Sublinear Algorithms

LECTURE 2

Last time

- Introduction
 - Basic models for sublinear-time computation
- Simple examples of sublinear algorithms
 Today
- Properties of lists and functions.
- Testing if a list is sorted/Lipschitz and if a function is monotone.
- Revisiting half-plane testing

HW1 is due next Thursday at 11am It is posted on the course webpage: https://cs-people.bu.edu/sofya/sublinear-course/

Use Piazza for questions and discussions

Office hours: Wednesdays, 1:30PM-3:00PM

Testing if a List is Sorted

Input: a list of *n* numbers $x_1, x_2, ..., x_n$

- Question: Is the list sorted?
 Requires reading entire list: Ω(n) time
- Approximate version: Is the list sorted or ε-far from sorted? (An ε fraction of x_i 's must be changed to make it sorted.) [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/ε) time Ω(log n) queries
- Best known bounds:

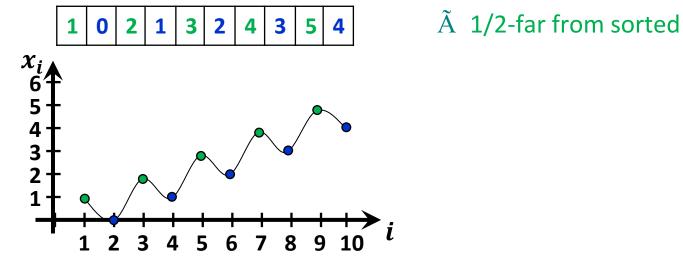
 $\Theta(\log (\epsilon n)/\epsilon)$ time

[Belovs, Chakrabarty Dixit Jha Seshadhri 15]

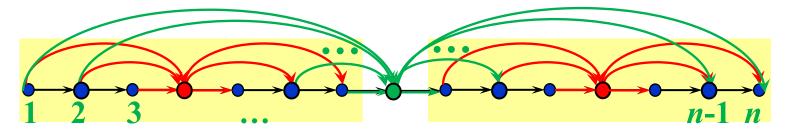
Testing Sortedness: Attempts

2. **Test**: Pick uniformly random i < j in $\{1, ..., n\}$ and reject if $x_i > x_j$.

Fails on:



Idea: Associate positions in the list with vertices of the directed line.



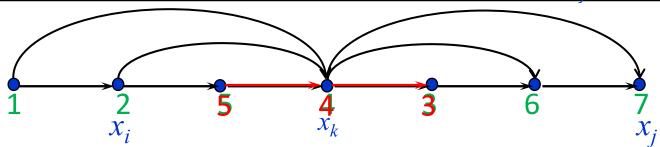
Construct a graph (2-spanner)

 $\leq n \log n$ edges

- by adding a few "shortcut" edges (i, j) for i < j
- where each pair of vertices is connected by a path of length at most 2

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.



Analysis:

- Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.
- If *i* is an endpoint of a violated edge, call *x_i* bad. Otherwise, call it good.

Claim 1. All good numbers x_i are sorted.

Proof: Consider any two good numbers, x_i and x_j .

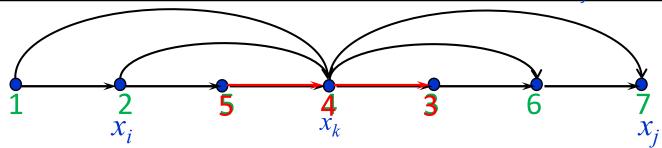
They are connected by a path of (at most) two satisfied edges (i, k), (k, j)

 $\Rightarrow x_i \leq x_k \text{ and } x_k \leq x_j$

$$\Rightarrow x_i \leq x_j$$

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.



Analysis:

- Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.
- If *i* is an endpoint of a **violated** edge, call *x_i* **bad**. Otherwise, call it **good**.

Claim 1. All good numbers x_i are sorted.

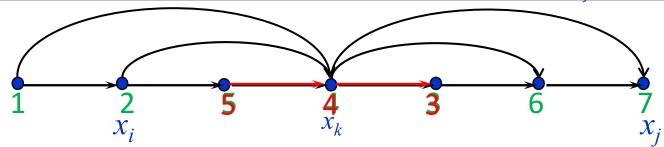
Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

Proof: If a list is ε -far from sorted, it has $\geq \varepsilon n$ bad numbers. (Claim 1)

- Each violated edge contributes 2 bad numbers.
- 2-spanner has $\geq \frac{\varepsilon n}{2}$ violated edges out of $n \log n$.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Pick a random edge (i, j) from the 2-spanner and **reject** if $x_i > x_j$.



