Sublinear Algorithms

LECTURE 18

Last time

- Finish approximating the average degree
- Testing linearity of Boolean functions

Today

- Finish testing linearity of Boolean functions [Blum Luby Rubinfeld]
- Tolerant testing and distance estimation

HW 4 is due Thursday

Next week: Fourier-Monte Carlo Descent Trees, which combine harmonic analysis with stochastic branch pruning to estimate edge-connectivity in near-quantum time.

Sofya Raskhodnikova; Boston University

Testing If a Boolean Function Is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear

($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Today: can answer in $O\left(\frac{1}{\varepsilon}\right)$ time

BLR Test (ε , query access to f)

- 1. Pick x and y independently and uniformly at random from $\{0,1\}^n$.
- 2. Set z = x + y and query f on x, y, and z. Accept iff f(z) = f(x) + f(y).

Analysis

If f is linear, BLR always accepts.

Correctness Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95]

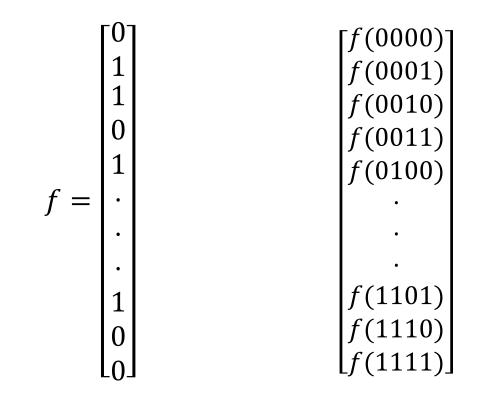
If f is ε -far from linear then $> \varepsilon$ fraction of pairs x and y fail BLR test.

• Then, by Witness Lemma (Lecture 1), $2/\varepsilon$ iterations suffice.

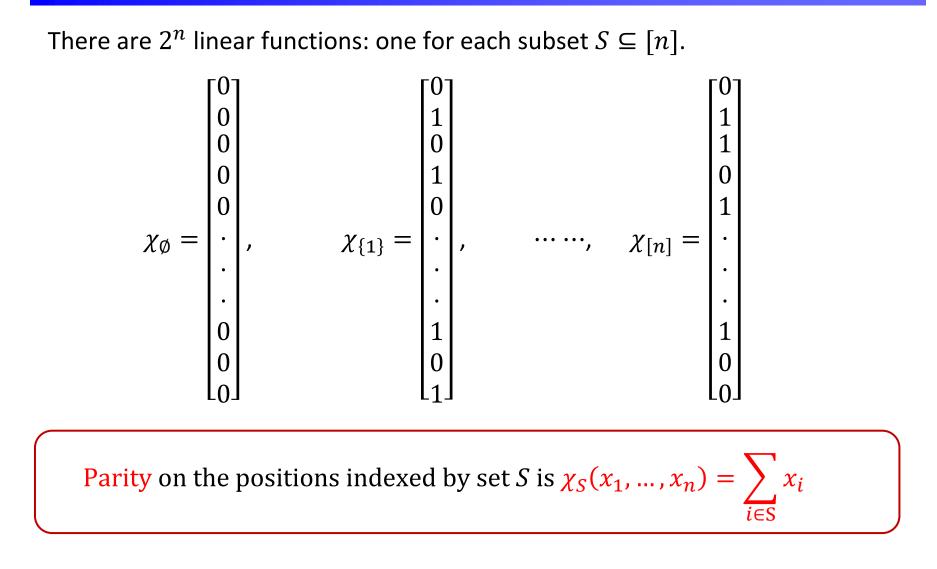
Analysis Technique: Fourier Expansion

Representing Functions as Vectors

Stack the 2^n values of $f(\mathbf{x})$ and treat it as a vector in $\{0,1\}^{2^n}$.



Linear functions



Great Notational Switch

Idea: Change notation, so that we work over reals instead of a finite field.

- Vectors in $\{0,1\}^{2^n} \longrightarrow$ Vectors in \mathbb{R}^{2^n} .
- $0/False \rightarrow 1$ $1/True \rightarrow -1$.
- Addition (mod 2) \rightarrow Multiplication in \mathbb{R} .
- Boolean function: $f : \{-1, 1\}^n \to \{-1, 1\}$.
- Linear function $\chi_S: \{-1, 1\}^n \to \{-1, 1\}$ is given by $\chi_S(\mathbf{x}) = \prod_{i \in S} x_i$.

