝜒𝑆 = 

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 = 

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 = 𝑐𝑆

Fourier Expansion Theorem

22

Fourier Expansion Theorem

𝑓 = 

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆,

Linearity of ⋅,⋅
𝜒𝑇 , 𝜒𝑆 = ቊ1 if 𝑇 = 𝑆

0 otherwise

Definition of Fourier

coefficients



Examples: Fourier Expansion

𝒇 Fourier transform

𝑓 𝒙 = 1 1

𝑓 𝒙 = 𝑥𝑖 𝑥𝑖

AND(𝑥1, 𝑥2) 1

2
+

1

2
𝑥1 +

1

2
𝑥2 −

1

2
𝑥1𝑥2

MAJORITY(𝑥1, 𝑥2, 𝑥3) 1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥3 −

1

2
𝑥1𝑥2𝑥3
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