Sublinear Algorithms

LECTURE 17

Last time

- Canonical testers for the dense graph model
- Approximating the average degree

Today

- Finish approximating the average degree
- Testing linearity of Boolean functions [Blum Luby Rubinfeld]

Average Degree Estimation [Eden Ron Seshadhri]

Intuition: To reduce variance,

we will ``count'' each edge towards its endpoint with smaller degree.

- Define ordering on *V*: for $u, v \in V$, we say u < v if d(u) < d(v) or if d(u) = d(v) and id(u) < id(v). to break ties vertices w
- ``Orient'' the edges towards higher-degree nodes

vertices with higher degree

Algorithm (Input: ε , n; degree and neighbor query access to $G \stackrel{\checkmark}{=} (V, E)$)

1. Set
$$k = \frac{12}{s^2} \cdot \sqrt{n}$$
 and initialize $X_i = 0$ for all $i \in [k]$

- 2. For i = 1 to k do Define N(v) to be the set of neighbors of v.
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.

c. If
$$u \prec v$$
, set $X_i = 2d(u)$

3. Return $\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$

Outdegree Lemma

Let $d^+(u)$ denote the number of neighbors v of u with $u \prec v$.

- 1. Consider $v \in H$. $d^+(v)$ is the number of neighbors of v of rank higher than v. v is among the $\sqrt{2m}$ vertices of the highest rank, so $d^+(v) < \sqrt{2m}$
- 2. Consider $v \in L$. All $u \in H$, by definition, have degree at least d(v). Then the sum of all degrees, 2m, is greater than $\sqrt{2m} \cdot d(v)$. $d^{+(v)} \leq d(v) < \frac{2m}{\sqrt{2m}} = \sqrt{2m}$

Analysis: Expectation

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{\epsilon^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.

c. If
$$u \prec v$$
, set $X_i = 2d(u)$

3. Return
$$\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$$

- Let $d^+(u)$ denote the number of neighbors v of u with $u \prec v$.
- Let X denote one of the variables X_i . (They all have the same distribution.)
- Let *U* denote the random variable equal to the node *u* sampled in Step 2a. $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|U]] \quad \text{By the compact form of the Law of Total Expectation}$ $\mathbb{E}[X|U] = \frac{d^+(U)}{d(U)} \cdot 2d(U) = 2d^+(U). \quad d^+(U) \text{ is \# of neighbors } v \text{ of } U \text{ for}$ $\mathbb{E}[X] = \mathbb{E}[2d^+(U)] = 2\sum_{u \in V} \frac{1}{n} \cdot d^+(u) = \frac{2m}{n} = \overline{d}$ which X = 2d(U)

Analysis: Variance

Reminders:

 $d^+(u) =$ the # of neighbors v of u with $u \prec v$.

Outdegree Lemma

By linearity of expectation

 $\forall v, \quad d^+(v) < \sqrt{2m}.$

RV X denotes X_i .

RV U = the node u sampled in Step 2a.

- $\operatorname{Var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2 < \mathbb{E}[X^2]$
- $\mathbb{E}[X^2] = [\mathbb{E}[X^2|U]]$ By the compact form of the Law of Total Expectation

•
$$\mathbb{E}[X^2|U] = \frac{d^+(U)}{d(U)} \cdot (2d(U))^2 = 4d^+(U) \cdot d(U).$$

• $\mathbb{E}[X^2] = \mathbb{E}[4d^+(U) \cdot d(U)]$

 $< \mathbb{E} \Big[4 \cdot \sqrt{2m} \cdot d(U) \Big]$

 $=4\sqrt{2m}\cdot \mathbb{E}[d(U)]$

$$=4\sqrt{2m}\cdot \overline{d}.$$

By definition of expectation

We get that $Var[X] < 4\sqrt{2m} \cdot \overline{d}$.