Analysis:

• Call an edge (i, j) violated if $x_i > x_j$, and satisfied otherwise.

Claim 2. An ε -far list violates $\geq \varepsilon/(2 \log n)$ fraction of edges in 2-spanner.

By Witness Lemma, it suffices to sample $(4 \log n) / \varepsilon$ edges from 2-spanner.

Algorithm

Sample $\frac{4 \log n}{\epsilon}$ edges (i, j) from the 2-spanner and reject if $x_i > x_j$.

Guarantee: All sorted lists are accepted.

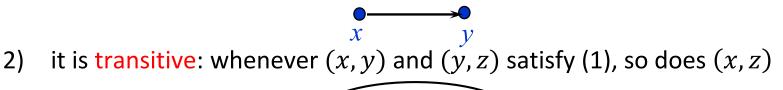
All lists that are ²-far from sorted are rejected with probability 2/3. Time: O((log n)/ ε)

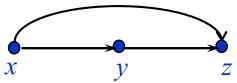
Generalization

Observation:

The same test/analysis apply to any edge-transitive property of a list of numbers that allows extension.

- A property is edge-transitive if
 - 1) it can be expressed in terms conditions on ordered pairs of numbers



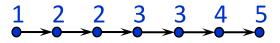


- A property allows extension if
 - 3) any function that satisfies (1) on a subset of the numbers can be extended to a function with the property

Testing if a Function is Lipschitz [Jha R]

A function $f : D \rightarrow R$ is Lipschitz if it has Lipschitz constant 1: that is, if for all x,y in D, $distance_R(f(x), f(y)) \leq distance_D(x, y)$.

Consider $f: \{1, ..., n\} \rightarrow \mathsf{R}$:



nodes = points in the domain; edges = points at distance 1

node labels = values of the function

The Lipschitz property is *edge-transitive*:

1. a pair (x, y) is good if $|f(y)-f(x)| \le |y-x|$

2. (x,y) and (y,z) are good) (x,z) is good

 \swarrow It also allows extension for the range R.

Testing if a function $f: \{1, ..., n\} \rightarrow \mathbb{R}$ is Lipschitz takes $O((\log n)/^2)$ time.

- Sorted or *\varepsilon*-far from sorted?
- Lipschitz (does not change too drastically) or ε-far from satisfying the Lipschitz property?

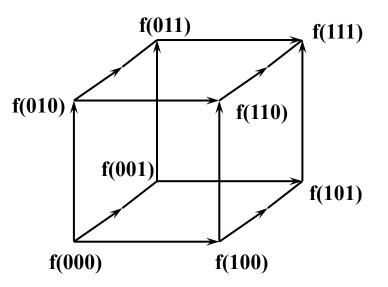
$$O\left(\frac{\log n}{\varepsilon}\right)$$
 time

Tight bound: $\Theta\left(\frac{\log(\epsilon n)}{\epsilon}\right)$ [Chakrabarty Dixit Jha Seshadhri 15, Belovs 18]

Basic Properties of Functions

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube



011001

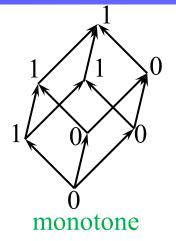
y

- vertices: bit strings of length *n*
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

A function f : {0,1}ⁿ → {0,1} is monotone
 if increasing a bit of x does not decrease f(x).



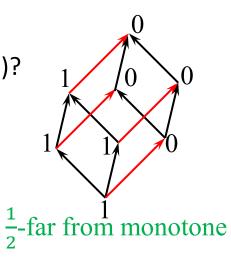
• Is f monotone or ε -far from monotone

(f has to change on many points to become monontone)?

- Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for restricted class of tests
- Advanced techniques: $\Theta(\sqrt{n}/\epsilon^2)$ for nonadaptive tests, $\Omega(\sqrt[3]{n})$ [Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]



Monotonicity Test [GGLRS, DGLRRS]

Idea: Show that functions that are far from monotone violate many edges.

