
Sublinear Algorithms

LECTURE 18 
Last time
• Finish approximating the average degree

• Testing linearity of Boolean functions

Today
• Finish testing linearity of Boolean functions

                  [Blum Luby Rubinfeld]

• Tolerant testing and distance estimation

Sofya Raskhodnikova;Boston University

HW 4 is due Thursday

Next week: Fourier-Monte Carlo Descent Trees, which combine

 harmonic analysis with stochastic branch pruning to estimate

 edge-connectivity in near-quantum time.



Testing If a Boolean Function Is Linear
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Input: Boolean function 𝑓: 0,1 𝑛 → {0,1}

Question: 

Is the function linear or 𝜀-far from linear 

(≥ 𝜀2𝑛 values need to be changed to make it linear)?

Today: can answer in 𝑂
1

𝜀
 time



Linearity Test [Blum Luby Rubinfeld 90]
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1. Pick 𝒙 and 𝒚 independently and uniformly at random from 0,1 𝑛.

2. Set 𝒛 = 𝒙 + 𝒚 and query 𝑓on 𝒙, 𝒚, and 𝒛. Accept iff 𝑓 𝒛 = 𝑓 𝒙 + 𝑓 𝒚 .
 

Analysis

If 𝑓is linear, BLR always accepts. 

If 𝑓 is 𝜀-far from linear then > 𝜀 fraction of pairs 𝒙 and 𝒚 fail BLR test.

• Then, by Witness Lemma (Lecture 1), 2/𝜀 iterations suffice.

BLR Test (ε, query access to 𝑓)

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]



Analysis Technique: 
Fourier Expansion



Representing Functions as Vectors

Stack the 2𝑛 values of 𝑓(𝒙) and treat it as a vector in {0,1}2𝑛
. 

  𝑓 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0

   

𝑓(0000)
𝑓(0001)
𝑓(0010)
𝑓(0011)
𝑓(0100)

⋅
⋅
⋅

𝑓(1101)
𝑓(1110)
𝑓(1111)
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Linear functions

There are 2𝑛 linear functions: one for each subset 𝑆 ⊆ [𝑛]. 

 𝜒∅ =

0
0
0
0
0
⋅
⋅
⋅
0
0
0

 ,  𝜒 1 =

0
1
0
1
0
⋅
⋅
⋅
1
0
1

 ,  ⋯ ⋯,  𝜒 𝑛 =

0
1
1
0
1
⋅
⋅
⋅
1
0
0
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Parity on the positions indexed by set 𝑆 is 𝜒𝑆 𝑥1, … , 𝑥𝑛 = ෍

𝑖∈S

𝑥𝑖



Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

• Vectors in 0,1 2𝑛
      ⟶       Vectors in ℝ2𝑛

.

• 0/False ⟶ 1           1/True ⟶ -1.

• Addition (mod 2) ⟶ Multiplication in ℝ.

• Boolean function: 𝑓 ∶ −1, 1 𝑛 → {−1,1}.

• Linear function 𝜒𝑆∶ −1, 1 𝑛 → {−1,1} is given by 𝜒𝑆 𝒙 = ς𝑖∈𝑆 𝑥𝑖.
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Benefits of New Notation

𝑓, 𝑔 =
1

2𝑛
dot product of 𝑓 and 𝑔 as vectors

   = avg
𝒙∈ −1,1 𝑛

𝑓 𝒙 𝑔 𝒙 = 𝔼
𝒙∈ −1,1 𝑛

[ 𝑓 𝒙 𝑔 𝒙 ].

𝑓, 𝑔 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝑔)
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Inner product of functions 𝑓, 𝑔 ∶ −1, 1 𝑛 → {−1, 1}

The functions 𝜒𝑆 𝑆⊆ 𝑛  form an orthonormal basis for ℝ2𝑛
.Claim.



Idea: Work in the basis 𝜒𝑆 𝑆⊆ 𝑛 , so it is easy to see how close a specific 

function 𝑓 is to each of the linear functions.

Every function 𝑓 ∶ −1, 1 𝑛 →  ℝ is uniquely expressible as a linear 
combination (over ℝ) of the 2𝑛 linear functions:

where መ𝑓 𝑆 = 𝑓, 𝜒𝑆  is the Fourier Coefficient of 𝑓 on set 𝑆.

