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Sublinear Algorithms

LECTURE 2 
Last time
• Introduction
• Basic models for sublinear-time computation
• Simple examples of sublinear algorithms
Today
• Properties of lists and functions. 
• Testing if a list is sorted/Lipschitz              

and if a function is monotone. 
• Revisiting half-plane testing

Sofya Raskhodnikova;Boston University



Reminders
HW1 is due next Thursday at 11am
It is posted on the course webpage:
https://cs-people.bu.edu/sofya/sublinear-course/

Use Piazza for questions and discussions

Office hours:
Wednesdays, 1:30PM-3:00PM

2

https://cs-people.bu.edu/sofya/sublinear-course/


Testing if a List is Sorted
Input: a list of 𝑛𝑛 numbers  𝑥𝑥1 

, 𝑥𝑥2 
, … , 𝑥𝑥𝑛𝑛

•  Question: Is the list sorted?
 Requires reading entire list: Ω(𝑛𝑛) time 
• Approximate version: Is the list sorted or 𝜀𝜀-far from sorted?
      (An 𝜀𝜀 fraction of 𝑥𝑥𝑖𝑖 ’s must be changed to make it sorted.)
      [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log 𝑛𝑛)/ 𝜀𝜀) time 
                                                                                               Ω(log 𝑛𝑛) queries

• Best known bounds:

                                              Θ(log (𝜀𝜀𝑛𝑛)/𝜀𝜀) time
                                        

 [Belovs, Chakrabarty Dixit Jha Seshadhri 15]
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1. Test: Pick a uniformly random 𝑖𝑖 ∈ {1, … ,𝑛𝑛 − 1} and reject if 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑖𝑖+1. 
      Fails on:

 2. Test: Pick uniformly random 𝑖𝑖 < 𝑗𝑗 in {1, … ,𝑛𝑛} and reject if 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗.
      Fails on:                                                                              

Testing Sortedness: Attempts
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Is a List Sorted or 𝜀𝜀-far from Sorted?
Idea:  Associate positions in the list with vertices of the directed line.

 

Construct a graph (2-spanner)
• by  adding a few “shortcut” edges (𝑖𝑖, 𝑗𝑗) for 𝑖𝑖 <  𝑗𝑗
• where each pair of vertices is connected by a path of length at most 2
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……

≤  𝑛𝑛 log𝑛𝑛 edges

1    2     3 …                                                    n-1 n



Is a List Sorted or 𝜀𝜀-far from Sorted?

Pick a random edge (𝑖𝑖, 𝑗𝑗) from the 2-spanner and reject if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗. 

 

                         1             2            5            4            3            6             7
Analysis:
• Call an edge (𝑖𝑖, 𝑗𝑗) violated if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗 , and satisfied otherwise.
• If 𝑖𝑖 is an endpoint of a violated edge, call 𝑥𝑥𝑖𝑖 bad. Otherwise, call it good.

Proof: Consider any two good numbers, 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗. 
 They are connected by a path of (at most) two satisfied edges 𝑖𝑖, 𝑘𝑘 , (𝑘𝑘, 𝑗𝑗)
    ⇒ 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑘𝑘  and 𝑥𝑥𝑘𝑘 ≤ 𝑥𝑥𝑗𝑗

 ⇒  𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥𝑗𝑗
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5            4            3xi                                                                                               xjxk

Claim 1. All good numbers 𝑥𝑥𝑖𝑖 are sorted.
   

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]



Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Is a List Sorted or 𝜀𝜀-far from Sorted?

Pick a random edge (𝑖𝑖, 𝑗𝑗) from the 2-spanner and reject if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗. 

 

                         1             2            5            4            3            6             7
Analysis:
• Call an edge (𝑖𝑖, 𝑗𝑗) violated if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗 , and satisfied otherwise.
• If 𝑖𝑖 is an endpoint of a violated edge, call 𝑥𝑥𝑖𝑖 bad. Otherwise, call it good.

Proof: If a list is 𝜀𝜀-far from sorted, it has  ≥ 𝜀𝜀𝑛𝑛 bad numbers.  (Claim 1)
• Each violated edge contributes 2 bad numbers.  

• 2-spanner has  ≥ 𝜀𝜀𝑛𝑛
2

 violated edges out of 𝑛𝑛 log𝑛𝑛.
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5            4            3xi                                                                                               xjxk

Claim 1. All good numbers 𝑥𝑥𝑖𝑖  are sorted.
   
Claim 2. An 𝜀𝜀-far list violates  ≥ 𝜀𝜀/(2 log𝑛𝑛) fraction of edges in 2-spanner.
   



Is a List Sorted or 𝜀𝜀-far from Sorted?

Pick a random edge (𝑖𝑖, 𝑗𝑗) from the 2-spanner and reject if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗. 

