
Sublinear Algorithms

LECTURE 19
Last time
• Finish testing linearity of Boolean functions
 [Blum Luby Rubinfeld]
• Tolerant testing and distance estimation
Today
• Estimating distance to sortedness for 0/1

sequences (equivalently, estimating the
length of LIS)

Sofya Raskhodnikova;Boston University

Approximating Distance to Monotonicity for 0/1 Sequences

2

Input: Parameter 𝜀𝜀 ∈ (0,1/2] and
 a list of 𝑛𝑛 zeros and ones (equivalently, 𝑓𝑓: 𝑛𝑛 → {0,1})
Question: How far is this list to being sorted?

(Equivalently, how far is 𝑓𝑓 from monotone?)

dist 𝑓𝑓,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =distance from 𝑓𝑓 to monotone
Dist 𝑓𝑓,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛 ⋅ dist 𝑓𝑓,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
Note: Dist 𝑓𝑓,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛 − 𝐿𝐿𝐿𝐿𝐿𝐿 ,
where LIS is the longest increasing subsequence

Output: An estimate ̂𝜀𝜀 such that w.p. ≥ 2
3

 ̂𝜀𝜀 − dist 𝑓𝑓,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝜀𝜀

Today: can answer in 𝑀𝑀 1
𝜀𝜀2

 time [Berman Raskhodnikova Yaroslavtsev]

Distance to Monotonicity over POset Domains
• Let 𝑓𝑓 be a function over a partially ordered domain 𝐷𝐷.
• Violated pair:
• The violation graph 𝐺𝐺𝑓𝑓 is a directed graph with vertex set 𝐷𝐷 whose edge set

is the set of pairs (𝑥𝑥,𝑦𝑦) violated by 𝑓𝑓.
• 𝑉𝑉𝐶𝐶𝑓𝑓 is a minimum vertex cover of 𝐺𝐺𝑓𝑓
• 𝑀𝑀𝑀𝑀𝑓𝑓 is a maximum matching in 𝐺𝐺𝑓𝑓

3

Characterization of Dist 𝑓𝑓, Mono for 𝑓𝑓:𝐷𝐷 → 0,1 [FLNRRS 02]
Dist 𝑓𝑓, Mono = MM𝑓𝑓 = |𝑉𝑉𝐶𝐶𝑓𝑓|

01

Distance to Monotonicity for 0/1 Sequences
• Let 𝑓𝑓: 𝑛𝑛 → 0,1
• Great notation switch: 𝑔𝑔𝑖𝑖 = −1 𝑓𝑓(𝑖𝑖) for 𝑖𝑖 ∈ [𝑛𝑛]
• Cumulative sums: 𝑠𝑠0 = 0 and 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖−1 + 𝑔𝑔𝑖𝑖 for 𝑖𝑖 ∈ [𝑛𝑛]
• Final sum: 𝑠𝑠𝑓𝑓 = 𝑠𝑠𝑛𝑛
• Maximum sum: 𝑚𝑚𝑓𝑓 = max𝑖𝑖=0𝑛𝑛 𝑠𝑠𝑖𝑖

4

dist(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀) for 𝑓𝑓: [𝑛𝑛] → 0,1 [Berman Raskhodnikova Yaroslavtsev]

Dist 𝑓𝑓, Mono =
𝑛𝑛 − 2𝑚𝑚𝑓𝑓 + 𝑠𝑠𝑓𝑓

2

Distance to Monotonicity: Algorithm

• Let 𝜀𝜀𝑓𝑓 = 𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑 𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑛𝑛

Proof idea: Let 𝑍𝑍 𝐿𝐿 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)
We’ll define random variables 𝑋𝑋(𝐿𝐿) and Y(𝐿𝐿), such that 𝑋𝑋 𝐿𝐿 ≤ 𝑍𝑍 𝐿𝐿 ≤ 𝑌𝑌(𝐿𝐿)
𝑋𝑋(𝐿𝐿) will be in terms of matching 𝑀𝑀𝑀𝑀𝑓𝑓; 𝑌𝑌(𝐿𝐿) in terms of vertex cover 𝑉𝑉𝐶𝐶𝑓𝑓

5

Algorithm (Input: 𝜀𝜀,𝑛𝑛; query 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑑𝑑𝑀𝑀 𝑓𝑓: 𝑛𝑛 → {0,1}
1. Sample a random subset 𝑺𝑺 ⊂ [𝑛𝑛]