Fourier Expansion Theorem
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Fourier Expansion Theorem

𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆,



Parseval Equality

Proof: 

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 𝜒𝑆 , ෍

𝑇⊆ 𝑛

መ𝑓 𝑇 𝜒𝑇

 

 = ෍

𝑆

෍

𝑇

መ𝑓 𝑆 መ𝑓 𝑇 𝜒𝑆, 𝜒𝑇

= ෍

𝑆

መ𝑓 𝑆 2 
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By linearity of inner product

By orthonormality of 𝜒𝑆’s

Parseval Equality

Let 𝑓: −1, 1 𝑛 → ℝ. Then

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2 

By Fourier Expansion Theorem



Parseval Equality

Proof: 

𝑓, 𝑓 = 𝔼
𝒙∈ −1,1 𝑛

[𝑓 𝒙 2]

= 1 
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Parseval Equality for Boolean Functions

Let 𝑓: −1, 1 𝑛 → −1, 1 . Then

𝑓, 𝑓 = ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2 = 1

By definition of inner product

Since 𝑓 is Boolean



  

Vector product notation: 𝒙 ∘ 𝒚 = (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑛𝑦𝑛)

Proof: Indicator variable 𝟙𝐵𝐿𝑅 = ቊ
1 if BLR accepts 
0 otherwise

 

𝟙𝐵𝐿𝑅 =
1

2
+

1

2
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 . 

Pr
𝒙,𝒚∈ −1,1 𝑛

BLR 𝑓 accepts = 𝔼
𝐱,𝐲∈ −1,1 𝑛

𝟙𝐵𝐿𝑅 =
1

2
+

1

2
 𝔼

𝐱,𝐲∈ −1,1 𝑛
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

BLR Test in {-1,1} Notation
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BLR Test (f, ε)

1. Pick 𝒙 and 𝒚 independently and uniformly at random from −1,1 𝑛.

2. Set 𝒛 = 𝒙 ∘ 𝒚 and query 𝑓 on 𝒙, 𝒚, and 𝒛.  Accept iff 𝑓 𝒙 𝑓 𝒚 𝑓 𝒛 = 1.

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3Sum-Of-Cubes Lemma.

By linearity of expectation



So far: Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
E

𝐱,𝐲∈ −1,1 𝑛
𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

Next:

Proof of Sum-Of-Cubes Lemma
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= ෍

𝑆,𝑇,𝑈⊆[𝑛]

መ𝑓 𝑆 መ𝑓 𝑇 መ𝑓 𝑈 𝔼
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

= 𝔼
𝐱,𝐲∈ −1,1 𝑛

෍

𝑆,𝑇,𝑈⊆[𝑛]

መ𝑓 𝑆 መ𝑓 𝑇 መ𝑓 𝑈 𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)

𝔼
𝐱,𝐲∈ −1,1 𝑛

𝑓 𝒙 𝑓 𝒚 𝑓 𝒛

= 𝔼
𝐱,𝐲∈ −1,1 𝑛

෍

𝑆⊆[𝑛]

መ𝑓 𝑆 𝜒𝑆(𝒙) ෍

𝑇⊆[𝑛]

መ𝑓 𝑇 𝜒𝑇(𝒚) ෍

𝑈⊆[𝑛]

መ𝑓 𝑈 𝜒𝑈(𝒛) 

By Fourier Expansion Theorem

Distributing out the product of sums

By linearity of expectation



Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts

• Let 𝑆Δ𝑇denote symmetric difference of sets 𝑆 and 𝑇

Proof of Sum-Of-Cubes Lemma (Continued)
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a= 𝔼
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆 𝑥𝑖 ς𝑖∈𝑇 𝑦𝑖 ς𝑖∈𝑈 𝑥𝑖𝑦𝑖

a= 𝔼
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑥𝑖 ς𝑖∈𝑇Δ𝑈 𝑦𝑖

a= 𝔼
𝐱∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑥𝑖 ⋅ 𝔼
𝐲∈ −1,1 𝑛

ς𝑖∈𝑆Δ𝑈 𝑦𝑖

a= ς𝑖∈𝑆Δ𝑈 𝔼
𝐱∈ −1,1 𝑛

[𝑥𝑖] ⋅ ς𝑖∈𝑇Δ𝑈 𝔼
𝐲∈ −1,1 𝑛

[𝑦𝑖]

a 𝔼
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

= ቊ
1 when 𝑆Δ𝑈 = ∅ and 𝑇Δ𝑈 = ∅ ⇔ 𝑆 = 𝑇 = 𝑈
0 otherwise

a= 𝔼
𝐱,𝐲∈ −1,1 𝑛

ς𝑖∈𝑆 𝑥𝑖 ς𝑖∈𝑇 𝑦𝑖 ς𝑖∈𝑈 𝑧𝑖

=
1

2
+

1

2
෍

𝑆,𝑇,𝑈⊆[𝑛]

෠𝑓 𝑆 ෠𝑓 𝑇 ෠𝑓 𝑈 𝔼
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]

Since 𝑥𝑖
2 = 𝑦𝑖

2 = 1

Since 𝐱 and 𝐲 are independent

Since 𝐳 = 𝐱 ∘ 𝐲

Since 𝐱 and 𝐲′s coordinates
 are independent

a= ς𝑖∈𝑆Δ𝑈 𝔼
𝑥𝑖∈{−1,1}

[𝑥𝑖] ⋅ ς𝑖∈𝑇Δ𝑈 𝔼
𝑦𝑖∈{−1,1}

[𝑦𝑖]

𝔼
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)] is 1 if 𝑆 = 𝑇 = 𝑈 and 0 otherwise.Claim.