Inner product of functions
$$f, g : \{-1, 1\}^n \to \{-1, 1\}$$

 $\langle f, g \rangle = \frac{1}{2^n} (\text{dot product of } f \text{ and } g \text{ as vectors})$
 $= \underset{x \in \{-1, 1\}^n}{\text{avg}} [f(x)g(x)] = \underset{x \in \{-1, 1\}^n}{\mathbb{E}} [f(x)g(x)].$

 $\langle f, g \rangle = 1 - 2 \cdot (\text{fraction of } \text{disagreements} \text{ between } f \text{ and } g)$

Claim. The functions $(\chi_S)_{S \subseteq [n]}$ form an orthonormal basis for \mathbb{R}^{2^n} .

Fourier Expansion Theorem

Idea: Work in the basis $(\chi_S)_{S \subseteq [n]}$, so it is easy to see how close a specific function f is to each of the linear functions.

Fourier Expansion Theorem

Every function $f : \{-1, 1\}^n \to \mathbb{R}$ is uniquely expressible as a linear combination (over \mathbb{R}) of the 2^n linear functions: $f = \sum_{S \subseteq [n]} \hat{f}(S) \chi_{S, N}$

where $\hat{f}(S) = \langle f, \chi_S \rangle$ is the Fourier Coefficient of f on set S.

Parseval Equality

Parseval Equality Let $f: \{-1, 1\}^n \to \mathbb{R}$. Then $\langle f, f \rangle = \sum_{i} \hat{f}(S)^2$ **Proof:** By Fourier Expansion Theorem $\langle f, f \rangle = \left\langle \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \sum_{T \subseteq [n]} \hat{f}(T) \chi_T \right\rangle$ By linearity of inner product $=\sum \sum \hat{f}(S) \,\hat{f}(T) \langle \chi_S, \chi_T \rangle$ By orthonormality of χ_S 's $=\sum_{i}\hat{f}(S)^{2}$

Parseval Equality

Parseval Equality for Boolean Functions

Let $f: \{-1, 1\}^n \to \{-1, 1\}$. Then

$$\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}(S)^2 = 1$$

Proof:

By definition of inner product

$$\langle f, f \rangle = \mathbb{E}_{x \in \{-1,1\}^n} [f(x)^2]$$

= 1

BLR Test in {-1,1} Notation

BLR Test (f, ε)

- 1. Pick x and y independently and uniformly at random from $\{-1,1\}^n$.
- 2. Set $z = x \circ y$ and query f on x, y, and z. Accept iff f(x)f(y)f(z) = 1.

Vector product notation: $\mathbf{x} \circ \mathbf{y} = (x_1y_1, x_2y_2, \dots, x_ny_n)$

Sum-Of-Cubes Lemma. $\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\text{BLR}(f)\text{accepts}] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$

Proof: Indicator variable
$$\mathbb{1}_{BLR} = \begin{cases} 1 & \text{if BLR accepts} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathbb{1}_{BLR} = \frac{1}{2} + \frac{1}{2}f(\mathbf{x})f(\mathbf{y})f(\mathbf{z}).$

$$\Pr_{\boldsymbol{x},\boldsymbol{y}\in\{-1,1\}^n}[BLR(f)accepts] = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}\in\{-1,1\}^n}[\mathbb{1}_{BLR}] = \frac{1}{2} + \frac{1}{2} \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}\in\{-1,1\}^n}[f(\boldsymbol{x})f(\boldsymbol{y})f(\boldsymbol{z})]$$

By linearity of expectation

Proof of Sum-Of-Cubes Lemma

S,**T**,**U**⊆[n]

So far:
$$\Pr_{x,y \in \{-1,1\}^n}[BLR(f)accepts] = \frac{1}{2} + \frac{1}{2} \sum_{x,y \in \{-1,1\}^n} [f(x)f(y)f(z)]$$