2. Let 𝑓𝑓 = 𝑓𝑓|𝑆𝑆
3. Compute ̃𝜀𝜀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑠𝑠
4. Return ̃𝜀𝜀

where each element is independently included with probability 𝑠𝑠
𝑛𝑛

Theorem
𝜀𝜀𝑓𝑓 − 2𝜀𝜀𝑓𝑓/𝑠𝑠 ≤ 𝔼𝔼 ̃𝜀𝜀 ≤ 𝜀𝜀𝑓𝑓

Var[̃𝜀𝜀]= 𝑀𝑀(𝜀𝜀𝑓𝑓/𝑠𝑠)

Sandwiching a Random Variable

Proof: Shift the variables to make 𝑍𝑍 unbiased

 𝑉𝑉− = set of negative values and 𝑉𝑉+ = set of positive values in the support of 𝑍𝑍𝑍.

6

Sandwich Lemma
Let 𝑋𝑋,𝑌𝑌,𝑍𝑍 be discrete random variables with means 𝜇𝜇𝑋𝑋,𝜇𝜇𝑌𝑌,𝜇𝜇𝑍𝑍, satisfying

𝑋𝑋 ≤ 𝑍𝑍 ≤ 𝑌𝑌.
Then 𝔼𝔼 𝑋𝑋 ≤ 𝔼𝔼 𝑍𝑍 ≤ 𝔼𝔼[𝑌𝑌] and

Var 𝑍𝑍 ≤ Var 𝑋𝑋 + Var 𝑌𝑌 + 𝜇𝜇𝑌𝑌 − 𝜇𝜇𝑋𝑋 2.
By definition of expectation

subtract 𝜇𝜇𝑍𝑍 from each
to get 𝑋𝑋𝑍,𝑌𝑌𝑍, and 𝑍𝑍𝑍

𝑋𝑋

𝜇𝜇𝑋𝑋

𝑌𝑌

𝜇𝜇𝑌𝑌
≤ 𝑍𝑍 ≤

𝑋𝑋𝑍

𝜇𝜇𝑋𝑋′=

𝑌𝑌𝑍

𝜇𝜇𝑌𝑌′ =

≤ 𝑍𝑍𝑍 ≤

𝜇𝜇𝑍𝑍′ = 0𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑍𝑍 𝜇𝜇𝑌𝑌 − 𝜇𝜇𝑍𝑍

Var 𝑍𝑍 = Var[𝑍𝑍′] = 𝔼𝔼 𝑍𝑍′ 2 = �
𝑣𝑣∈𝑉𝑉−

Pr 𝑍𝑍′ = 𝑣𝑣 ⋅ 𝑣𝑣2 + �
𝑣𝑣∈𝑉𝑉+

Pr 𝑍𝑍′ = 𝑣𝑣 ⋅ 𝑣𝑣2

≤ 𝔼𝔼 𝑋𝑋′ 2 + 𝔼𝔼 𝑌𝑌′ 2 because 𝑋𝑋′ ≤ 𝑍𝑍′ ≤ 𝑌𝑌𝑍

Sandwiching a Random Variable

Proof: Shift the variables to make 𝑍𝑍 unbiased

7

Sandwich Lemma
Let 𝑋𝑋,𝑌𝑌,𝑍𝑍 be discrete random variables with means 𝜇𝜇𝑋𝑋,𝜇𝜇𝑌𝑌,𝜇𝜇𝑍𝑍, satisfying

𝑋𝑋 ≤ 𝑍𝑍 ≤ 𝑌𝑌.
Then 𝔼𝔼 𝑋𝑋 ≤ 𝔼𝔼 𝑍𝑍 ≤ 𝔼𝔼[𝑌𝑌] and

Var 𝑍𝑍 ≤ Var 𝑋𝑋 + Var 𝑌𝑌 + 𝜇𝜇𝑌𝑌 − 𝜇𝜇𝑋𝑋 2.

subtract 𝜇𝜇𝑍𝑍 from each
to get 𝑋𝑋𝑍,𝑌𝑌𝑍, and 𝑍𝑍𝑍

𝑋𝑋

𝜇𝜇𝑋𝑋

𝑌𝑌

𝜇𝜇𝑌𝑌
≤ 𝑍𝑍 ≤

𝑋𝑋𝑍

𝜇𝜇𝑋𝑋′=

𝑌𝑌𝑍

𝜇𝜇𝑌𝑌′ =

≤ 𝑍𝑍𝑍 ≤

𝜇𝜇𝑍𝑍′ = 0𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑍𝑍 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑍𝑍

Var 𝑍𝑍 ≤ 𝔼𝔼 𝑋𝑋′ 2 + 𝔼𝔼 𝑌𝑌′ 2 = Var 𝑋𝑋𝑍 + 𝜇𝜇𝑋𝑋′2 + Var 𝑌𝑌𝑍 + 𝜇𝜇𝑌𝑌′2
by definition of variance

= Var 𝑋𝑋 + 𝜇𝜇𝑍𝑍 − 𝜇𝜇𝑌𝑌 2 + Var 𝑌𝑌 + 𝜇𝜇𝑌𝑌 − 𝜇𝜇𝑍𝑍 2

≤ Var 𝑋𝑋 + Var 𝑌𝑌 + 𝜇𝜇𝑋𝑋 − 𝜇𝜇𝑌𝑌 2 𝑎𝑎2 + 𝑏𝑏2 ≤ 𝑎𝑎 + 𝑏𝑏 2
for nonnegative 𝑎𝑎, 𝑏𝑏

Distance to Monotonicity: Algorithm

• Let 𝜀𝜀𝑓𝑓 = 𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑 𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑛𝑛

Proof idea: Let 𝑍𝑍 𝐿𝐿 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)
We’ll define random variables 𝑋𝑋(𝐿𝐿) and Y(𝐿𝐿), such that 𝑋𝑋 𝐿𝐿 ≤ 𝑍𝑍 𝐿𝐿 ≤ 𝑌𝑌(𝐿𝐿)
𝑋𝑋(𝐿𝐿) will be in terms of matching 𝑀𝑀𝑀𝑀𝑓𝑓; 𝑌𝑌(𝐿𝐿) in terms of vertex cover 𝑉𝑉𝐶𝐶𝑓𝑓

8

Algorithm (Input: 𝜀𝜀,𝑛𝑛; query 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑑𝑑𝑀𝑀 𝑓𝑓: 𝑛𝑛 → {0,1}
1. Sample a random subset 𝑺𝑺 ⊂ [𝑛𝑛]

2. Let 𝑓𝑓 = 𝑓𝑓|𝑆𝑆
3. Compute ̃𝜀𝜀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑠𝑠
4. Return ̃𝜀𝜀

where each element is included w.p. 𝑠𝑠/𝑛𝑛 independently

Theorem
𝜀𝜀𝑓𝑓 − 2𝜀𝜀𝑓𝑓/𝑠𝑠 ≤ 𝔼𝔼 ̃𝜀𝜀 ≤ 𝜀𝜀𝑓𝑓

Var[̃𝜀𝜀]= 𝑀𝑀(𝜀𝜀𝑓𝑓/𝑠𝑠)

Upper Bound on 𝒁𝒁(𝑺𝑺)
• Define Y 𝐿𝐿 = |𝑉𝑉𝐶𝐶𝑓𝑓 ∩ 𝐿𝐿|

Proof: (a) 𝑍𝑍 𝐿𝐿 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑 𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = VC�̃�𝑓
• Each pair violated by 𝑓𝑓 is also violated by 𝑓𝑓
• 𝑉𝑉𝐶𝐶𝑓𝑓 ∩ 𝐿𝐿 is a vertex cover (not necessarily minimum) of 𝐺𝐺�̃�𝑓

𝑍𝑍 𝐿𝐿 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑 𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = VC�̃�𝑓 ≤ 𝑉𝑉𝐶𝐶𝑓𝑓 ∩ 𝐿𝐿 = 𝑌𝑌(𝐿𝐿)

 (b) Recall that 𝑉𝑉𝐶𝐶𝑓𝑓 = 𝜀𝜀𝑓𝑓 ⋅ 𝑛𝑛
• Each element of 𝑉𝑉𝐶𝐶𝑓𝑓 appears in 𝐿𝐿 independently w.p. 𝑠𝑠/𝑛𝑛

• 𝑌𝑌(𝐿𝐿) is binomial with mean 𝑉𝑉𝐶𝐶𝑓𝑓 ⋅ 𝑠𝑠
𝑛𝑛

= 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and

variance 𝑉𝑉𝐶𝐶𝑓𝑓 ⋅ 𝑠𝑠
𝑛𝑛

1 − 𝑠𝑠
𝑛𝑛

≤ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

9

Upper Bound Lemma
(a) 𝑍𝑍 𝐿𝐿 ≤ 𝑌𝑌(𝐿𝐿), (b) 𝔼𝔼[𝑌𝑌(𝐿𝐿)]= 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and Var 𝑌𝑌 𝐿𝐿 ≤ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

