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Sublinear Algorithms

LECTURE 20 
Last time
• Approximating the distance to sortedness 

(length of LIS) of 0/1 sequences

Today
• 𝐿𝑝-testing

Sofya Raskhodnikova;Boston University

Project Reports are due April 24
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Tolerant Property Tester

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



Testing Models

Two objects are at distance 𝜀 = they differ in an 𝜀 fraction of places

Equivalent problem: approximating distance to the property.

Property Tester

Close to YES

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



𝜀 𝜀1
𝜀2



Why Hamming Distance?

• Nice probabilistic interpretation

– probability that two functions differ on a random point 
in the domain

• Natural measure for 

– algebraic properties (linearity, low degree)

– properties of graphs and other combinatorial objects

• Motivated by applications to probabilistically checkable 
proofs (PCPs)

• It is equivalent to other natural distances for

– properties of Boolean functions
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Which stocks grew steadily?

Data from 

http://finance.google.com

http://finance.google.com/


𝐿𝑝-Testing

for properties of real-valued data
[Berman Raskhodnikova Yaroslavtsev]



Use 𝐿𝑝-metrics to Measure Distances

• Functions 𝑓, 𝑔:  𝐷 → 0,1  over (finite) domain 𝐷

• For 𝑝 ≥ 1
𝐿𝑝 𝑓, 𝑔 = 𝑓 − 𝑔

𝑝
= ෍

𝑥∈𝐷

𝑓 𝑥 − 𝑔 𝑥 𝑝 

1/𝑝

 
𝐿0 𝑓, 𝑔 = 𝑓 − 𝑔

0
 =  𝑥 ∈ 𝐷: 𝑓 𝑥 ≠ 𝑔 𝑥

• 𝑑𝑝 𝑓, 𝑔 =
𝒇 −𝑔

𝑝

1
𝒑
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Normalize the values, so they are between 0 and 1

0 .7.5 .3 .2
Example:
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Tolerant Property Tester

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



𝑳𝒑-Testing and Tolerant 𝑳𝒑-Testing  

Property Tester

Close to YES

Far from

 YES

YES

Reject with 
probability      2/3 

Don’t care 

Accept with 
probability ≥ 𝟐/𝟑 



𝜀 𝜀1
𝜀2

Functions 𝑓, 𝑔: 𝐷 → [0,1] are at distance 𝜀 if  𝑑𝑝 =
𝑓−𝑔 𝑝

𝟏 𝑝
= 𝜀.



𝐿𝑝-Testing Model for Real-Valued Data

• Generalizes standard 𝐿0-testing

• For 𝑝 > 0 still have a nice probabilistic interpretation: 

distance 𝑑𝑝 𝑓, 𝑔 = 𝔼𝒙 𝒇(𝒙) − 𝒈(𝒙) 𝒑 1/𝑝

• Compatible with existing PAC-style learning models 
(preprocessing for model selection)

• For Boolean functions, 𝑑0 𝑓, 𝑔 = 𝑑𝑝 𝑓, 𝑔 𝑝.
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Plan

1. Relationships between 𝐿𝑝-testing models

2. 𝐿𝑝-testing monotonicity

9



Relationships between
𝐿𝑝-Testing Models



Relationships Between 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺) = complexity of 𝐿𝒑-testing property 𝑷               

with distance parameter 𝜺 

• e.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For all properties 𝑷

• 𝐿𝟏-testing is no harder than Hamming testing
𝐶𝟏(𝑷,𝜺) ≤ 𝐶𝟎(𝑷,𝜺)

• 𝐿𝒑-testing for 𝒑 > 1 is close in complexity to 𝐿𝟏-testing 

𝐶𝟏(𝑷,𝜺) ≤ 𝐶𝒑(𝑷,𝜺) ≤ 𝐶𝟏(𝑷,𝜺𝒑)
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Relationships Between 𝐿𝑝-Testing Models

𝐶𝒑(𝑷,𝜺) = complexity of 𝐿𝒑-testing property 𝑷             

with distance parameter 𝜺 

• e.g., query or time complexity 

• for general or restricted (e.g., nonadaptive) tests 

For properties of Boolean functions 𝒇: 𝐷 → 0,1

• 𝐿𝟏-testing is equivalent to Hamming testing
𝐶𝟏(𝑷,𝜺) = 𝐶𝟎(𝑷,ε)

• 𝐿𝒑-testing for 𝒑 > 1 is equivalent to 𝐿𝟏-testing
 with appropriate distance parameter

𝐶𝒑(𝑷,𝜺) = 𝐶𝟏(𝑷,𝜺𝒑)
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𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦: 𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠



Monotonicity

• Domain D=[𝑛]𝑑 (vertices of 𝑑-dim hypercube)

• A function 𝑓: 𝐷 → ℝ is monotone

  if increasing a coordinate of 𝑥 does

  not decrease 𝑓 𝑥 .