EdgeTest (f, ε)

- 1. Pick $2n/\epsilon$ edges (x, y) uniformly at random from the hypercube.
- **2.** Reject if some (x, y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

- If *f* is monotone, **EdgeTest** always accepts.
- If f is ε -far from monotone, by Witness Lemma, it suffices to show that $\geq \varepsilon/n$ fraction of edges (i.e., $\frac{\varepsilon}{n} \cdot 2^{n-1}n = \varepsilon 2^{n-1}$ edges) are violated by f.

- Let V(f) denote the number of edges violated by f.

Contrapositive: If $V(f) < \varepsilon 2^{n-1}$,

f can be made monotone by changing $< \varepsilon 2^n$ values.

Repair Lemma

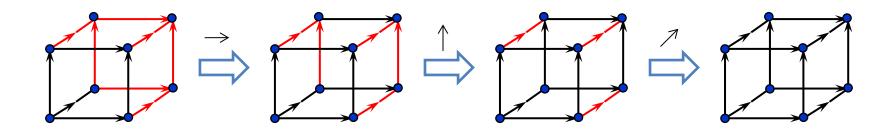
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Repair Lemma: Proof Idea

Repair Lemma

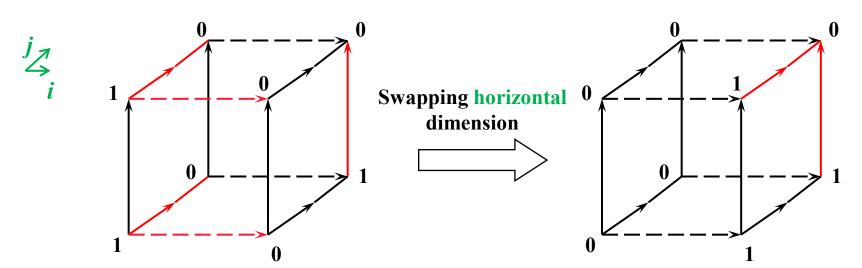
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

Proof idea: Transform *f* into a monotone function by repairing edges in one dimension at a time.



Repairing Violated Edges in One Dimension

Swap violated edges $1 \rightarrow 0$ in one dimension to $0 \rightarrow 1$.

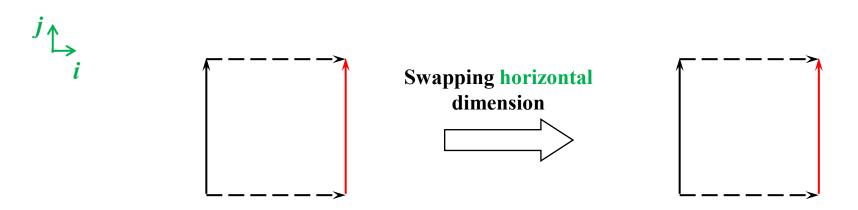


Let V_j = # of violated edges in dimension j

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$

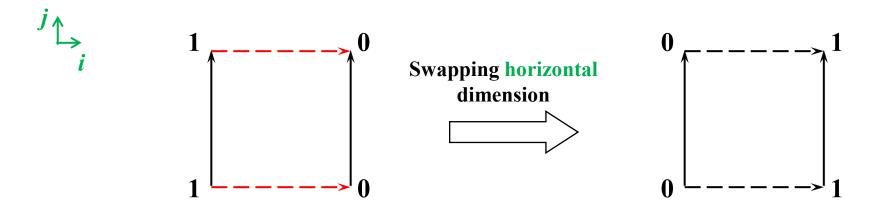
Enough to prove the claim for squares

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



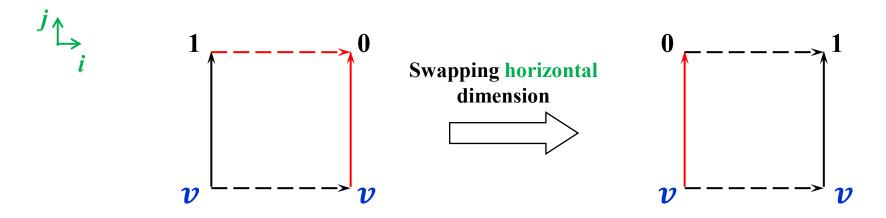
• If no horizontal edges are violated, no action is taken.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