Analysis: Putting It All Together

Approximating the Average Degree: Run Time

Algorithm (Input: ε , n; vertex and neighbor query access to G=(V,E))

- 1. Set $k = \frac{12}{s^2} \cdot \sqrt{n}$ and initialize $X_i = 0$ for all $i \in [k]$
- 2. For i = 1 to k do
 - a. Sample a vertex $u \in V$ u.i.r. and query its degree d(u)
 - b. Sample a vertex $v \in N(u)$ u.i.r. by making a neighbor query to v.
 - c. If $u \prec v$, set $X_i = 2d(u)$

3. Return
$$\hat{d} = \frac{1}{k} \cdot \sum_{i \in [k]} X_i$$

Running time:

$$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$$

to get
$$\Pr[|\hat{d} - \bar{d}| \ge \varepsilon \cdot \bar{d}] \le \frac{1}{3}$$

Technical Writing Tips: Citations

• Be generous in acknowledging the source of your ideas.

Don't be a citation scrooge. If someone inspired you, give them credit.

• Use dblp to get citations in the bibtex format.

Because manually typing BibTeX is a rite of passage only once. After that, it's just masochism.

- Fix issues with capitalization in BibTeX items by using {curly braces}:

 e.g., ``{LCAs} for {Lipschitz} functions.''
 (You should also add dollar signs around math expressions).

 Fix issues with capitalization in BibTeX items by using {curly braces}:

 Dblp likes to lowercase Everything Like It's Stuck in the '90s. BibTeX deserves LaTeX, too.
- If there are multiple versions of the paper, cite the most recently published one. (Archival versions are not considered published).

-- journal > conference > archival preprint

> that PDF on someone's website called "final_final_revised3_REAL.pdf"

-- Beware of paper mergers.

• When you cite multiple papers, give multiple arguments to the same \cite command. The result will look like, for example: [BLR93,GGR98].

Technical Writing Questions

For each of the sentences,¹ specify what needs fixing and how you'd fix it.

- 1. A found p_{square} f-violated squares and $q_{triangle}$ g-violated triangles.
- 2. We proved interesting results in our project. We will describe them below. We focus on the lower bounds.
- 3. Given a *n*-node graph *G*, design an efficient algorithm that estimates the average degree of *G* up to a factor of 2^2
- 4. If this works for any function, our algorithm will succeed.
- 5. We note that we plan to spend some of the future time devoting it to coming up with the right notion of the model.
- 6. Let's eat grandma.

¹ Any resemblance to sentences in course projects is purely coincidental.

² The reason we cannot beat the factor of 2 is...

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* if $f(x_1, \dots, x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, \dots, a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example

Testing If a Boolean Function Is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear

($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Today: can answer in $O\left(\frac{1}{\varepsilon}\right)$ time

Motivation

- Linearity test is one of the most celebrated testing algorithms
 - A special case of many important property tests
 - Computations over finite fields are used in
 - Cryptography
 - Coding Theory
 - Originally designed for program checkers and self-correctors
 - Low-degree testing is needed in constructions of Probabilistically Checkable Proofs (PCPs)
 - Used for proving inapproximability
- Main tool in the correctness proof: Fourier analysis of Boolean functions
 - Powerful and widely used technique in understanding the structure of Boolean functions

Equivalent Definitions of Linear Functions

Definition. *f* is *linear* if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \mathbb{F}_2$ $\begin{array}{c} & \\ & \\ & \\ f(x_1, ..., x_n) = \sum_{i \in S} x_i \text{ for some } S \subseteq [n]. \end{array}$

Definition'. f is linear if f(x + y) = f(x) + f(y) for all $x, y \in \{0,1\}^n$.

• Definition \Rightarrow Definition'

$$f(x + y) = \sum_{i \in S} (x + y)_i = \sum_{i \in S} (x_i + y_i) = \sum_{i \in S} x_i + \sum_{i \in S} y_i = f(x) + f(y).$$

Definition' ⇒ Definition

Let
$$\alpha_i = f((0, ..., 0, 1, 0, ..., 0))$$

Repeatedly apply **Definition**':

$$f((x_1, \dots, x_n)) = f(\sum x_i e_i) = \sum x_i f(e_i) = \sum \alpha_i x_i.$$

BLR Test (ε , query access to f)

- 1. Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- 2. Set z = x + y and query f on x, y, and z. Accept iff f(z) = f(x) + f(y).

