Sublinear Algorithms

L ECTURE 18

Last time
* Finish approximating the average degree
» Testing linearity of Boolean functions

Today

* Finish testing linearity of Boolean functions
[Blum Luby Rubinfeld]

» Tolerant testing and distance estimation

HW 4 is due Thursday

Next week: Fourier-Monte Carlo Descent Trees, which combine
harmonic analysis with stochastic branch pruning to estimate

edge-connectivity in near-quantum time.
Sofya Raskhodnikova;Boston University




Testing If a Boolean Function Is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Today: can answer in O e) time



Linearity Test [Blum Luby Rubinfeld 90]

(BLR Test (g, query access to f) \
1. Pick x and y independently and uniformly at random from {0,1}".
2. Setz = x+ yandquery fonx,y,and z. Accept iff f(z) = f(x) + f(y).

Analysis
If fis linear, BLR always accepts.

/COITEC'CHESS Theorem [Bellare Coppersmith Hastad Kiwi Sudan 95] )

If f is e-far from linear then > ¢ fraction of pairs x and y fail BLR test.
- J

e Then, by Witness Lemma (Lecture 1), 2/¢ iterations suffice.



Analysis Technique:
Fourier Expansion



Representing Functions as Vectors

Stack the 2™ values of f(x) and treat it as a vector in {O,l}zn.

07 £(0000)
1 £(0001)
1 £(0010)
0 £(0011)
1 £(0100)
f=1 :
1 f(1101)
0 £(1110)
0. F(1111)]




l_Inear functions

There are 2" linear functions: one for each subset S € [n].

07 07 07
0 1 1
0 0 1
0 1 0
0 0 1
X® = |, X{l} = o I , X[Tl] —_ .
0 1 1
0 0 0
0 NE 0

Parity on the positions indexed by set S is y¢(x, ..., x,,) = 2 X;

LES




Great Notational Switch

ldea: Change notation, so that we work over reals instead of a finite field.
e Vectorsin{0,1}2° —  Vectorsin R?%".

e O/False — 1 1/True — -1.

e Addition (mod 2) —  Multiplication in R.

e Boolean function: f : {—1,1}" - {—1,1}.

e Linear function ygs: {—1,1}" = {—1,1}is given by ys(x) = [];c5 x;.



Benefits of New Notation

" Inner product of functionsf g:{—1,1}" - {-1,1} )
(f,9)=—=— (dot product of f and g as vectors)
= avg [fWg@I= _E [f@g(x]
\ x€e{—1,1} /

(f,g) =1— 2 - (fraction of disagreementsbetween f and g)

[ Claim. The functions (xs)sc[n] form an orthonormal basis for R2",




Fourier Expansion Theorem

Idea: Work in the basis (Xs)sc[n], SO it is easy to see how close a specific
function f is to each of the linear functions.

/Fourier Expansion Theorem I
Every function f : {—1,1}" —» Ris uniquely expressible as a linear
combination (over R) of the 2™ linear functions: A
( ) = 2 fSxs,

~ Sc[n]
there f(S) = (f, xs) is the Fourier Coefficient of f on setS. Y,




Parseval Equality

Parseval Equality )
Let f:{—1,1}" - R. Then
(F.0= D F6)
\_ Scn] -/
Proof: By Fourier Expansion Theorem

(f.f) = <Z

Scn

f(S)XSr z f(T)XT>
] T<S([n]

By linearity of inner product

= > D FO FO s xr)
S T

= ) f(s)?
S

By orthonormality of ys’s
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Parseval Equality

("Parseval Equality for Boolean Functions

Let f:{—1,1}" - {—1,1}. Then

(F.0r= ) 2 =1
\_ Sc[n]

Proof:

By definition of inner product

(f.r=__E  [f(x)?]

xe{—1,1}"

=1

Since f is Boolean

12



BLR Test in {-1,1} Notation

(BLR Test (f, €) )
1. Pick x and y independently and uniformly at random from {—1,1}".
2. Setz =xoyandquery fonx,y,and z. Acceptiff f(x)f(y)f(z) = 1.

