
Sublinear Algorithms

LECTURE 17
Last time
• Canonical testers for the dense graph model

• Approximating the average degree

Today
• Finish approximating the average degree

• Testing linearity of Boolean functions

 [Blum Luby Rubinfeld]

Sofya Raskhodnikova;Boston University 1

Average Degree Estimation [Eden Ron Seshadhri]

Intuition: To reduce variance,
we will ``count’’ each edge towards its endpoint with smaller degree.

• Define ordering on 𝑉: for 𝑢, 𝑣 ∈ 𝑉, we say 𝑢 ≺ 𝑣 if 𝑑 𝑢 < 𝑑(𝑣) or if
𝑑 𝑢 = 𝑑 𝑣 𝑎𝑛𝑑 𝑖𝑑(𝑢) < 𝑖𝑑(𝑣).

• ``Orient’’ the edges towards higher-degree nodes

2

Algorithm (Input: 𝜀, 𝑛; degree and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do

a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)

b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.

c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

to break ties

Define 𝑁(𝑣) to be the set of neighbors of 𝑣.

vertices with

higher degree

Outdegree Lemma

Let 𝑑+ 𝑢 denote the number of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

Proof:

• Let 𝐻 ⊆ 𝑉 be the set of the 2𝑚 vertices
with highest rank according to ≺.

• Let 𝐿 = 𝑉\H.

1. Consider 𝑣 ∈ 𝐻.
𝑑+(𝑣) is the number of neighbors of 𝑣 of rank higher than 𝑣.

 𝑣 is among the 2𝑚 vertices of the highest rank, so 𝑑+ 𝑣 < 2𝑚

2. Consider 𝑣 ∈ 𝐿. All 𝑢 ∈ 𝐻, by definition, have degree at least 𝑑(𝑣).

 Then the sum of all degrees, 2𝑚, is greater than 2𝑚 ⋅ 𝑑(𝑣).

𝑑+ 𝑣 ≤ 𝑑 𝑣 <
2𝑚

2𝑚
= 2𝑚

3

2𝑚

𝐻𝐿

vertices with

the highest degree

Outdegree Lemma
 For all vertices 𝑣, the outdegree 𝑑+ 𝑣 < 2𝑚.

Analysis: Expectation

• Let 𝑑+ 𝑢 denote the number of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

• Let 𝑋 denote one of the variables 𝑋𝑖. (They all have the same distribution.)

• Let 𝑈 denote the random variable equal to the node 𝑢 sampled in Step 2a.

 𝔼 𝑋 = 𝔼 𝔼 𝑋 𝑈

 𝔼 𝑋 𝑈 =
𝑑+ 𝑈

𝑑 𝑈
⋅ 2𝑑 𝑈 = 2𝑑+ 𝑈 .

𝔼 𝑋 = 𝔼 2𝑑+ 𝑈 = 2

𝑢∈𝑉

1

𝑛
⋅ 𝑑+ 𝑢 =

2𝑚

𝑛
= ҧ𝑑

4

Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

By the compact form of the Law of Total Expectation

𝑑+ 𝑈 is # of neighbors 𝑣 of 𝑈 for

which 𝑋 = 2𝑑 𝑈

Analysis: Variance

• Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 < 𝔼 𝑋2

• 𝔼 𝑋2 = 𝔼 𝑋2 𝑈

• 𝔼 𝑋2 𝑈 =
𝑑+ 𝑈

𝑑 𝑈
⋅ 2𝑑 𝑈

2
= 4𝑑+ 𝑈 ⋅ 𝑑 𝑈 .

• 𝔼 𝑋2 = 𝔼 4𝑑+ 𝑈 ⋅ 𝑑 𝑈

< 𝔼 4 ⋅ 2𝑚 ⋅ 𝑑 𝑈

= 4 2𝑚 ⋅ 𝔼 𝑑 𝑈

= 4 2𝑚 ⋅ ҧ𝑑.

We get that Var 𝑋 < 4 2𝑚 ⋅ ҧ𝑑.

5

By the compact form of the Law of Total Expectation

Reminders:

𝑑+ 𝑢 = the # of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

RV 𝑋 denotes 𝑋𝑖.

RV 𝑈 = the node 𝑢 sampled in Step 2a.

Outdegree Lemma

∀𝑣, 𝑑+ 𝑣 < 2𝑚.