Analysis

If f is linear, BLR always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

If f is ε -far from linear then $> \varepsilon$ fraction of pairs x and y fail BLR test.

• Then, by Witness Lemma (Lecture 1), $2/\varepsilon$ iterations suffice.

Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^n values of $f(\mathbf{x})$ and treat it as a vector in $\{0,1\}^{2^n}$.

Linear functions

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in $\{0,1\}^{2^n} \longrightarrow$ Vectors in \mathbb{R}^{2^n} .
- $0/False \rightarrow 1$ $1/True \rightarrow -1$.
- Addition (mod 2) \rightarrow Multiplication in \mathbb{R} .
- Boolean function: $f : \{-1, 1\}^n \to \{-1, 1\}$.
- Linear function $\chi_S: \{-1, 1\}^n \to \{-1, 1\}$ is given by $\chi_S(\mathbf{x}) = \prod_{i \in S} x_i$.

Benefit 1 of New Notation

• The dot product of f and g as vectors in $\{-1,1\}^{2^n}$:

(# x's such that f(x) = g(x)) – (# x's such that $f(x) \neq g(x)$)

$$= 2^n - 2 \cdot (\# x' \text{ s such that } f(x) \neq g(x))$$

disagreements between f and g

Inner product of functions $f, g : \{-1, 1\}^n \to \{-1, 1\}$ $\langle f, g \rangle = \frac{1}{2^n} (\text{dot product of } f \text{ and } g \text{ as vectors})$ $= \underset{x \in \{-1, 1\}^n}{\text{avg}} [f(x)g(x)] = \underset{x \in \{-1, 1\}^n}{\mathbb{E}} [f(x)g(x)].$

 $\langle f, g \rangle = 1 - 2 \cdot (\text{fraction of } disagreements between } f \text{ and } g)$

Benefit 2 of New Notation

Claim. The functions $(\chi_S)_{S \subseteq [n]}$ form an orthonormal basis for \mathbb{R}^{2^n} .

- If $S \neq T$ then χ_S and χ_T are orthogonal: $\langle \chi_S, \chi_T \rangle = 0$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - Each such pair contributes ab ab = 0 to $\langle \chi_S, \chi_T \rangle$.
 - Since all x's are paired up, $\langle \chi_S, \chi_T \rangle = 0$.
- Recall that there are 2^n linear functions χ_S .
- $\langle \chi_S, \chi_S \rangle = 1$
 - In fact, $\langle f, f \rangle = 1$ for all $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$.
 - (The norm of f, denoted |f|, is $\sqrt{\langle f, f \rangle}$)

Fourier Expansion Theorem

Idea: Work in the basis $(\chi_S)_{S \subseteq [n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f : \{-1, 1\}^n \to \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n linear functions: $f = \sum_{S \subseteq [n]} \hat{f}(S) \chi_{S, N}$

where $\hat{f}(S) = \langle f, \chi_S \rangle$ is the Fourier Coefficient of f on set S.

Proof: *f* can be written uniquely as a linear combination of basis vectors:

$$f = \sum_{S \subseteq [n]} c_S \cdot \chi_S$$

It remains to prove that $c_S = \hat{f}(S)$ for all S.

$$\hat{f}(S) = \langle f, \chi_S \rangle = \left(\sum_{T \subseteq [n]} c_T \cdot \chi_T, \chi_S \right) = \sum_{T \subseteq [n]} c_T \cdot \langle \chi_T, \chi_S \rangle = c_S$$
Definition of Fourier coefficients
$$\text{Linearity of } \langle \cdot, \cdot \rangle \qquad \langle \chi_T, \chi_S \rangle = \begin{cases} 1 & \text{if } T = S \\ 0 & \text{otherwise} \end{cases}$$

$$22$$

Examples: Fourier Expansion

f	Fourier transform
$f(\boldsymbol{x}) = 1$	1
$f(\mathbf{x}) = x_i$	x_i
$AND(x_1, x_2)$	$\frac{1}{2} + \frac{1}{2}x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1x_2$
MAJORITY(x_1, x_2, x_3)	$\frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_1x_2x_3$