Lower Bound on 𝒁𝒁(𝑺𝑺)
• Let ℓ = 𝑀𝑀𝑀𝑀𝑓𝑓 = 𝜀𝜀𝑓𝑓 ⋅ 𝑛𝑛
• 𝑀𝑀𝑀𝑀𝑓𝑓 consists of ℓ pairs of the form 𝑎𝑎, 𝑏𝑏
• Let 𝑎𝑎1 < 𝑎𝑎2 < ⋯ < 𝑎𝑎ℓ be the lower endpoints of pairs in 𝑀𝑀𝑀𝑀𝑓𝑓

• Let 𝑏𝑏1 < 𝑏𝑏2 < ⋯ < 𝑏𝑏ℓ be the upper endpoints of pairs in 𝑀𝑀𝑀𝑀𝑓𝑓

• Then 𝑎𝑎𝑖𝑖 < 𝑏𝑏𝑖𝑖 for all 𝑖𝑖 ∈ [ℓ]
• Guaranteed edges are pairs of the form 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑗𝑗 where 𝑖𝑖 ≤ 𝑗𝑗

• Let �𝑀𝑀𝑀𝑀(𝐿𝐿) denote a maximum matching that consists of guaranteed edges
• Define 𝑋𝑋 𝐿𝐿 = | �𝑀𝑀𝑀𝑀(𝐿𝐿)|

10

𝑓𝑓 𝑏𝑏 = 0𝑓𝑓 𝑎𝑎 = 1

𝑎𝑎 𝑏𝑏

𝑓𝑓 𝑎𝑎𝑖𝑖 = 1

𝑓𝑓 𝑏𝑏𝑖𝑖 = 0

Lower Bound Lemma
(a) 𝑋𝑋 𝐿𝐿 ≤ 𝑍𝑍(𝐿𝐿), (b) 𝔼𝔼[𝑋𝑋(𝐿𝐿)]≥ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 − 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and Var 𝑋𝑋 𝐿𝐿 = 𝑀𝑀(𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠)

Proof of Lower Bound Lemma: Random Walk
• Recall: 𝑋𝑋 𝐿𝐿 = | �𝑀𝑀𝑀𝑀(𝐿𝐿)|
• Let 𝑋𝑋′ 𝐿𝐿 = |𝑉𝑉 𝑀𝑀𝑀𝑀𝑓𝑓 ∩ 𝐿𝐿|
• 𝑈𝑈 𝐿𝐿 = number of elements of 𝑉𝑉 𝑀𝑀𝑀𝑀𝑓𝑓 ∩ 𝐿𝐿 left unmatched by �𝑀𝑀𝑀𝑀(𝐿𝐿)

• Then 𝑋𝑋 𝐿𝐿 = 𝑋𝑋′ 𝑆𝑆 −𝑈𝑈 𝑆𝑆
2

• 𝑋𝑋′ 𝐿𝐿 is binomial with mean 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and variance ≤ 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠
• To understand 𝑈𝑈(𝐿𝐿) define a random walk that at step 𝑖𝑖 ∈ [ℓ] moves by

𝑔𝑔𝑖𝑖 = �
 1 if 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 ∩ 𝐿𝐿 = {𝑏𝑏𝑖𝑖}
−1 if 𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 ∩ 𝐿𝐿 = {𝑎𝑎𝑖𝑖}

0 otherwise
• Define 𝑀𝑀 𝐿𝐿 = the maximum value reached by the walk
• Define 𝑚𝑚 𝐿𝐿 = the absolute value of the minimum of the ``opposite order’’

walk that makes moves 𝑔𝑔ℓ, … ,𝑔𝑔1

11

Claim
𝑈𝑈 𝐿𝐿 ≤ 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿)

Proof idea: Construct a matching of guaranteed
edges that only leaves 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿) elements

of 𝑉𝑉 𝑀𝑀𝑀𝑀𝑓𝑓 ∩ 𝐿𝐿 unmatched

Analyzing 𝑀𝑀 𝐿𝐿 and 𝑚𝑚(𝐿𝐿)
• By symmetry 𝑀𝑀(𝐿𝐿) and 𝑚𝑚 𝐿𝐿 have the same distribution
• Define 𝑝𝑝 𝐿𝐿 = the final position reached by the walk

Proof: Define 𝑝𝑝𝑖𝑖 to be the position after 𝑖𝑖 steps.