By linearity of expectation

By definition of expectation

Analysis: Putting It All Together

• 𝔼 መ𝑑 = 𝔼 𝑋 = ҧ𝑑

• Var መ𝑑 =
Var 𝑋

𝑘
≤

4 2𝑚⋅ ത𝑑

𝑘

• Pr መ𝑑 − ҧ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 = Pr መ𝑑 − 𝔼 መ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 ≤
Var 𝑑

𝜀⋅ ത𝑑 2

≤
4 2𝑚 ⋅ ҧ𝑑

𝑘 ⋅ 𝜀2 ⋅ ҧ𝑑2
=

4 2𝑚 ⋅ 𝑛

𝑘 ⋅ 𝜀2 ⋅ 2𝑚
=

4𝑛

𝑘 ⋅ 𝜀2 ⋅ 2𝑚
=

4 𝑛

𝑘 ⋅ 𝜀2 ⋅ ҧ𝑑
=

1

3 ҧ𝑑
≤

1

3

6

Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

𝑑+ 𝑢 = the # of neighbors 𝑣 of 𝑢 with 𝑢 ≺ 𝑣.

RV 𝑋 denotes 𝑋𝑖.

RV 𝑈 = the node 𝑢 sampled in Step 2a.

By Chebyshev

Our choice of 𝑘

Assumption
ҧ𝑑 ≥ 1

Approximating the Average Degree: Run Time

Running time:

𝑂
𝑛

𝜀2

to get Pr መ𝑑 − ҧ𝑑 ≥ 𝜀 ⋅ ҧ𝑑 ≤
1

3

7

Algorithm (Input: 𝜀, 𝑛; vertex and neighbor query access to G=(V,E))

1. Set 𝑘 =
12

𝜀2 ⋅ 𝑛 and initialize 𝑋𝑖 = 0 for all 𝑖 ∈ [𝑘]

2. For 𝑖 = 1 to 𝑘 do
a. Sample a vertex 𝑢 ∈ 𝑉 u.i.r. and query its degree 𝑑(𝑢)
b. Sample a vertex 𝑣 ∈ 𝑁(𝑢) u.i.r. by making a neighbor query to 𝑣.
c. If 𝑢 ≺ 𝑣, set 𝑋𝑖 = 2𝑑(𝑢)

3. Return መ𝑑 =
1

𝑘
⋅ σ𝑖∈ 𝑘 𝑋𝑖

Technical Writing Tips: Citations

• Be generous in acknowledging the source of your ideas.

• Use dblp to get citations in the bibtex format.

• Fix issues with capitalization in BibTeX items by using {curly braces}:
e.g., ``{LCAs} for {Lipschitz} functions.’’
(You should also add dollar signs
around math expressions).

• If there are multiple versions of the paper, cite the most recently published
one. (Archival versions are not considered published).

 -- journal > conference > archival preprint

 -- Beware of paper mergers.

• When you cite multiple papers, give multiple arguments to the same \cite
command. The result will look like, for example: [BLR93,GGR98].

9

Because manually typing BibTeX is a rite of passage only once.

After that, it’s just masochism.

Don’t be a citation scrooge. If someone inspired you, give them credit.

BibTeX deserves LaTeX, too.

Dblp likes to lowercase Everything

Like It’s Stuck in the ’90s.

> that PDF on someone’s website called “final_final_revised3_REAL.pdf”

Technical Writing Questions

For each of the sentences,1 specify what needs fixing and how you’d fix it.

1. 𝐴 found 𝑝𝑠𝑞𝑢𝑎𝑟𝑒 𝑓-violated squares and 𝑞𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑔-violated triangles.

2. We proved interesting results in our project. We will describe them
below. We focus on the lower bounds.

3. Given a 𝑛-node graph 𝐺, design an efficient algorithm that estimates
the average degree of 𝐺 up to a factor of 22

4. If this works for any function, our algorithm will succeed.

5. We note that we plan to spend some of the future time devoting it to
coming up with the right notion of the model.

6. Let’s eat grandma.

10

.1 Any resemblance to sentences in course projects is purely coincidental.

.2 The reason we cannot beat the factor of 2 is...

Linear Functions Over Finite Field 𝔽2

11

A Boolean function 𝑓: 0,1 𝑛 → {0,1} is linear if

𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ {0,1}

• Work in finite field 𝔽2

– Other accepted notation for 𝔽2: 𝐺𝐹2 and ℤ2

– Addition and multiplication is mod 2

– 𝒙= 𝑥1, … , 𝑥𝑛 , 𝒚= 𝑦1, … , 𝑦𝑛 , that is, 𝒙, 𝒚 ∈ 0,1 𝑛

 𝒙 + 𝒚= 𝑥1 + 𝑦1, … , 𝑥𝑛 + 𝑦𝑛

no free term

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

001001

011001

010000

+

example

Testing If a Boolean Function Is Linear

12

Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question:

Is the function linear or 𝜀-far from linear

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Today: can answer in 𝑂
1

𝜀
 time

Motivation

• Linearity test is one of the most celebrated testing algorithms
– A special case of many important property tests

– Computations over finite fields are used in

• Cryptography

• Coding Theory

– Originally designed for program checkers and self-correctors

– Low-degree testing is needed in constructions of Probabilistically
Checkable Proofs (PCPs)

• Used for proving inapproximability

• Main tool in the correctness proof: Fourier analysis of Boolean
functions
– Powerful and widely used technique in understanding the structure of

Boolean functions

13

Equivalent Definitions of Linear Functions

14

Definition. 𝑓 is linear if 𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 for some 𝑎1, … , 𝑎𝑛 ∈ 𝔽2

 ⇕

𝑓 𝑥1, … , 𝑥𝑛 = σ𝑖∈S 𝑥𝑖 for some 𝑆 ⊆ 𝑛 .