Proof of Sum-Of-Cubes Lemma (Done)
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=
1

2
+

1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3Sum-Of-Cubes Lemma.

Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts =
1

2
+

1

2
෍

𝑆,𝑇,𝑈⊆[𝑛]

෠𝑓 𝑆 ෠𝑓 𝑇 ෠𝑓 𝑈 E
𝐱,𝐲∈ −1,1 𝑛

[𝜒𝑆(𝒙)𝜒𝑇(𝒚)𝜒𝑈(𝒛)]



Proof of Correctness Theorem

Proof: Suppose to the contrary that

• Then max
𝑆⊆ 𝑛

መ𝑓 𝑆 > 1 − 2𝜀. That is, መ𝑓 𝑇 > 1 − 2𝜀 for some 𝑇 ⊆ 𝑛 .

• But መ𝑓 𝑇 = 𝑓, 𝜒𝑇 = 1 − 2 ⋅ (fraction of disagreements between 𝑓 and 𝜒𝑇)

• 𝑓 disagrees with a linear function 𝜒𝑇 on < 𝜀 fraction of values.      
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By Sum-Of-Cubes Lemma

Since መ𝑓 𝑆 2 ≥ 0

Parseval Equality

Correctness Theorem (restated)

If 𝑓 is ε-far from linear then Pr BLR 𝑓  accepts ≤ 1 − 𝜀. 

=
1

2
+

1

2
෍

𝑆⊆[𝑛]

መ𝑓 𝑆 3

≤
1

2
+

1

2
⋅ max

𝑆⊆ 𝑛
መ𝑓 𝑆 ⋅ ෍

𝑆⊆ 𝑛

መ𝑓 𝑆 2

=
1

2
+

1

2
⋅ max

𝑆⊆ 𝑛
መ𝑓 𝑆

1 − 𝜀 < Pr
𝐱,𝐲∈ −1,1 𝑛

BLR 𝑓 accepts

⨳



Summary

BLR tests whether a function 𝑓: 0,1 𝑛 → {0,1} is

 linear or 𝜀-far from linear 

(≥ 𝜀2𝑛 values need to be changed to make it linear)

in 𝑂
1

𝜀
 time.
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Tolerant Property Tester

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



Tolerant Property Testing [Parnas Ron Rubinfeld]

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Equivalent problem: approximating distance to the property with 

additive error.

Property Tester

Close to YES

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



𝜀 𝜀1
𝜀2



Distance Approximation to Property 𝓟

Input: Parameter 𝜀 ∈ (0,1/2] and query access to an object 𝑓
𝑑𝑖𝑠𝑡 𝑓,𝓟 = min

𝑔∈𝓟
𝑑𝑖𝑠𝑡 𝑓, 𝑔

𝑑𝑖𝑠𝑡 𝑓, 𝑔 = fraction of representation on which 𝑓 and 𝑔 differ

Output: An estimate Ƹ𝜀 such that w.p. ≥
2

3

 Ƹ𝜀 − 𝑑𝑖𝑠𝑡(𝑓,𝓟) ≤ 𝜀

20



Approximating Distance to Monotonicity for 0/1 Sequences

21

Input: Parameter 𝜀 ∈ (0,1/2] and 

            a list of 𝑛 zeros and ones (equivalently, 𝑓: 𝑛 → {0,1}) 

Question:  How far is this list to being sorted?

(Equivalently, how far is 𝑓 from monotone?)

dist 𝑓, 𝑀𝑂𝑁𝑂 =distance from 𝑓 to monotone

Dist 𝑓, 𝑀𝑂𝑁𝑂 = 𝑛 ⋅ dist 𝑓, 𝑀𝑂𝑁𝑂

Note: Dist 𝑓, 𝑀𝑂𝑁𝑂 = 𝑛 − 𝐿𝐼𝑆 ,                                                                                      
where LIS is the longest increasing subsequence

Output: An estimate Ƹ𝜀 such that w.p. ≥
2

3

 Ƹ𝜀 − dist 𝑓, 𝑀𝑂𝑁𝑂 ≤ 𝜀

Today: can answer in 𝑂
1

𝜀2  time [Berman Raskhodnikova Yaroslavtsev]



Distance to Monotonicity over POset  Domains

• Let 𝑓 be a function over a partially ordered domain 𝐷.