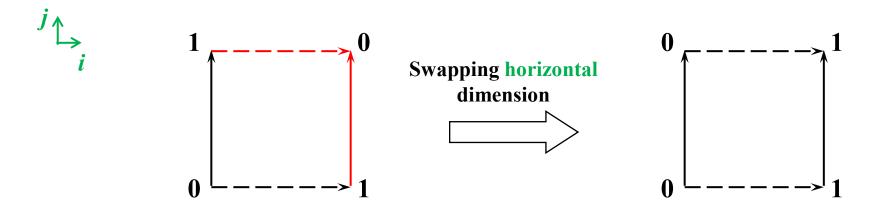
• If both horizontal edges are violated, both are swapped, so the number of vertical violated edges does not change.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



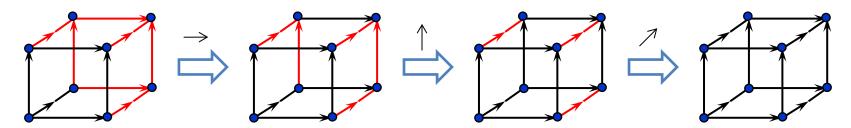
- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.

Claim. Swapping in dimension *i* does not increase V_i for all dimensions $j \neq i$



- Suppose one (say, top) horizontal edge is violated.
- If both bottom vertices have the same label, the vertical edges get swapped.
- Otherwise, the bottom vertices are labeled 0→1, and the vertical violation is repaired.

Claim. Swapping in dimension *i* does not increase V_j for all dimensions $j \neq i$



After we perform swaps in all dimensions:

- f becomes monotone
- # of values changed:

 $2 \cdot V_1 + 2 \cdot (\# \text{ violated edges in dim 2 after swapping dim 1})$ + 2 \cdot (# violated edges in dim 3 after swapping dim 1 and 2) + ... $\leq 2 \cdot V_1 + 2 \cdot V_2 + \cdots 2 \cdot V_n = 2 \cdot V(f)$

Repair Lemma

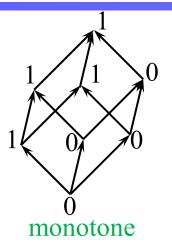
f can be made monotone by changing $\leq 2 \cdot V(f)$ values.

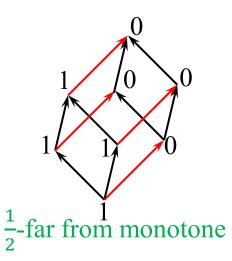
Improve the bound by a factor of 2.

Testing if a Functions $f : \{0,1\}^n \rightarrow \{0,1\}$ is monotone

Monotone or ε -far from monotone?

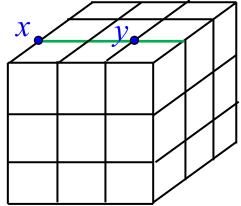
O(n/ε) time (logarithmic in the size of the input)





Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a large class of properties of functions $f: \{1, ..., n\}^d \to \mathbb{R}$, including:

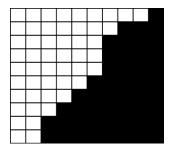


- Lipschitz property [Jha R]
- Bounded-derivative properties [Chakrabarty Dixit Jha Seshadhri]
- Unateness [Baleshzar Chakrabarty Pallavoor **R** Seshadhri]

Back to Testing if an Image is a Half-plane

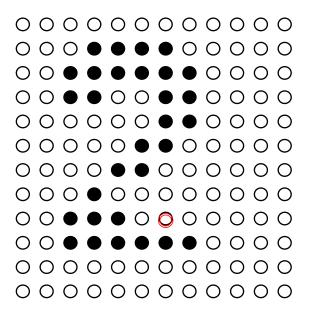
A half-plane or ε -far from a half-plane?

 $O(1/\varepsilon)$ time [R 03] $O(1/\varepsilon)$ time with uniform samples [Berman Murzabulatov R 16]



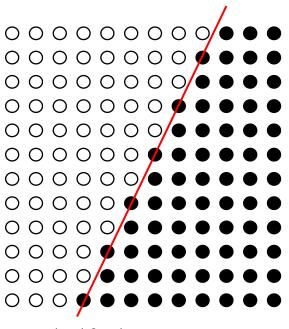
Pixel Model

Input: $n \times n$ matrix of pixels (0/1 values for black-and-white pictures)