Next:

$$\mathbb{E}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[f(\mathbf{x})f(\mathbf{y})f(\mathbf{z})] \qquad \text{By Fourier Expansion Theorem}$$

$$= \mathbb{E}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}\left[\left(\sum_{S\subseteq[n]}\hat{f}(S)\chi_S(\mathbf{x})\right)\left(\sum_{T\subseteq[n]}\hat{f}(T)\chi_T(\mathbf{y})\right)\left(\sum_{U\subseteq[n]}\hat{f}(U)\chi_U(\mathbf{z})\right)\right] \qquad \text{Distributing out the product of sums}$$

$$= \mathbb{E}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}\left[\left(\sum_{S,T,U\subseteq[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})\right)\right] \qquad \text{By linearity of expectation}$$

$$= \sum_{I=1}^{n} \hat{f}(S)\hat{f}(T)\hat{f}(U) \mathbb{E}_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\chi_S(\mathbf{x})\chi_T(\mathbf{y})\chi_U(\mathbf{z})]$$

Proof of Sum-Of-Cubes Lemma (Continued)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}[\operatorname{BLR}(f)\operatorname{accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S,T,U\subseteq[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)_{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})]$$

$$Claim. \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})] \text{ is 1 if } S = T = U \text{ and 0 otherwise.}$$
• Let SAT denote symmetric difference of sets S and T
$$\underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\chi_{S}(\mathbf{x})\chi_{T}(\mathbf{y})\chi_{U}(\mathbf{z})] = \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\prod_{i\in S} x_{i} \prod_{i\in T} y_{i} \prod_{i\in U} z_{i}]$$

$$= \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\prod_{i\in S} x_{i} \prod_{i\in T} y_{i} \prod_{i\in U} x_{i}y_{i}]$$

$$= \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\prod_{i\in S\Delta U} x_{i} \prod_{i\in T\Delta U} y_{i}]$$

$$= \underset{\mathbf{x}\in\{-1,1\}^{n}}{\mathbb{E}}[\prod_{i\in S\Delta U} x_{i}] \cdot \underset{\mathbf{y}\in\{-1,1\}^{n}}{\mathbb{E}}[\prod_{i\in S\Delta U} y_{i}]$$

$$= \prod_{i\in S\Delta U} \underset{\mathbf{x}\in\{-1,1\}}{\mathbb{E}}[x_{i}] \cdot \prod_{i\in T\Delta U} \underset{\mathbf{y}\in\{-1,1\}}{\mathbb{E}}[y_{i}]$$

$$= \begin{cases} 1 \text{ when } S\Delta U = \emptyset \text{ and } T\Delta U = \emptyset \\ 0 \text{ otherwise} \end{cases}$$

Proof of Sum-Of-Cubes Lemma (Done)

$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[\operatorname{BLR}(f)\operatorname{accepts}] = \frac{1}{2} + \frac{1}{2}\sum_{\boldsymbol{S},\boldsymbol{T},\boldsymbol{U}\subseteq[n]}\widehat{f}(\boldsymbol{S})\widehat{f}(\boldsymbol{T})\widehat{f}(\boldsymbol{U}) \underset{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}{\operatorname{E}}[\chi_{\boldsymbol{S}}(\boldsymbol{x})\chi_{\boldsymbol{T}}(\boldsymbol{y})\chi_{\boldsymbol{U}}(\boldsymbol{z})]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3$$

Sum-Of-Cubes Lemma.
$$\Pr_{\mathbf{x},\mathbf{y}\in\{-1,1\}^n}[BLR(f)accepts] = \frac{1}{2} + \frac{1}{2}\sum_{S\subseteq[n]}\hat{f}(S)^3$$

Proof of Correctness Theorem

Correctness Theorem (restated)

If f is ε -far from linear then $\Pr[BLR(f) \text{ accepts}] \le 1 - \varepsilon$.