• Special case 𝑑 = 1

  𝑓: [𝑛] → ℝ is monotone ⇔ 𝑓 1 , … 𝑓(𝑛) is sorted.
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(1,1,1)

(𝑛, 𝑛, 𝑛)



Monotonicity Testers: Running Time
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𝑓 𝐿0 𝐿𝑝

𝑛
→ [0,1]

Θ
log 𝑛

𝜺
 

[Ergün Kannan Kumar Rubinfeld 

Viswanathan 00, Fischer 04, 

Belovs, Chakrabarty Seshadhri]

Θ
1

𝜺𝑝
 

𝑛 𝑑

→ [0,1]
Θ

𝑑 ⋅ log 𝑛

𝜺
 

[Chakrabarty Seshadhri 13]

O min
𝑑

𝜺𝑝 log
𝑑

𝜺𝑝 ,
𝑑1/2+𝑜(1)

𝜀2𝑝  

Ω
1

𝜺𝑝 log
1

𝜺𝑝  for 𝑑 = 2 

nonadaptive 1-sided error

[Berman Raskhodnikova 

Yaroslavtsev 14, Black 

Chakrabarty Seshadhri 23]

∗
 Hiding some log 1/𝜀 dependence



19

𝐿1-Testing of Monotonicity



Monotonicity: Reduction to Boolean Functions

Boolean threshold function 𝒇(𝒕): 𝐷 → {0,1}

  𝒇(𝒕) 𝑥 = ቊ
1 if 𝒇 𝑥 ≥ 𝑡
0 otherwise

 

• Decomposition: 𝑓 𝑥 = 0׬

1
𝒇(𝒕) 𝑥  𝑑𝒕

• M = class of monotone functions 

    Characterization Theorem

𝐿1 𝒇, 𝑀 = 0׬

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕

20

0

1

𝒇(𝒕) 𝑥

𝒕

𝒇 𝑥

0 .7.5 .3 .2Example:



Characterization Theorem: One Direction

• ∀𝑡 ∈ 0,1 , let 𝑔𝑡=closest monotone (Boolean) function to 𝒇(𝒕).

• Let 𝒈 = 0׬

1
𝑔𝑡𝑑𝒕. Then 𝒈 is monotone, since 𝑔𝑡 are monotone.
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𝐿1 𝒇, 𝑀 ≤ 𝒇 − 𝒈 1

= 0׬

1
𝒇(𝒕)𝑑𝒕 − 0׬

1
𝑔𝑡𝑑𝒕 

1

= 0׬

1
(𝒇(𝒕)−𝑔𝑡)𝑑𝒕 

1

≤ 0׬

1
𝒇(𝒕) − 𝑔𝑡 1

𝑑𝒕

= 0׬

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕

𝒈 is monotone 

Decomposition & definition of 𝒈

Triangle inequality

Definition of 𝑔𝑡 

𝐿1 𝒇, 𝑀 ≤ 0׬

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕



Characterization Theorem: the Other Direction

• 𝐿et 𝒉 be closest monotone function to 𝒇.

• Then 𝒉(𝒕) is monotone for all 𝑡 ∈ [0,1].
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𝐿1 𝒇, 𝑀 = 𝒇 − 𝒉 1

= 0׬

1
𝒇 𝒕  − 𝒉 𝒕 𝑑𝒕 

1

= 0׬

1
𝒇(𝒕) − 𝒉(𝒕) 1

𝑑𝒕

≥ 0׬

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕

Definition of 𝒉

Decomposition

all terms are nonnegative

𝒉(𝒕) is monotone 

𝐿1 𝒇, 𝑀 ≥ 0׬

1
𝐿1 𝒇(𝒕), 𝑀 𝑑𝒕

= ෍

𝑥:𝒇 𝑥 ≥𝒉(𝑥)

0׬

1
𝒇 𝒕  − 𝒉 𝒕 𝑑𝒕 + ෍

𝑥:𝒇 𝑥 <𝒉(𝑥)

0׬

1
𝒉 𝒕  − 𝒇 𝒕 𝑑𝒕

= 0׬

1
෍

𝑥:𝒇 𝑥 ≥𝒉(𝑥)

𝒇 𝒕  − 𝒉 𝒕 + ෍

𝑥:𝒇 𝑥 <𝒉(𝑥)

𝒉 𝒕  − 𝒇 𝒕 𝑑𝒕

𝒇 𝑥 ≥ 𝒉(𝑥)
⇔

𝒇 𝒕  ≥ 𝒉 𝒕  

 ∀𝑡 ∈ [0,1]



Monotonicity: Using Characterization Theorem

We can use Characterization Theorem 

to get monotonicity 𝐿1-testers 

and tolerant testers from

standard property testers for Boolean functions.
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Characterization Theorem

𝑑1 𝒇, 𝑀 = 0׬

1
𝑑1 𝒇(𝒕), 𝑀 𝑑𝒕



𝐿1-Testers from Testers for Boolean Ranges 

A nonadaptive, 1-sided error 𝐿0-test for monotonicity of 

𝑓: 𝐷 → {0,1} is also an 𝐿1-test for monotonicity of 𝑓: 𝐷 → [0,1].