• Violated pair: 

• The violation graph 𝐺𝑓 is a directed graph with vertex set 𝐷 whose edge set 

is the set of pairs (𝑥, 𝑦) violated by 𝑓. 

• 𝑉𝐶𝑓 is a minimum vertex cover of 𝐺𝑓

• 𝑀𝑀𝑓 is a maximum matching in 𝐺𝑓

22

Characterization of Dist 𝑓, Mono  for 𝑓: 𝐷 → 0,1  [FLNRRS 02]
Dist 𝑓, Mono = MM𝑓 = |𝑉𝐶𝑓|

01



Distance to Monotonicity for 0/1 Sequences

• Let 𝑓: 𝑛 → 0,1

• Great notation switch: 𝑔𝑖 = −1 𝑓(𝑖) for 𝑖 ∈ [𝑛]

• Cumulative sums: 𝑠0 = 0 and 𝑠𝑖 = 𝑠𝑖−1 + 𝑔𝑖 for 𝑖 ∈ [𝑛]

• Final sum: 𝑠𝑓 = 𝑠𝑛

• Maximum sum: 𝑚𝑓 = max𝑖=0
𝑛 𝑠𝑖

Proof: 

1. Construct a matching of that size

2. Construct a vertex cover of that size.

23

dist(𝑓, 𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1  [Berman Raskhodnikova Yaroslavtsev]

Dist 𝑓, Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓

2



Distance to Monotonicity for 0/1 Sequences

Proof: (1) Construct a matching that leaves 2𝑚𝑓 − 𝑠𝑓 nodes unmatched

Idea: For each edge chosen for the matching, perform operations on vector 𝑔 
that make it shorter while the maximum and the final sum remain unchanged.

       While there exists an index 𝑖 such that 𝑔𝑖 = −1 and 𝑔𝑖+1 = 1

                  match the vertices that contributed 𝑔𝑖 and 𝑔𝑖+1;

                  remove 𝑔𝑖 and 𝑔𝑖+1 from 𝑔.

• Let 𝑘 be the length of the sequence after this procedure halted.

• Then 𝑔 consists of 1’s followed by -1’s.

• 𝑠𝑓 = 𝑚𝑓 − 𝑘 − 𝑚𝑓

• 𝑘 = 2𝑚𝑓 − 𝑠𝑓 

• The construction matches 𝑛 − 𝑘 = 𝑛 − 2𝑚𝑓 + 𝑠𝑓 vertices.
24

Characterization dist(𝑓, 𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1

Dist 𝑓, Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓

2

The number of 1’s is 𝑚𝑓.



Distance to Monotonicity for 0/1 Sequences

Proof: (2) Construct a vertex cover.

Idea: Consider the edges of the matching we constructed in the opposite order 
of insertion.

25

Characterization dist(𝑓, 𝑀𝑜𝑛𝑜) for 𝑓: [𝑛] → 0,1

Dist 𝑓, Mono =
𝑛 − 2𝑚𝑓 + 𝑠𝑓

2



Distance to Monotonicity: Algorithm

• Let 𝜀𝑓 = 𝑑𝑖𝑠𝑡 𝑓, 𝑀𝑜𝑛𝑜 = 𝐷𝑖𝑠𝑡(𝑓, 𝑀𝑜𝑛𝑜)/𝑛 

Proof idea: Let 𝑍 𝑆 = 𝐷𝑖𝑠𝑡( ሚ𝑓, 𝑀𝑜𝑛𝑜)

We’ll define random variables 𝑋(𝑆) and Y(𝑆), such that 𝑋 𝑆 ≤ 𝑍 𝑆 ≤ 𝑌(𝑆)

𝑋(𝑆) will be in terms of matching 𝑀𝑀𝑓;     𝑌(𝑆) in terms of vertex cover 𝑉𝐶𝑓 

26

Algorithm (Input: 𝜀, 𝑛;  query 𝑎𝑐𝑒𝑠𝑠 𝑡𝑜 𝑓: 𝑛 → {0,1}

1.  Sample a random subset 𝑺 ⊂ [𝑛]

2.  Let ሚ𝑓 = 𝑓|𝑆

3.  Compute ǁ𝜀 =  𝐷𝑖𝑠𝑡( ሚ𝑓, 𝑀𝑜𝑛𝑜)/𝑠       
4.  Return ǁ𝜀

where each element is included w.p. 𝑠/𝑛 independently 

Theorem

𝜀𝑓 − 2𝜀𝑓/𝑠 ≤  𝔼 ǁ𝜀 ≤ 𝜀𝑓 

Var[ ǁ𝜀]= 𝑂(𝜀𝑓/𝑠)
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