Sublinear Algorithms

LECTURE 19

Last time

* Finish testing linearity of Boolean functions
[Blum Luby Rubinfeld]

* Tolerant testing and distance estimation

Today

* Estimating distance to sortedness for 0/1

sequences (equivalently, estimating the
length of LIS)

Final project reports are due Thursday, April 24

Sofya Raskhodnikova; Boston University



Approximating Distance to Monotonicity for 0/1 Sequences

Input: Parameter € € (0,1/2] and
a list of n zeros and ones (equivalently, f: [n] = {0,1})
Question: How far is this list to being sorted?
(Equivalently, how far is f from monotone?)

dist(f, MONO) =distance from f to monotone
Dist(f, MONO) = n - dist(f, MONO)

Note: Dist(f, MONO) = n — |LIS|,

where LIS is the longest increasing subsequence

Output: An estimate & such that w.p. = %
|€ — dist(f, MONO)| < ¢

. 1 .
Today: can answer in O (3_2) time [Berman Raskhodnikova Yaroslavtsev]



Distance to Monotonicity over POset Domains

e Let f be afunction over a partially ordered domain D.

Violated pair; e—¢—0—0—0—>0—0
o Vi pai 1 3

* The violation graph Gy is a directed graph with vertex set D whose edge set
is the set of pairs (x, y) violated by f.

) VCf is @ minimum vertex cover of Gf

e MM;g is a maximum matching in Gy

( Characterization of Dist(f, Mono) for f: D — {0,1} [FLNRRS 02] )
L Dist(f, Mono) = |[MM| = |V ¢;|




Distance to Monotonicity for 0/1 Sequences

e Letf:[n] - {0,1}

e Great notation switch: g; = (—=1)® for i € [n]

e Cumulative sums: sp = 0ands; = s;_; + g; fori € [n]
* Final sum: s = s,

e Maximum sum: mg = max;—, S;

(" dist(f, Mono) for f: [n] — {0,1} [Berman Raskhodnikova Yaroslavtsev] )
n—2ms + s¢
2

Dist(f,Mono) =




Distance to Monotonicity: Algorithm

<

/Algorithm (Input: &, n; query acess to f:[n] — {0,1}
1. Sample arandom subset S C [n]

where each element 1s independently included with probability -
2. Let f = flS b
3. Compute & = Dist(f, Mono)/s

QL Return & /

e Lletegr = dist(f,Mono) = Dist(f, Mono)/n
(Theorem \

L Ef—1/2€f/SS E[g]SEf J

Var[€]= 0(&¢/s)

Proof idea: Let Z(S) = Dist(f, Mono)
We'll define random variables X(S) and Y(S), such that X(§) < Z(S) < Y(S5)
X(S) will be in terms of matching MM;;  Y(S) in terms of vertex cover V(¢



Sandwiching a Random Variable

Cx
Hx 4 Hy
X <Z< Y

/Sandwich Lemma
Let X,Y, Z be discrete random variables with means uy, Uy, iz, satisfying ‘
X< Z<ZY.

and By definition of expectation

Then E[X] < E[Z] < E[Y]
\_ Var[Z] < Var[X] + Var[Y] + (uy — uyx)?. j
Proof: Shift the variables to make Z unbiased subtract u, from each
Ux'=ty — Uy Hgzr =0 Uy' = Uy — Uz to get X',Y', and Z'
—a—— 0 = — —

X' <Z'< 4
V~ = set of negative values and V* = set of positive values in the support of Z'.

Var[Z] = Var[Z'] = E[(Z')?] = z Pr(z’ = v] - v + Z Pr(Z’ = v] - v?

vev~— veyt

<E[X)?]+E[(Y)?] becauseX' <Z'<Y’
6



Sandwiching a Random Variable

Cx
Hx 4 Hy
X <Z< Y

/Sandwich Lemma

Let X,Y, Z be discrete random variables with means uy, Uy, Uz, satisfying
X< Z<ZY.
Then E[X] < E[Z] < E[Y] and
Var[Z] < Var[X] + Var[Y] + (uy — uyx)?.

\_ 1Z] [ X] Y]+ (uy — px) -
Proof: Shift the variables to make Z unbiased subtract u, from each

Ux'=ty — Uy Hgzr =0 Uy' = Ux — Uz to get X',Y', and Z'

. ————— e — == —
X' <Z'< Y’ p .
by definition of variance

Var[Z] < E[(X")?] + E[(Y")?] = Var[X'] + ji® + Var[Y'] + /2

= Var[X] + (uz — puy)? + Var[Y] + (uy — pz )?
< Var[X] + Var[Y] + (uy — uy )* a® +b* < (a + b)*
for nonnegative a, b



Distance to Monotonicity: Algorithm

/Algorithm (Input: &, n; query acess to f: [n] — {0,1}
1. Sample arandom subset S C [n]

where each element is included w.p. s/n independently

2. Letf = flS
3. Compute & = Dist(f, Mono)/s

QL Return & /

e Lletegr = dist(f,Mono) = Dist(f, Mono)/n
(Theorem \

L Ef—1/2€f/SS E[g]SEf J

Var[€]= 0(&¢/s)

Proof idea: Let Z(S) = Dist(f, Mono)
We'll define random variables X(S) and Y(S), such that X(§) < Z(S) < Y(S5)
X(S) will be in terms of matching MM;;  Y(S) in terms of vertex cover V(¢



Upper Bound on Z(S)

e DefineY(S) = |VCrn S|

(Upper Bound Lemma
L(a) Z(S) < Y(S), (b) E[Y(S)]= ¢ -s and Var[Y(S)] < & - s

— [

Proof: (a) Z(S) = Dist(f, Mono) = |VCf|
e Each pair violated byf is also violated by f
e V(N Sisavertex cover (not necessarily minimum) of Gf