Vector product notation: x o y = (X141, X2V2, e+ ) XnVn)

1 1 N
Sum-Of-Cubes Lemma. Pr _ [BLR(f)accepts] = =+ = E f(S)3
x,ye{—1,1}" 2 2 S
Cin

1 if BLR accepts

Proof: Indicator variable g, = {0 th .
otherwise

g = 5+ fOfDf (2).

1 1
Pt BLR(Daccepts] = E | [15,] A B FOf D]

By linearity of expectation 13



Proof of Sum-Of-Cubes Lemma

Sofar:  Pr [BLR(Paccepts] =5+5 E  [f()f(3)f(2)]
Next:

E{ Ly [f () f(y)f(2)] By Fourier Expansion Theorem
= B <Sczm FSs(0) ) (ZH FDxrO) ) <ZH FWxu(@) )

Distributing out the product of sums

= E ( z f(S)f(T)f(U)XS(x)XT()’)XU(Z)>

x,ye{—1,1}"
|\ S,7,US[n]

By linearity of expectation

_ z FOFMFW)._E  [xs@xrxu(@)]

x,ye{—1,1}"
S,T,Uc[n]
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Proof of Sum-Of-Cubes Lemma (Continued)

Pr_ [BLR(Daccepts] =5+5 > FOFMFW), _E, s 0xo(@)]

x,ye{—1,1}" x,ye{—1,1}"
S, T, Ucn]
{Claim. XYE{I_E1 1}n[)(5(x))(T(y))(U(z)] islif S =T = U and 0 otherwise. «
e Let SATdenote symmetric difference of sets S and T
x,ye{[—El,l}" s xr(V)xu(2)] = X,yE{[—El,l}n[HiES Xi ier villieu zil
] Si =Xo
= xye{]]—zl 1 [ lies xi Mier vi Hliey xivi] B
, ’ : Since x* = y? =1
— xye{Ilzl 1 UTiesav xi [lierav vil
’ P ' [l_ ] . [1_[ ] Since X and y are independent
= Uliesav Xil - Uliesav Vi
xe{-1,1} ' ©oyel-11 = l Since X and y's coordinates
= Miesav  E alai] Thierav (B D] | areindependen:
= [liesav xie{IE1,1}[xi] ierav yie{IE1,1}[y"]

_ {1 when SAU = @ and TAU = @

0 otherwise 5



Proof of Sum-Of-Cubes Lemma (Done)

Pr_ [BLR(Daccepts] =5+5 > FOFMFW), _E s 0xo(@)]

x,ye{—1,1}" s m x,ye{—1,1}"
LY = n

ZfSF

l\JIb—\
Nlr—\

1

1 A
{Sum-Of-Cubes Lemma. {Prl 1}n[BLR(f)accepts = E > Z £($)3
Q




Proof of Correctness Theorem

( Correctness Theorem (restated)
L If f is e-far from linear then Pr[BLR(f) accepts] < 1 — ¢.
Proof: Suppose to the contrary that

1—e< X,ye{P_rl J}n[BLR(f )accepts]

—1

By Sum-Of-Cubes Lemma

1 1
_ 1 3
=213 Z 7 () .

Sc[n] Since f(5)2 =0

1 1 " "
< _ 4. : 2
<s+5 (maxf®) Y 7

Sc[n]
— 11 £ Parseval Equality
=3+3 (o /)
. Thensnéaxf(S) > 1 — 2¢. Thatis, f(T) > 1 — 2¢ for some T C [n].

e But f(T) =(f, xr) =1 — 2 - (fraction of disagreementsbetween f and yr)
e f disagrees with a linear function y; on < ¢ fraction of values. ¥
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Summary

BLR tests whether a function f:{0,1}"* — {0,1}is
linear or e-far from linear

(= 2™ values need to be changed to make it linear)

in 0 G) time.
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Tolerant Property Testing [Parnas Ron Rubinfeld]

-

YES

&

/

Far from
YES

Property Tester

=)
=)

Accept with
probability > 2/3

Don’t care

Reject with
probability >2/3

Tolerant Property Tester

Far from
YES

=)
=)

Accept with
probability > 2/3

Don’t care

Reject with
probability > 2/3

Two objects are at distance ¢ = they differ in an ¢ fraction of places
Equivalent problem: approximating distance to the property with
additive error.