Definition′. 𝑓 is linear if 𝑓 𝒙 + 𝒚 = 𝑓 𝒙 + 𝑓(𝒚) for all 𝒙, 𝒚 ∈ 0,1 𝑛.

• Definition ⇒ Definition′

 𝑓 𝒙 + 𝒚 = σ𝑖∈𝑆 𝒙 + 𝒚 𝑖 = σ𝑖∈𝑆(𝑥𝑖 + 𝑦𝑖) = σ𝑖∈𝑆 𝑥𝑖 + σ𝑖∈𝑆 𝑦𝑖 = 𝑓 𝒙 + 𝑓 𝒚 .

• Definition′ ⇒ Definition

Let 𝛼𝑖 = 𝑓((0, … , 0,1,0, … , 0

𝑒𝑖

))

 Repeatedly apply Definition′:

𝑓 𝑥1, … , 𝑥𝑛 = 𝑓 σ𝑥𝑖𝑒𝑖 = σ𝑥𝑖𝑓 𝑒𝑖 = σ𝛼𝑖𝑥𝑖 .

Based on Ryan O’Donell’s lecture notes: http://www.cs.cmu.edu/~odonnell/boolean-analysis/

[𝑛] is a shorthand for {1, … 𝑛}

Linearity Test [Blum Luby Rubinfeld 90]

15

1. Pick 𝒙 and 𝒚 independently and uniformly at random from 0,1 𝑛.

2. Set 𝒛 = 𝒙 + 𝒚 and query 𝑓on 𝒙, 𝒚, and 𝒛. Accept iff 𝑓 𝒛 = 𝑓 𝒙 + 𝑓 𝒚 .

Analysis

If 𝑓is linear, BLR always accepts.

If 𝑓 is 𝜀-far from linear then > 𝜀 fraction of pairs 𝒙 and 𝒚 fail BLR test.

• Then, by Witness Lemma (Lecture 1), 2/𝜀 iterations suffice.

BLR Test (ε, query access to 𝑓)

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

Analysis Technique:
Fourier Expansion

Representing Functions as Vectors

Stack the 2𝑛 values of 𝑓(𝒙) and treat it as a vector in {0,1}2𝑛
.

 𝑓 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

𝑓(0000)
𝑓(0001)
𝑓(0010)
𝑓(0011)
𝑓(0100)

⋅
⋅
⋅

𝑓(1101)
𝑓(1110)
𝑓(1111)

17

Linear functions

There are 2𝑛 linear functions: one for each subset 𝑆 ⊆ [𝑛].

 𝜒∅ =

0
0
0
0
0
⋅
⋅
⋅
0
0
0

 , 𝜒 1 =

0
1
0
1
0
⋅
⋅
⋅
1
0
1

 , ⋯ ⋯, 𝜒 𝑛 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

18

Parity on the positions indexed by set 𝑆 is 𝜒𝑆 𝑥1, … , 𝑥𝑛 =

𝑖∈S

𝑥𝑖

Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

• Vectors in 0,1 2𝑛
 ⟶ Vectors in ℝ2𝑛

.

• 0/False ⟶ 1 1/True ⟶ -1.

• Addition (mod 2) ⟶ Multiplication in ℝ.

• Boolean function: 𝑓 ∶ −1, 1 𝑛 → {−1,1}.

• Linear function 𝜒𝑆∶ −1, 1 𝑛 → {−1,1} is given by 𝜒𝑆 𝒙 = ς𝑖∈𝑆 𝑥𝑖.

19

Benefit 1 of New Notation

• The dot product of 𝑓 and 𝑔 as vectors in −1,1 2𝑛
:

(# 𝒙’s such that 𝑓 𝒙 = 𝑔(𝒙)) − (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

= 2𝑛 − 2 ⋅ (# 𝒙’s such that 𝑓 𝒙 ≠ 𝑔(𝒙))

𝑓, 𝑔 =
1

2𝑛
dot product of 𝑓 and 𝑔 as vectors

 = avg
𝒙∈ −1,1 𝑛

𝑓 𝒙 𝑔 𝒙 = 𝔼
𝒙∈ −1,1 𝑛

[𝑓 𝒙 𝑔 𝒙].