Proof:

• A violation (𝑥, 𝑦):

• A nonadaptive, 1-sided error test queries a random set 𝑄 ⊆ 𝐷 
and rejects iff 𝑄 contains a violation.

• If 𝑓: 𝐷 → [0,1] is monotone, 𝑄 will not contain a violation.

• If 𝑑1 𝑓, 𝑀 ≥ 𝜀 then ∃𝒕∗: 𝑑0 𝒇(𝒕∗), 𝑀 ≥ 𝜺

• W.p. ≥ 2/3, set 𝑄 contains a violation (𝑥, 𝑦) for 𝒇(𝒕∗)

𝒇(𝒕∗) 𝑥 = 1, 𝒇(𝒕∗) 𝑦 = 0

⇓
𝒇 𝑥 > 𝒇 𝑦

24

1
2

𝒇(𝒙) 𝒇(𝒚)>



𝑳𝟎-Testing Monotonicity of 𝒇: 𝒏 𝒅 → {𝟎, 𝟏}

Idea: 1. Pick axis-parallel lines ℓ.

          2. Sample points from each ℓ,

 and check for violations of 𝑓|ℓ.

[DGLRRS 99]

• Testing sortedness: If 𝑓: 𝑛 → {0,1} is 𝜀-far from sorted then 

𝑂
1

𝜀
 samples are sufficient to find a violation w/ const. prob.

• Dimension reduction: For 𝑓: 𝑛 𝑑 → {0,1}

     𝔼 𝑑0 𝑓|ℓ, 𝑀 ≥
𝑑0 𝑓,𝑀

2𝑑
. 

     How many lines should we sample? 

     How many points form each line?

25



General Work Investment Problem [Goldreich 13]

• Algorithm needs to find ``evidence’’ (e.g., a violation).

• It can select an element from distr. Π (e.g., a uniform line).

• Elements 𝑒 have different quality 𝑞 𝑒 ∈ [0,1] 

(e.g., 𝒅𝟎 𝒇|ℓ, 𝑴 ).

• Algorithm must invest more work into 𝑒 with lower 𝑞(𝑒) to 

extract evidence from 𝑒 (e.g., need 𝚯
𝟏

𝒒(𝒆)
 samples).

• 𝔼𝒆←𝚷[𝑞(𝑒)] ≥ 𝜇.

What’s a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich 

Ron 97], testing properties of images [R 03], multi-input testing problems [G13]
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Work Investment Strategies

• ``Reverse’’ Markov Inequality

For a random variable 𝑋 ∈ [0,1] with expectation 𝔼 𝑋 ≥ 𝜇,

Pr 𝑋 ≥
𝜇

2
≥

𝜇

2
.

Proof:  𝜇 ≤ 𝔼 𝑋 ≤ Pr 𝑋 ≥
𝜇

2
⋅ 1 + Pr 𝑋 <

𝜇

2
⋅

𝜇

2
.

``Reverse’’ Markov Strategy:

1. Sample Θ
1

𝜇
 lines.

2. Sample Θ
1

𝜇
 points from each line.

Cost: Θ
1

𝜇2  queries.
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Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]: 

Invest in elements of quality 𝑞 𝑒 ≥
1

2𝑖 separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑝𝑖 = Pr 𝑋 ≥
1

2𝑖  and 𝑘𝑖 = Θ
1

2𝑖𝜇
 for all 𝑖 ∈ log

4

𝜇
.

Then  ς𝑖=1
log 4/𝜇

1 − 𝑝𝑖
𝑘𝑖 ≤ 1/3.

Bucketing Strategy: For each bucket 𝑖 ∈ log
4

𝜇

Cost: Θ
1

𝜇
log

1

𝜇
 queries (for monotonicity, 𝝁 =

𝜺

𝟐𝒅
)

28

1. Sample 𝑘𝑖 = Θ
1

2𝑖𝜇
 lines.

2. Sample Θ 2𝑖  points from each line.



Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
,  𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖 ,    and 𝑘𝑖 = Θ
1

2𝑖𝜇
.

Then  ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖 ≥
𝜇

4
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Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable 𝑋 ∈ [0,1] with 𝔼 𝑋 ≥ 𝜇, let

𝑡 = log
4

𝜇
,  𝑝𝑖 = Pr 𝑋 ≥

1

2𝑖 ,    and 𝑘𝑖 = Θ
1

2𝑖𝜇
.

Then  ς𝑖=1
𝑡 1 − 𝑝𝑖

𝑘𝑖 ≤ 𝛿.

Proof: It suffices to prove σ𝑖∈ 𝑡
𝑝𝑖

2𝑖 ≥
𝜇

4
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