 

                         1             2            5            4            3            6             7
Analysis:
• Call an edge (𝑖𝑖, 𝑗𝑗) violated if 𝑥𝑥𝑖𝑖 >  𝑥𝑥𝑗𝑗 , and satisfied otherwise.

By Witness Lemma, it suffices to sample (4 log n )/ 𝜀𝜀 edges from 2-spanner.

Sample 4 log 𝑛𝑛𝜀𝜀   edges (𝑖𝑖, 𝑗𝑗) from the 2-spanner and reject if 𝑥𝑥𝑖𝑖 > 𝑥𝑥𝑗𝑗 .

Guarantee: All sorted lists are accepted.
All lists that are ²-far from sorted are rejected with probability ¸ 2/3.
Time: O((log n)/ 𝜀𝜀)               
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Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Algorithm

Claim 2. An 𝜀𝜀-far list violates  ≥ 𝜀𝜀/(2 log𝑛𝑛) fraction of edges in 2-spanner.   



Generalization
Observation: 
The same test/analysis apply to any edge-transitive property of a list of 

numbers that allows extension.

• A property is edge-transitive if
1) it can be expressed in terms conditions on ordered pairs of numbers

2) it is transitive: whenever (𝑥𝑥,𝑦𝑦) and (𝑦𝑦, 𝑧𝑧) satisfy (1), so does 𝑥𝑥, 𝑧𝑧

• A property allows extension if
3) any function that satisfies (1) on a subset of the numbers can be 

extended to a function with the property
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Testing if a Function is Lipschitz [Jha R]

A function f : D → R is Lipschitz if it  has Lipschitz constant 1:
that is, if for all x,y in D,       

distanceR(f(x),f(y)) ≤ distanceD(x,y).

Consider f : {1,…,n} → R:

The Lipschitz property is edge-transitive:

1. a pair (x,y) is good if |f(y)-f(x)| ≤ |y-x|
2. (x,y) and (y,z) are good  ) (x,z) is good
        It also allows extension for  the range R.
Testing if a function f : {1,…,n} → R is Lipschitz takes O((log n )/²) time.
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nodes = points in the domain; edges = points  at distance 1
node labels  = values  of the function

2 3 3 5421



Properties of a List of n Numbers
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• Sorted or 𝜀𝜀-far from sorted?

• Lipschitz (does not change too drastically) 
     or 𝜀𝜀-far from satisfying the Lipschitz property?

               O log 𝑛𝑛
𝜀𝜀

 time

                                        

Tight bound: Θ log(𝜀𝜀𝑛𝑛)
𝜀𝜀

 [Chakrabarty Dixit Jha Seshadhri 15, Belovs 18]



Basic Properties of 
Functions
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f(000)

f(111) f(011)

f(100)

f(101)

f(110)f(010)

f(001)

Boolean Functions 𝒇𝒇 ∶ 𝟎𝟎,𝟏𝟏 𝒏𝒏 → {𝟎𝟎,𝟏𝟏}  
Graph representation:
𝑛𝑛-dimensional hypercube

•  2𝑛𝑛 vertices: bit strings of length 𝑛𝑛
• 2𝑛𝑛−1𝑛𝑛 edges: (𝑥𝑥,𝑦𝑦) is an edge if 𝑦𝑦 can be obtained from 𝑥𝑥 by 

increasing one bit from 0 to 1

• each vertex 𝑥𝑥 is labeled with 𝑓𝑓(𝑥𝑥)

001001 
011001  

𝑥𝑥
𝑦𝑦



Monotonicity of Functions
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[Goldreich Goldwasser Lehman Ron Samorodnitsky, 
 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky
 Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

• A function 𝑓𝑓 ∶ 0,1 𝑛𝑛 → {0,1} is monotone 
     if increasing a bit of 𝑥𝑥 does not decrease 𝑓𝑓(𝑥𝑥). 

• Is 𝑓𝑓 monotone or 𝜀𝜀-far from monotone
      (𝑓𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑥→𝑦𝑦 is violated by  𝑓𝑓 if  𝑓𝑓 (𝑥𝑥)  >  𝑓𝑓 (𝑦𝑦).

Time: 
– 𝑂𝑂(𝑛𝑛/𝜀𝜀), logarithmic in the size of the input, 2𝑛𝑛

– Ω( 𝑛𝑛/𝜀𝜀) for restricted class of tests
– Advanced techniques: Θ( 𝑛𝑛/𝜀𝜀2) for nonadaptive tests, Ω 3 𝑛𝑛

[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]
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2
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Monotonicity Test [GGLRS, DGLRRS]
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Idea: Show that functions that are far from monotone violate many edges. 