𝑓, 𝑔 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝑔)

20

Inner product of functions 𝑓, 𝑔 ∶ −1, 1 𝑛 → {−1, 1}

disagreements between 𝑓 and 𝑔

Benefit 2 of New Notation

• If 𝑆 ≠ 𝑇 then 𝜒𝑆 and 𝜒𝑇 are orthogonal: 𝜒𝑆, 𝜒𝑇 = 0.

– Let 𝑖 be an element on which 𝑆 and 𝑇 differ

 (w.l.o.g. 𝑖 ∈ 𝑆 ∖ 𝑇)

– Pair up all 𝑛-bit strings: (𝒙, 𝒙 𝑖)

 where 𝒙 𝑖 is 𝒙 with the 𝑖th bit flipped.

– Each such pair contributes 𝑎𝑏 − 𝑎𝑏 = 0 to 𝜒𝑆, 𝜒𝑇 .

– Since all 𝒙’s are paired up, 𝜒𝑆, 𝜒𝑇 = 0.

• Recall that there are 2𝑛 linear functions 𝜒𝑆 .

• 𝜒𝑆, 𝜒𝑆 = 1
– In fact, 𝑓, 𝑓 = 1 for all 𝑓 ∶ −1, 1 𝑛 → −1, 1 .

– (The norm of 𝑓, denoted 𝑓 , is 𝑓, 𝑓)

21

𝒙

𝒙 𝑖

𝜒𝑆 𝜒𝑇

+1
−1
+1
+𝑎
+1

⋅
⋅
⋅

−𝑎
+1
−1
−1

−1
+1
+1
𝑏

+1
⋅
⋅
⋅
𝑏

−1
+1
+1

The functions 𝜒𝑆 𝑆⊆ 𝑛 form an orthonormal basis for ℝ2𝑛
.Claim.

Idea: Work in the basis 𝜒𝑆 𝑆⊆ 𝑛 , so it is easy to see how close a specific

function 𝑓 is to each of the linear functions.

Every function 𝑓 ∶ −1, 1 𝑛 → ℝ is uniquely expressible as a linear
combination (over ℝ) of the 2𝑛 linear functions:

where መ𝑓 𝑆 = 𝑓, 𝜒𝑆 is the Fourier Coefficient of 𝑓 on set 𝑆.

Proof: 𝑓 can be written uniquely as a linear combination of basis vectors:

𝑓 =

𝑆⊆ 𝑛

𝑐𝑆 ⋅ 𝜒𝑆

It remains to prove that 𝑐𝑆= መ𝑓 𝑆 for all 𝑆.

መ𝑓 𝑆 = 𝑓, 𝜒𝑆 =

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 =

𝑇⊆[𝑛]

𝑐𝑇 ⋅ 𝜒𝑇 , 𝜒𝑆 = 𝑐𝑆

Fourier Expansion Theorem

22

Fourier Expansion Theorem

𝑓 =

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆,

Linearity of ⋅,⋅
𝜒𝑇 , 𝜒𝑆 = ቊ1 if 𝑇 = 𝑆

0 otherwise

Definition of Fourier

coefficients

Examples: Fourier Expansion

𝒇 Fourier transform

𝑓 𝒙 = 1 1

𝑓 𝒙 = 𝑥𝑖 𝑥𝑖

AND(𝑥1, 𝑥2) 1

2
+

1

2
𝑥1 +

1

2
𝑥2 −

1

2
𝑥1𝑥2

MAJORITY(𝑥1, 𝑥2, 𝑥3) 1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥3 −

1

2
𝑥1𝑥2𝑥3

23

	Slide 1: Sublinear Algorithms
	Slide 2: Average Degree Estimation [Eden Ron Seshadhri]
	Slide 3: Outdegree Lemma
	Slide 4: Analysis: Expectation
	Slide 5: Analysis: Variance
	Slide 6: Analysis: Putting It All Together
	Slide 7: Approximating the Average Degree: Run Time
	Slide 9: Technical Writing Tips: Citations
	Slide 10: Technical Writing Questions
	Slide 11: Linear Functions Over Finite Field double-struck cap F sub 2
	Slide 12: Testing If a Boolean Function Is Linear
	Slide 13: Motivation
	Slide 14: Equivalent Definitions of Linear Functions
	Slide 15: Linearity Test [Blum Luby Rubinfeld 90]
	Slide 16: Analysis Technique: Fourier Expansion
	Slide 17: Representing Functions as Vectors
	Slide 18: Linear functions
	Slide 19: Great Notational Switch
	Slide 20: Benefit 1 of New Notation
	Slide 21: Benefit 2 of New Notation
	Slide 22: Fourier Expansion Theorem
	Slide 23: Examples: Fourier Expansion