• Let 𝐸𝐸𝑖𝑖 be the event that 𝑝𝑝𝑖𝑖 = 𝑧𝑧 and 𝑝𝑝𝑗𝑗 < 𝑧𝑧 for all 𝑗𝑗 ∈ [𝑖𝑖 − 1].
• The event ``𝑀𝑀 𝐿𝐿 ≥ 𝑧𝑧'' is a disjoint union of the events 𝐸𝐸𝑖𝑖 for 𝑖𝑖 ∈ ℓ .

• By symmetry, Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 𝐸𝐸𝑖𝑖 ≥ 1
2
 for all 𝑖𝑖 ∈ ℓ .

• Thus, Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 = Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 + Pr 𝑝𝑝 𝐿𝐿 ≤ −𝑧𝑧

12

Claim 2
Pr 𝑀𝑀 𝐿𝐿 ≥ 𝑧𝑧 ≤ Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 for all 𝑧𝑧 ∈ [ℓ]

= 2 Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧
by symmetry

= 2 �
𝑖𝑖∈[ℓ]

Pr[𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 ∣ 𝐸𝐸𝑖𝑖] ⋅ Pr 𝐸𝐸𝑖𝑖
by law of total

probability

≥ �
𝑖𝑖∈[ℓ]

Pr 𝐸𝐸𝑖𝑖 = Pr 𝑀𝑀 𝐿𝐿 ≥ 𝑧𝑧

Analyzing the Expectation of 𝑼𝑼 𝑺𝑺 and 𝑿𝑿 𝑺𝑺

𝔼𝔼 𝑈𝑈 ≤ 𝔼𝔼 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿) ≤ 2𝔼𝔼 𝑝𝑝 𝐿𝐿
• Recall: 𝑝𝑝(𝐿𝐿) is the sum of ℓ = 𝜀𝜀𝑓𝑓 ⋅ 𝑛𝑛 independent zero-mean variables 𝑔𝑔𝑖𝑖

that take values in −1,0,1 and Pr 𝑔𝑔𝑖𝑖 = 1 = Pr 𝑔𝑔𝑖𝑖 = −1 ≤ 𝑠𝑠
𝑛𝑛

• Recall: 𝑋𝑋(𝐿𝐿) = [𝑋𝑋𝑍(𝐿𝐿) − 𝑈𝑈(𝐿𝐿)]/2 and 𝔼𝔼[𝑋𝑋𝑍(𝐿𝐿)] = 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

13

Claim 2
Pr 𝑀𝑀 𝐿𝐿 ≥ 𝑧𝑧 ≤ Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 for all 𝑧𝑧 ∈ [ℓ]

Claim
𝑈𝑈 𝐿𝐿 ≤ 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿)

𝔼𝔼 𝑔𝑔𝑖𝑖2 = Pr[𝑔𝑔𝑖𝑖2 = 1] ≤
2𝑠𝑠
𝑛𝑛

𝔼𝔼2 |𝑝𝑝(𝐿𝐿| ≤ 𝔼𝔼 (𝑝𝑝 𝐿𝐿 2 by Jensen’s inequality

= 𝔼𝔼 �
𝑖𝑖∈[ℓ]

𝑔𝑔𝑖𝑖
2

= 𝔼𝔼 �
𝑖𝑖∈[ℓ]

𝑔𝑔𝑖𝑖2 ≤ ℓ ⋅
2𝑠𝑠
𝑛𝑛

= 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

≤ 2 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

≥ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 − 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠𝔼𝔼 𝑋𝑋(𝐿𝐿) =
𝔼𝔼 𝑋𝑋′ 𝐿𝐿

2
+
𝔼𝔼 𝑈𝑈 𝐿𝐿

2

Analyzing the Variance of 𝑼𝑼(𝑺𝑺) and 𝑿𝑿 𝑺𝑺

𝔼𝔼 𝑈𝑈 ≤ 𝔼𝔼 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿) ≤ 2𝔼𝔼 𝑝𝑝 𝐿𝐿

• Analyzing the variance of 𝑈𝑈(𝐿𝐿)

• Standard deviation: 𝜎𝜎 𝑈𝑈(𝐿𝐿) ≤ 8𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

• Since 𝑋𝑋(𝐿𝐿) = [𝑋𝑋𝑍(𝐿𝐿) − 𝑈𝑈(𝐿𝐿)]/2 $ and 𝜎𝜎 𝑋𝑋𝑍(𝐿𝐿) ≤ 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠,