Analysis
• If 𝑓𝑓 is monotone, EdgeTest always accepts. 
• If 𝑓𝑓 is 𝜀𝜀-far from monotone, by Witness Lemma, it suffices to show that      

≥ 𝜀𝜀/𝑛𝑛 fraction of edges (i.e., 𝜀𝜀
𝑛𝑛
⋅ 2𝑛𝑛−1𝑛𝑛 = 𝜀𝜀2𝑛𝑛−1 edges) are violated by 𝑓𝑓.

– Let 𝑉𝑉(𝑓𝑓) denote the number of edges violated by 𝑓𝑓.
     Contrapositive:  If 𝑉𝑉(𝑓𝑓) < 𝜀𝜀 2𝑛𝑛−1,   
 𝑓𝑓 can be made monotone by changing  < 𝜀𝜀 2𝑛𝑛 values.

EdgeTest (𝑓𝑓, ε)
1. Pick 2𝑛𝑛/𝜀𝜀 edges (𝑥𝑥,𝑦𝑦) uniformly at random from the hypercube.
2. Reject if some 𝑥𝑥,𝑦𝑦  is violated (i.e. 𝑓𝑓 𝑥𝑥 > 𝑓𝑓(𝑦𝑦)). Otherwise,  accept.

Repair Lemma
𝑓𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉𝑉(𝑓𝑓) values. 



Repair Lemma: Proof Idea
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Proof idea: Transform f into a monotone function by 
repairing edges in one dimension at a time.

Repair Lemma
𝑓𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉𝑉(𝑓𝑓) values. 
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Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal 
dimension

Swap violated edges 1→0  in one dimension to  0→1. 

Let 𝑉𝑉𝑗𝑗 = # of violated edges in dimension 𝑗𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

   



Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken. 
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Swapping horizontal 
dimension

i

j

Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

       



Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the 
number of vertical violated edges does not change. 
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Swapping horizontal 
dimension

i

j

01 10

1 0 0 1

Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

       



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges 

get swapped. 

22

i

j

Swapping horizontal 
dimension

1 0 0 1

𝒗𝒗𝒗𝒗 𝒗𝒗𝒗𝒗

Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

       



Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.
• If both bottom vertices have the same label, the vertical edges 

get swapped. 
• Otherwise, the bottom vertices are labeled 0→1, and the 

vertical violation is repaired.
23

i

j

Swapping horizontal 
dimension

1 0 0 1

10 10

Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

       



Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓𝑓 becomes monotone
• # of values changed: 
 2 ⋅ 𝑉𝑉1 +  2 ⋅ (# violated edges in dim 2 after swapping dim 1)

 + 2 ⋅ (# violated edges in dim 3 after swapping dim 1 and 2)
 + … ≤ 2 ⋅ 𝑉𝑉1 + 2 ⋅ 𝑉𝑉2 + ⋯2 ⋅ 𝑉𝑉𝑛𝑛 = 2 ⋅ 𝑉𝑉 𝑓𝑓

•     Improve the bound by a factor of 2.
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Claim. Swapping in dimension 𝑖𝑖 does not increase 𝑉𝑉𝑗𝑗  for all dimensions 𝑗𝑗 ≠ 𝑖𝑖

       

Repair Lemma
𝑓𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉𝑉(𝑓𝑓) values. 



Testing if a Functions 𝑓𝑓 ∶ 0,1 𝑛𝑛 → {0,1} is  monotone
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Monotone or 
𝜀𝜀-far from monotone?

               O(n/𝜀𝜀) time
                                    (logarithmic in the size 

  of the input)
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Testing Properties of High-Dimensional Functions

In polylogarithmic time, we can test a  large class of 
properties of functions 𝑓𝑓: 1, … ,𝑛𝑛 𝑑𝑑 → ℝ, including:

• Lipschitz property [Jha R]
• Bounded-derivative properties [Chakrabarty Dixit Jha 

Seshadhri]
• Unateness [Baleshzar Chakrabarty Pallavoor R Seshadhri]

26

x y



Back to Testing if an Image is a Half-plane

A half-plane or 
𝜀𝜀-far from a half-plane?

  O(1/𝜀𝜀) time [R 03] 
  O(1/𝜀𝜀) time with uniform samples
                                            [Berman Murzabulatov R 16]
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Pixel Model

28

Query: point (𝑖𝑖1, 𝑖𝑖2)

Answer: color of (𝑖𝑖1, 𝑖𝑖2)

Input: 𝑛𝑛 × 𝑛𝑛 matrix of pixels
(0/1 values for black-and-white pictures)



Half-plane Instances

29

A half-plane 1
4
-far from a half-plane
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Half-Plane Tester

1. Sample 𝐬𝐬 = 𝚯𝚯 𝟏𝟏
𝛆𝛆

 pixels uniformly 
and independently.
2. Find convex hull of black samples 
and convex hull of white samples. 
3. If the two hulls intersect, reject; 
otherwise, accept. 

Correctness Theorem
If an image is 𝜀𝜀-far from being a half-plane, it is rejected w.p. ≥ 2/3.