Distance Approximation to Property 2

Input: Parameter € € (0,1/2] and query access to an object f

dist(f,P) = mijr; dist(f, g)
ge
dist(f,g) = fraction of representation on which f and g differ

Output: An estimate &€ such that w.p. = %
| —dist(f,P)| < ¢
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Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter € € (0,1/2] and
a list of n zeros and ones (equivalently, f: [n] = {0,1})
Question: How far is this list to being sorted?
(Equivalently, how far is f from monotone?)

dist(f, MONQ) =distance from f to monotone
Dist(f, MONO) = n - dist(f, MONO)

Note: Dist(f, MONO) = n — |LIS]|,
where LIS is the longest increasing subsequence

Output: An estimate &€ such that w.p. = %
|€ — dist(f, MONO)| < ¢

. 1) ,.
Today: can answer in O (;) time [Berman Raskhodnikova Yaroslavtsev]
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Distance to Monotonicity over POset Domains

e Let f be afunction over a partially ordered domain D.
e Violated pair: >0—>0 \(o)
* The violation graph Gy is a directed graph with vertex set D whose edge set

is the set of pairs (x, y) violated by f.

) VCf is @ minimum vertex cover of Gf

e MM;g is a maximum matching in Gy

( Characterization of Dist(f, Mono) for f: D — {0,1} [FLNRRS 02] )
L Dist(f, Mono) = |[MM;| = V|
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Distance to Monotonicity for 0/1 Sequences

e Letf:[n] - {0,1}

e Great notation switch: g; = (—=1)® for i € [n]

e Cumulative sums: s;p = 0ands; = s;_1 + g; fori € [n]
e Final sum: s = sy

e Maximum sum: mg = max;—, S;

(" dist(f, Mono) for f: [n] — {0,1} [Berman Raskhodnikova Yaroslavtsev] )
n—2ms + s¢
2

Dist(f,Mono) =

Proof:
1. Construct a matching of that size
2. Construct a vertex cover of that size.
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Distance to Monotonicity for 0/1 Sequences

( Characterization dist(f, Mono) for f: [n] - {0,1} )
L . n—2ms + s¢ J
Dist(f,Mono) = >

Proof: (1) Construct a matching that leaves 2my¢ — sy nodes unmatched

|dea: For each edge chosen for the matching, perform operations on vector g
that make it shorter while the maximum and the final sum remain unchanged.

While there exists an index i such that g; = —1and g;;1 =1
match the vertices that contributed g; and g; .4,

remove g; and g;,1 from g.
e Let k be the length of the sequence after this procedure halted.
 Then g consists of 1’s followed by -1’s. The number of 1°s is m.

+ sp=mp—(k—my)
] k = me — Sf
e The construction matchesn — k = n — me + sf vertices. ”



Distance to Monotonicity for 0/1 Sequences

( Characterization dist(f, Mono) for f: [n] - {0,1} )
L . n—2ms + s¢ J
Dist(f,Mono) = >

Proof: (2) Construct a vertex cover.

Idea: Consider the edges of the matching we constructed in the opposite order
of insertion.
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Distance to Monotonicity: Algorithm

/Algorithm (Input: &, n; query acess to f:[n] - {0,1}
1. Sample arandom subset S C [n]

where each element is included w.p. s/n independently

2. LEtf = flS
3. Compute § = Dist(f, Mono)/s

QL Return & /

e Lletegr = dist(f,Mono) = Dist(f, Mono)/n
( Theorem )

L Ef—1/2€f/SS IE[g]SEf J

Var[€]= 0(&f/s)

Proof idea: Let Z(S) = Dist(f, Mono)
We'll define random variables X (S) and Y(S), such that X(§) < Z(S) < Y(S)
X (S) will be in terms of matching MM¢;  Y(S) in terms of vertex cover V(s
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