Proof: Suppose to the contrary that

$$1 - \varepsilon < \Pr_{\mathbf{x}, \mathbf{y} \in \{-1, 1\}^n} [\text{BLR}(f) \text{accepts}]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S \subseteq [n]} \hat{f}(S)^3$$

$$\leq \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right) \cdot \sum_{S \subseteq [n]} \hat{f}(S)^2$$

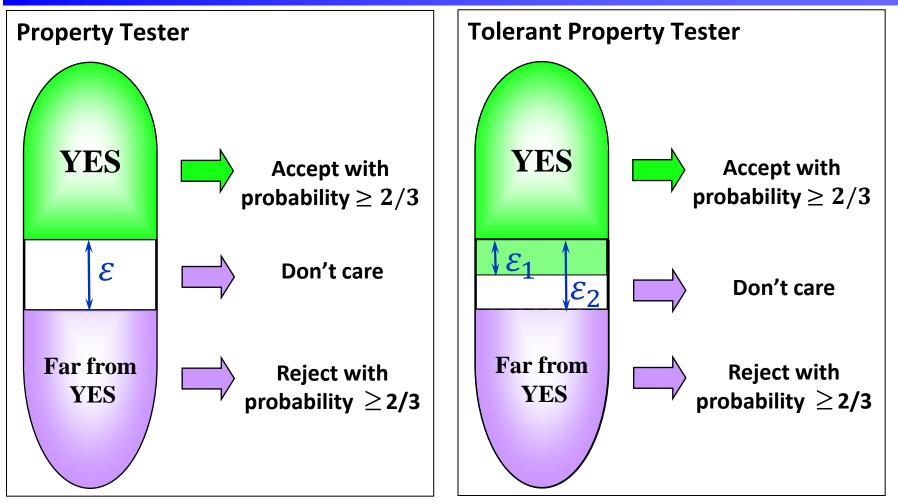
$$= \frac{1}{2} + \frac{1}{2} \cdot \left(\max_{S \subseteq [n]} \hat{f}(S)\right)$$
Parseval Equality

- Then $\max_{S \subseteq [n]} \hat{f}(S) > 1 2\varepsilon$. That is, $\hat{f}(T) > 1 2\varepsilon$ for some $T \subseteq [n]$.
- But $\hat{f}(T) = \langle f, \chi_T \rangle = 1 2 \cdot (\text{fraction of } \text{disagreements} \text{ between } f \text{ and } \chi_T)$
- *f* disagrees with a linear function χ_T on $< \varepsilon$ fraction of values.

Ж

BLR tests whether a function $f: \{0,1\}^n \to \{0,1\}$ is linear or ε -far from linear $(\geq \varepsilon 2^n$ values need to be changed to make it linear) in $O\left(\frac{1}{\varepsilon}\right)$ time.

Tolerant Property Testing [Parnas Ron Rubinfeld]



Two objects are at distance ε = they differ in an ε fraction of places *Equivalent problem:* approximating distance to the property with additive error.

Distance Approximation to Property ${\cal P}$

Input: Parameter $\varepsilon \in (0,1/2]$ and query access to an object f $dist(f, \mathcal{P}) = \min_{g \in \mathcal{P}} dist(f, g)$ dist(f,g) = fraction of representation on which f and g differ Output: An estimate $\hat{\varepsilon}$ such that w.p. $\geq \frac{2}{3}$ $|\hat{\varepsilon} - dist(f, \mathcal{P})| \leq \varepsilon$ **Approximating Distance to Monotonicity for 0/1 Sequences**

Input: Parameter $\varepsilon \in (0, 1/2]$ and

```
a list of n zeros and ones (equivalently, f: [n] \rightarrow \{0,1\})
```

```
Question: How far is this list to being sorted?
```

(Equivalently, how far is f from monotone?)

$$\begin{split} \operatorname{dist}(f, MONO) &= \operatorname{distance} \text{ from } f \text{ to monotone} \\ \operatorname{Dist}(f, MONO) &= n \cdot \operatorname{dist}(f, MONO) \\ \operatorname{Note:} \operatorname{Dist}(f, MONO) &= n - |LIS|, \\ \text{where LIS is the longest increasing subsequence} \\ \operatorname{Output:} \text{ An estimate } \hat{\varepsilon} \text{ such that } \text{w.p.} \geq \frac{2}{3} \\ &|\hat{\varepsilon} - \operatorname{dist}(f, MONO)| \leq \varepsilon \\ \\ \operatorname{Today:} \text{ can answer in } O\left(\frac{1}{\varepsilon^2}\right) \text{ time } [\operatorname{Berman Raskhodnikova Yaroslavtsev}] \end{split}$$