 The tester always accepts half-plane images.



Analysis Idea: Central Points

Definition
A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.
 A point does not have to correspond to a pixel.

 A white-central point is defined analogously.



Analysis Idea: Central Points

Definition
A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 If we sample a black pixel (``witness’’) from each quadrant, then 
the black-central point is in the convex hull of black pixels.

     We say ``we captured the black-central point’’.



Analysis Idea: Central Points

Definition
A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 By Witness Lemma, if we sample ln 100
𝜀𝜀/4

 random pixels, we fail to 

find a witness from a quadrant w.p. ≤ 1
100

.

 By the union bound, we fail to capture a black-central w.p. ≤ 4
100



Analysis Idea: Central Points

Definition
A point is black-central if it is the intersection 
of two lines such that each quadrant formed 
by the lines has ≥ ε𝑛𝑛2/4 black pixels.

Some points are likely to end up in the convex hull of black pixels.

 Analogously, we fail to capture a white-central w.p. ≤ 4
100



The Ham Sandwich Theorem
In 𝑛𝑛 dimensions, any 𝑛𝑛 measurable sets can be 
simultaneously bisected (w.r.t. their measure) 
by an (𝑛𝑛 − 1)-dimensional hyperplane.

 If an image is 𝜀𝜀-far from being a half-plane, 
it contains at least 𝜀𝜀𝑛𝑛2 pixels of each color.

 By continuity, there is a line that bisects all 
pixels of the same color into two sets.

 By the Ham Sandwich Theorem (for 𝑛𝑛 = 2), 
there is another line that bisects both sets. 

Central Points Exist

Ham sandwich image credit: https://apieceofthepi.substack.com/p/ham-sandwiches-and-necklace-splitting



Hulls of Black- and White-Central Points
Main Lemma
If the image is 𝜀𝜀-far from being a half-plane 
then the convex hull of black-centrals 
intersects the convex hull of white-centrals.

white-centrals

black-centrals



Main Lemma
If the image is 𝜀𝜀-far from being a half-plane 
then the convex hull of black-centrals 
intersects the convex hull of white-centrals.

Proof: For the sake of contradiction,
assume they do not intersect.
 

 Then some line ℓ separates white-central and black-central points. 

Hulls of Black- and White-Central Points



Main Lemma
If the image is 𝜀𝜀-far from being a half-plane 
then the convex hull of black-centrals 
intersects the convex hull of white-centrals.

𝑾𝑾ℓ

𝑩𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.
 

 Then some line ℓ separates white-central and black-central points.
 Let 𝐵𝐵ℓ and 𝑊𝑊ℓ be the closed half-planes formed by ℓ, with black-

central and white-central points, respectively.

Hulls of Black- and White-Central Points



Main Lemma
If the image is 𝜀𝜀-far from being a half-plane 
then the convex hull of black-centrals 
intersects the convex hull of white-centrals.

𝑾𝑾ℓ

𝑩𝑩ℓ

ℓ

Proof: For the sake of contradiction,
assume they do not intersect.
 
 There are ≥ 𝜀𝜀𝑛𝑛2

2
 black pixels in 𝑊𝑊ℓ or white pixels in 𝐵𝐵ℓ. 
W.l.o.g. suppose the latter holds.

 Let ℓ′ be the line parallel to ℓ and furthest from ℓ s.t. there ≥ 𝜀𝜀𝑛𝑛2

2
 

white pixels in closed half-plane to the left of ℓ′.  
• There are ≥ 𝜀𝜀𝑛𝑛2

2
 white pixels in closed half-plane to the right of ℓ′. 

•  By Ham Sandwich Theorem, there is a white-central point on ℓ′. 
        Contradiction! 

Hulls of Black- and White-Central Points
ℓ′



Completing the Analysis
Main Lemma
If the image is 𝜀𝜀-far from being a half-plane 
then the convex hull of black-centrals 
intersects the convex hull of white-centrals.

 Then some point v is in both hulls.
 Moreover, v is in the convex hull of 

• (at most) 3 black-central points;
• (at most) 3 white-central points.

 If we capture all 6, then v is in the hull of black samples and in 
the hull of white samples.

 Recall: we fail to capture a central point w.p. ≤ 4
100

 By union bound, we fail to capture one or more of the 6 central 
points w.p. ≤ 24

100
< 1

3
.

𝒗𝒗
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Summary: Half-plane Testing
• O(𝟏𝟏/𝜺𝜺) uniform samples are sufficient for testing the 

half-plane property with 1-sided error.
• It is easy to show that Ω(𝟏𝟏/𝜺𝜺) queries are necessary 

for even 2-sided error, adaptive testers.

A half-plane or 
𝜀𝜀-far from a half-plane?
  in O(1/𝜀𝜀) uniform samples
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