14

Claim 2
Pr 𝑀𝑀 𝐿𝐿 ≥ 𝑧𝑧 ≤ Pr 𝑝𝑝 𝐿𝐿 ≥ 𝑧𝑧 for all 𝑧𝑧 ∈ [ℓ]

Claim
𝑈𝑈 𝐿𝐿 ≤ 𝑀𝑀 𝐿𝐿 + 𝑚𝑚(𝐿𝐿)

𝔼𝔼 (𝑝𝑝 𝐿𝐿 2

≤ 2 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

≥ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 − 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠𝔼𝔼 𝑋𝑋(𝐿𝐿) =
𝔼𝔼 𝑋𝑋′ 𝐿𝐿

2
+
𝔼𝔼 𝑈𝑈 𝐿𝐿

2

= 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

Var 𝑈𝑈(𝐿𝐿) ≤ 𝔼𝔼 (𝑈𝑈 𝐿𝐿 2 ≤ 4 ⋅ 𝔼𝔼 (𝑝𝑝 𝐿𝐿 2 ≤ 8𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

𝜎𝜎 𝑋𝑋(𝐿𝐿) ≤ 1
2

(8 + 2) 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 ≤ 4.5 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 by subadditivity of
standard deviation

Completing the Analysis

15

Lower Bound Lemma
(a) 𝑋𝑋 𝐿𝐿 ≤ 𝑍𝑍(𝐿𝐿), (b) 𝔼𝔼[𝑋𝑋(𝐿𝐿)]≥ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 − 2𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and Var 𝑋𝑋 𝐿𝐿 ≤ 4.5 𝜀𝜀𝑓𝑓/𝑠𝑠

Upper Bound Lemma
(a) 𝑍𝑍 𝐿𝐿 ≤ 𝑌𝑌(𝐿𝐿), (b) 𝔼𝔼[𝑌𝑌(𝐿𝐿)]= 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠 and Var 𝑌𝑌 𝐿𝐿 ≤ 𝜀𝜀𝑓𝑓 ⋅ 𝑠𝑠

Theorem
𝜀𝜀𝑓𝑓 − 2𝜀𝜀𝑓𝑓/𝑠𝑠 ≤ 𝔼𝔼 ̃𝜀𝜀 ≤ 𝜀𝜀𝑓𝑓

Var[̃𝜀𝜀]≤ 7.5 𝜀𝜀𝑓𝑓/𝑠𝑠

Distance to Monotonicity: Algorithm

• Let 𝜀𝜀𝑓𝑓 = 𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑 𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑛𝑛

16

Algorithm (Input: 𝜀𝜀,𝑛𝑛; query 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠 𝑑𝑑𝑀𝑀 𝑓𝑓: 𝑛𝑛 → {0,1}
1. Sample a random subset 𝑺𝑺 ⊂ [𝑛𝑛]

2. Let 𝑓𝑓 = 𝑓𝑓|𝑆𝑆
3. Compute ̃𝜀𝜀 = 𝐷𝐷𝑖𝑖𝑠𝑠𝑑𝑑(𝑓𝑓,𝑀𝑀𝑀𝑀𝑛𝑛𝑀𝑀)/𝑠𝑠
4. Return ̃𝜀𝜀

where each element is included w.p. 𝑠𝑠/𝑛𝑛 independently

Theorem
𝜀𝜀𝑓𝑓 − 2𝜀𝜀𝑓𝑓/𝑠𝑠 ≤ 𝔼𝔼 ̃𝜀𝜀 ≤ 𝜀𝜀𝑓𝑓

Var[̃𝜀𝜀]= 𝑀𝑀(𝜀𝜀𝑓𝑓/𝑠𝑠)

	Sublinear Algorithms
	Approximating Distance to Monotonicity for 0/1 Sequences
	Distance to Monotonicity over POset Domains
	Distance to Monotonicity for 0/1 Sequences
	Distance to Monotonicity: Algorithm
	Sandwiching a Random Variable
	Sandwiching a Random Variable
	Distance to Monotonicity: Algorithm
	Upper Bound on 𝒁(𝑺)
	Lower Bound on 𝒁(𝑺)
	Proof of Lower Bound Lemma: Random Walk
	Analyzing 𝑀 𝑆 and 𝑚(𝑆)
	Analyzing the Expectation of 𝑼 𝑺 and 𝑿 𝑺
	Analyzing the Variance of 𝑼(𝑺) and 𝑿 𝑺
	Completing the Analysis
	Distance to Monotonicity: Algorithm