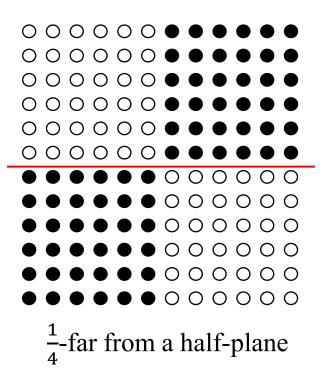


Query: point (i_1, i_2) Answer: color of (i_1, i_2)

Half-plane Instances

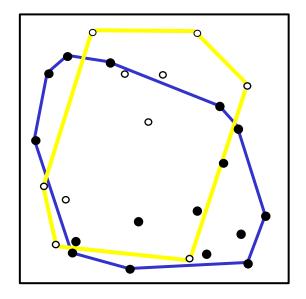


A half-plane



Half-Plane Tester

1. Sample $\mathbf{s} = \Theta\left(\frac{1}{\varepsilon}\right)$ pixels uniformly and independently. 2. Find convex hull of black samples and convex hull of white samples. 3. If the two hulls intersect, **reject**; otherwise, **accept**.



The tester always accepts half-plane images.

Correctness Theorem

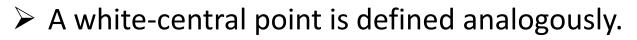
If an image is ε -far from being a half-plane, it is rejected w.p. $\geq 2/3$.

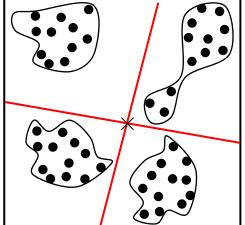
Some points are likely to end up in the convex hull of black pixels.

> A point does not have to correspond to a pixel.

Definition

A point is **black-central** if it is the intersection of two lines such that each quadrant formed by the lines has $\geq \epsilon n^2/4$ **black** pixels.

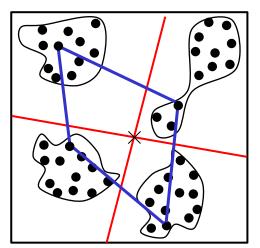




Some points are likely to end up in the convex hull of black pixels.

Definition

A point is **black-central** if it is the intersection of two lines such that each quadrant formed by the lines has $\geq \epsilon n^2/4$ black pixels.

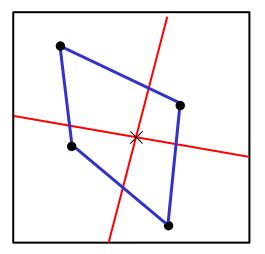


If we sample a black pixel (``witness'') from each quadrant, then the black-central point is in the convex hull of black pixels. We say ``we captured the black-central point''.

Some points are likely to end up in the convex hull of black pixels.

Definition

A point is **black-central** if it is the intersection of two lines such that each quadrant formed by the lines has $\geq \epsilon n^2/4$ **black** pixels.

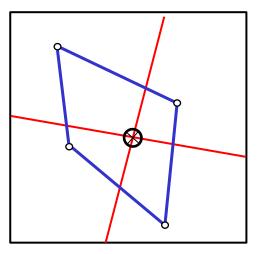


- ➢ By Witness Lemma, if we sample $\frac{\ln 100}{\epsilon/4}$ random pixels, we fail to find a witness from a quadrant w.p. ≤ $\frac{1}{100}$.
- > By the union bound, we fail to capture a black-central w.p. $\leq \frac{4}{100}$

Some points are likely to end up in the convex hull of black pixels.

Definition

A point is **black-central** if it is the intersection of two lines such that each quadrant formed by the lines has $\geq \epsilon n^2/4$ black pixels.



> Analogously, we fail to capture a white-central w.p. $\leq \frac{4}{100}$

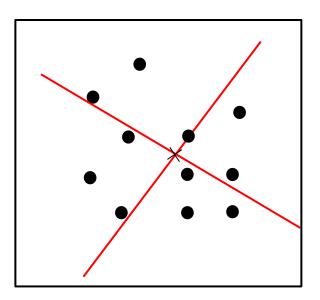
Ham sandwich image credit: https://apieceofthepi.substack.com/p/ham-sandwiches-and-necklace-splitting

Central Points Exist

The Ham Sandwich Theorem

In *n* dimensions, any *n* measurable sets can be simultaneously bisected (w.r.t. their measure) by an (n - 1)-dimensional hyperplane.