Z(S) = Dist(f,Mono) = [VCz| < |[VC, n S| = Y(S)
(b) Recall that |VCf| =& N
e Each element of VCr appears in S independently w.p. s/n
e Y(S5)is binomial with mean |VCf| % =& - S and
. S S
variance |VCf| -5(1 — E) <é&-*S



Lower Bound on Z(S)

a b
. Let{’=|MMf|=€f'n O—>0—>0—>0—>0—>0—>0

e MMg¢ consists of £ pairs of the form (a, b) fla) =1 fb)=0
e leta; <a; <--<a,bethelower endpoints of pairsin MMy  f(a;) =1
* leth; < by < -+ < by be the upper endpoints of pairsin MMy f(b;) =0

e Thena; < b; foralli € [£]

* Guaranteed edges are pairs of the form (ai, bj) wherei < j

Let IWW(S) denote a maximum matching that consists of guaranteed edges
e Define X(S) = |MM(S)|

( Lower Bound Lemma

W
L(a) X(S) < Z(S), (b) E[X(S)I= & -5 — J/2&; -5 and Var[X(5)] = O(ef - s) J
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Proof of Lower Bound Lemma: Random Walk

e Recall: X(S) = |MM(S)|
e LetX'(S) = |V(MM;) N S|
e U(S) = number of elements of V(MMf) N S left unmatched by MM(S)

e Then X(S) = X (S)Z_U(S)

e X'(S) is binomial with mean 2¢¢ - s and variance < 2¢&¢ - s

e Tounderstand U(S) define a random walk that at step i € [£] moves by
1 if{a;,b;} NS = {b;}
9i=3-1 if{a; b} NS ={a;}
0 otherwise
e Define M(S) = the maximum value reached by the walk

e Define m(S) = the absolute value of the minimum of the “opposite order”
walk that makes moves gy, ..., g1

( Claim w Proof idea: Construct a matching of guaranteed

L U(S) < M(S) + m(S) J edges that only leaves M(S) + m(S) elements
of V(MMf) NS unmatched




Analyzing M(S) and m(S)

By symmetry M(S) and m(S) have the same distribution
Define p(S) = the final position reached by the walk

( Claim 2 D

Pr[M(S) = z] < Pr[|p(S)| = z] forall z € [#]

J

Proof: Define p; to be the position after i steps.

Let E; be the event thatp; = zand p; < zforallj € [i — 1].
The event "M (S) = z"is a disjoint union of the events E; for i € [£].

By symmetry, Pr[p(S) = z | E;] = %forall i € [?].

Thus, Pr{lp($)| = 2] = Prlp(S) = 2l + Prlp(§) < 2]

by law of total

> 7| E;] - Pr[E|] probability

> z Pr[E;] = Pr[M(S) = z]

i€?] ”



Analyzing the Expectation of U(S) and X(S)

( Claim )\ ( Claim 2 )
L U(S) < M(S) + m(S) JL Pr[M(S) = z] < Pr[|p(S)| = z] forall z € [£] J

E[U] < E[M(S) + m(S)] < 2E[|p(S)]] <2 /2£f © S
e Recall: p(§) is the sum of £ = & - n independent zero-mean variables g;
that take values in {—1,0,1} and Pr[g; = 1] =Pr[g; = —1] < =

n

2s
E[g?| = Prlgi = 1] <—
E4[|p(S|] < E[(p(S)?] by Jensen’s inequality
i .
_ 2 2S
=E zgi = I zgi <t -—=2&"s
|\ i€ i€[#] n

o Recall: X(S) = [X'(S) — U(S)]/2 and E[X(S)] = 2 - 5
E[X'(S)] E[U(S)]

> -+ > Zsf-s—JZEf-S

E[X(S)] =
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Analyzing the Variance of U(S) and X(S)

(" Claim )(Claim 2 )
L U(S) < M(S) + m(S) JL Pr[M(S) = z] < Pr[|p(S)| = z] forall z € [£] J

E[U] < E[M(S) + m(S)] < 2E[|p(S)]] <2 /2£f . S

E[(p(S)?] =2¢&-s
E[X(S)] = E[X'(S)] E[U(S)]

> -+ > ZEf‘S—JZEf'S

e Analyzing the variance of U(S)

Var[U(S)] < E[(U(S)?] <4-E[(p(5)?] <8¢ -s
e Standard deviation: ¢(U(S)) < ,/8¢&f - s
e Since X(S) = [X'(S) —U(S)]/25and a(X'(5)) < /2¢¢ s,

c(X(S) <5 (VB+V2) fe s < /A5 ¢ s by subadditivity of
standard deviation 14




Completing the Analysis

( Lower Bound Lemma

W
L(a) X(S) <Z(S), (b) E[X(S)]= & s —/2& -5 and Var[X(S)] < /4.5 Ef/SJ

( Upper Bound Lemma )
L(a) Z(S) < Y(S), (b) E[Y(S)]= ¢ -s and Var[Y(S)] < & - s J
( Theorem A
L Ef—,/zgf/SS ]E[g] ng

Var[é]< /7.5 & /s )
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Distance to Monotonicity: Algorithm

/Algorithm (Input: &, n; query acess to f: [n] — {0,1} A
1. Sample arandom subset S C [n]

where each element is included w.p. s/n independently

2. Letf = flS
3. Compute & = Dist(f, Mono)/s

QL Return & /

e Lletegr = dist(f,Mono) = Dist(f, Mono)/n
(Theorem \

L Ef—1/2€f/SS E[g]SEf J

Var[€]= 0(&¢/s)
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