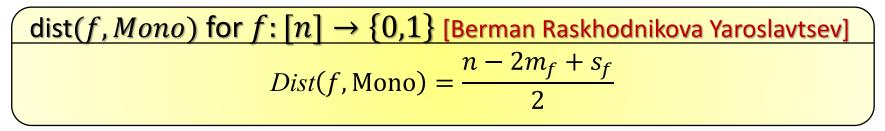
Distance to Monotonicity over POset Domains

- Let *f* be a function over a partially ordered domain *D*.
- Violated pair:
 Yiolated pair:
- The violation graph G_f is a directed graph with vertex set D whose edge set is the set of pairs (x, y) violated by f.
- VC_f is a minimum vertex cover of G_f
- MM_f is a maximum matching in G_f

Characterization of Dist(f, Mono) for $f: D \rightarrow \{0,1\}$ [FLNRRS 02] $Dist(f, Mono) = |MM_f| = |VC_f|$

Distance to Monotonicity for 0/1 Sequences

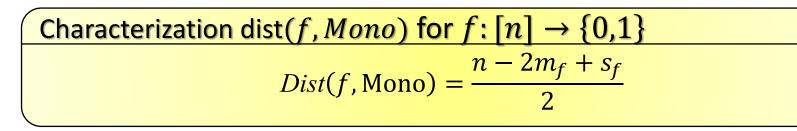
- Let $f: [n] \to \{0,1\}$
- Great notation switch: $g_i = (-1)^{f(i)}$ for $i \in [n]$
- Cumulative sums: $s_0 = 0$ and $s_i = s_{i-1} + g_i$ for $i \in [n]$
- Final sum: $s_f = s_n$
- Maximum sum: $m_f = \max_{i=0}^n s_i$



Proof:

- 1. Construct a matching of that size
- 2. Construct a vertex cover of that size.

Distance to Monotonicity for 0/1 Sequences



Proof: (1) Construct a matching that leaves $2m_f - s_f$ nodes unmatched Idea: For each edge chosen for the matching, perform operations on vector g

that make it shorter while the maximum and the final sum remain unchanged.

While there exists an index *i* such that $g_i = -1$ and $g_{i+1} = 1$

match the vertices that contributed g_i and g_{i+1} ; remove g_i and g_{i+1} from g_i .

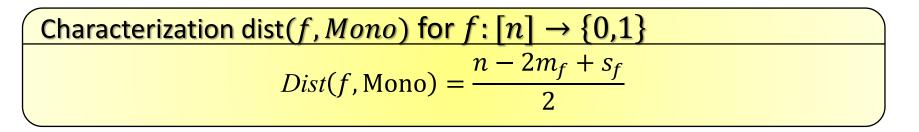
- Let k be the length of the sequence after this procedure halted.
- Then *g* consists of 1's followed by -1's.

• $s_f = m_f - (k - m_f)$

- $k = 2m_f s_f$
- The construction matches $n k = n 2m_f + s_f$ vertices.

The number of 1's is m_{f_1}

Distance to Monotonicity for 0/1 Sequences



Proof: (2) Construct a vertex cover.

Idea: Consider the edges of the matching we constructed in the opposite order of insertion.

Distance to Monotonicity: Algorithm

Algorithm (**Input**: ε , n; query *acess to* $f: [n] \rightarrow \{0,1\}$

- Sample a random subset S ⊂ [n] where each element is included w.p. s/n independently
 Let f̃ = f_{|S}
 Compute ε̃ = Dist(f̃, Mono)/s
- 4. **Return** $\tilde{\varepsilon}$

• Let
$$\varepsilon_f = dist(f, Mono) = Dist(f, Mono)/n$$

Theorem

$$\varepsilon_f - \sqrt{2\varepsilon_f/s} \le \mathbb{E}[\tilde{\varepsilon}] \le \varepsilon_f$$
$$Var[\tilde{\varepsilon}] = O(\varepsilon_f/s)$$

Proof idea: Let $Z(S) = Dist(\tilde{f}, Mono)$

We'll define random variables X(S) and Y(S), such that $X(S) \le Z(S) \le Y(S)$ X(S) will be in terms of matching MM_f ; Y(S) in terms of vertex cover VC_f