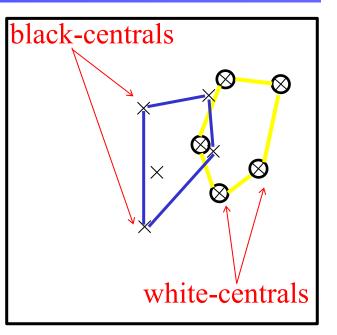
- > If an image is ε -far from being a half-plane, it contains at least εn^2 pixels of each color.
- By continuity, there is a line that bisects all pixels of the same color into two sets.
- By the Ham Sandwich Theorem (for n = 2), there is another line that bisects both sets.





Main Lemma

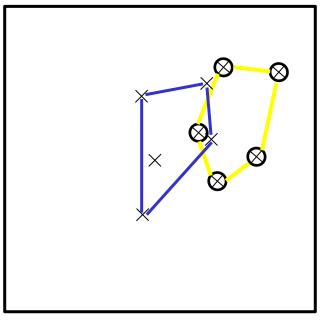
If the image is ε -far from being a half-plane then the convex hull of black-centrals intersects the convex hull of white-centrals.



Main Lemma

If the image is ε -far from being a half-plane then the convex hull of black-centrals intersects the convex hull of white-centrals.

Proof: For the sake of contradiction, assume they do not intersect.

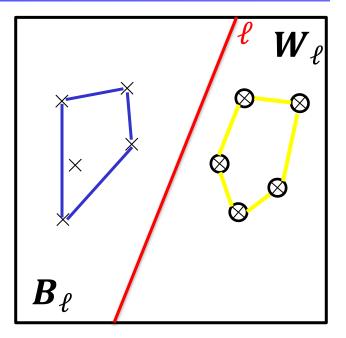


 \succ Then some line ℓ separates white-central and black-central points.

Main Lemma

If the image is ε -far from being a half-plane then the convex hull of black-centrals intersects the convex hull of white-centrals.

Proof: For the sake of contradiction, assume they do not intersect.

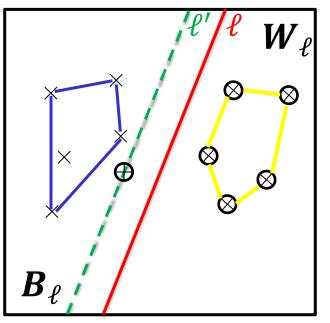


- \succ Then some line ℓ separates white-central and black-central points.
- ➤ Let B_{ℓ} and W_{ℓ} be the closed half-planes formed by ℓ , with black-central and white-central points, respectively.

Main Lemma

If the image is ε -far from being a half-plane then the convex hull of black-centrals intersects the convex hull of white-centrals.

Proof: For the sake of contradiction, assume they do not intersect.



➤ There are ≥ $\frac{\varepsilon n^2}{2}$ black pixels in W_ℓ or white pixels in B_ℓ .
W.I.o.g. suppose the latter holds.

- ► Let ℓ' be the line parallel to ℓ and furthest from ℓ s.t. there $\geq \frac{\epsilon n^2}{2}$ white pixels in closed half-plane to the left of ℓ' .
- There are $\geq \frac{\varepsilon n^2}{2}$ white pixels in closed half-plane to the right of ℓ' .
- By Ham Sand wich Theorem, there is a white-central point on ℓ' . Contradiction!

Completing the Analysis

Main Lemma

If the image is ε -far from being a half-plane then the convex hull of black-centrals intersects the convex hull of white-centrals.

 \succ Then some point \mathbf{v} is in both hulls.

- Moreover, v is in the convex hull of
 - (at most) 3 black-central points;
 - (at most) 3 white-central points.



- If we capture all 6, then v is in the hull of black samples and in the hull of white samples.
- \blacktriangleright Recall: we fail to capture a central point w.p. $\leq \frac{4}{100}$

➢ By union bound, we fail to capture one or more of the 6 central points w.p. ≤ $\frac{24}{100} < \frac{1}{3}$.

Summary: Half-plane Testing

- O(1/ε) uniform samples are sufficient for testing the half-plane property with 1-sided error.
- It is easy to show that Ω(1/ε) queries are necessary for even 2-sided error, adaptive testers.

A half-plane or ε -far from a half-plane? in O(1/ ε) uniform samples

