Sublinear Algorithms

LECTURE 21

Last time

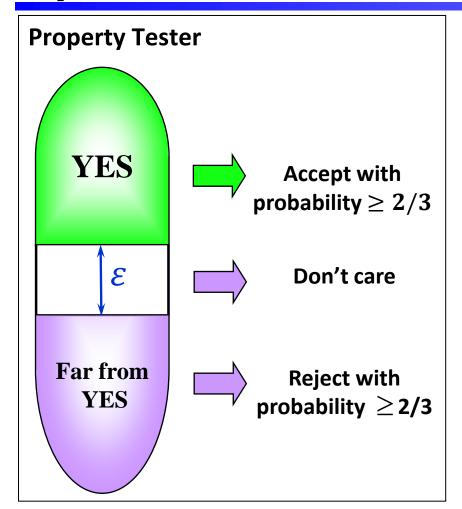
• L_p -testing

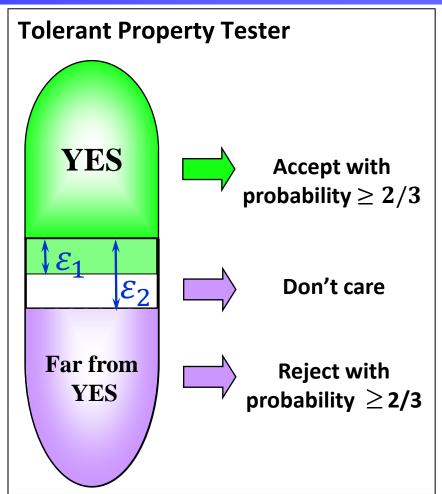
Today

- L_p -testing of monotonicity
- Work investment strategy
- Testing via learning

Project Reports are due April 24

L_p -Testing and Tolerant L_p -Testing



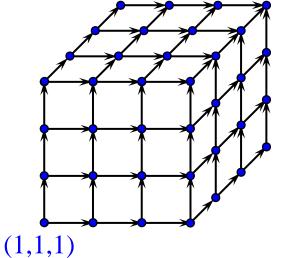


Functions $f, g: D \to [0,1]$ are at distance ε if $d_p = \frac{\|f - g\|_p}{\|\mathbf{1}\|_p} = \varepsilon$.

Monotonicity

• Domain $D=[n]^d$ (vertices of d-dim hypergrid)

• A function $f: D \to \mathbb{R}$ is monotone if increasing a coordinate of x does not decrease f(x).



(n, n, n)

• Special case d=1

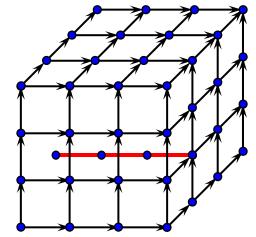
 $f:[n] \to \mathbb{R}$ is monotone $\Leftrightarrow f(1), ... f(n)$ is sorted.

f	L_0	L_{p}
$[n] \rightarrow [0,1]$	$\Theta\left(\frac{\log n}{\varepsilon}\right)$ [Ergün Kannan Kumar Rubinfeld Viswanathan 00, Fischer 04, Belovs, Chakrabarty Seshadhri]	$\Theta\left(\frac{1}{oldsymbol{arepsilon}^p}\right)$
$[n]^d \rightarrow [0,1]$	$\Theta\left(\frac{d \cdot \log n}{\varepsilon}\right)$ [Chakrabarty Seshadhri 13]	$O\left(\min\left\{\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}, \frac{d^{1/2+o(1)}}{\varepsilon^{2p}}\right\}\right)$ $O\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d=2$ nonadaptive 1-sided error [Berman Raskhodnikova Yaroslavtsev 14, Black Chakrabarty Seshadhri 23]

^{*} Hiding some $\log 1/\varepsilon$ dependence

L_0 -Testing Monotonicity of $f: [n]^d \to \{0, 1\}$

- Idea: 1. Pick axis-parallel lines ℓ .
 - 2. Sample points from each ℓ , and check for violations of $f_{|\ell}$.



[DGLRRS 99]

- Testing sortedness: If $f: [n] \to \{0,1\}$ is ε -far from sorted then $O\left(\frac{1}{\varepsilon}\right)$ samples are sufficient to find a violation w/ const. prob.
- Dimension reduction: For $f: [n]^d \to \{0,1\}$

$$\mathbb{E}\big[d_0\big(f_{|\ell},M\big)\big] \ge \frac{d_0(f,M)}{2d}.$$

How many lines should we sample?

How many points form each line?

General Work Investment Problem [Goldreich 13]

- Algorithm needs to find ``evidence'' (e.g., a violation).
- It can select an element from distr. Π (e.g., a uniform line).
- Elements e have different quality $q(e) \in [0,1]$

(e.g.,
$$d_0(f_{|\ell}, M)$$
).

- Algorithm must invest more work into e with lower q(e) to extract evidence from e (e.g., need $\Theta\left(\frac{1}{q(e)}\right)$ samples).
- $\mathbb{E}_{e \leftarrow \Pi}[q(e)] \ge \mu$.

What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich Ron 97], testing properties of images [R 03], multi-input testing problems [G13]

Work Investment Strategies

"Reverse" Markov Inequality

For a random variable $X \in [0,1]$ with expectation $\mathbb{E}[X] \ge \mu$,

$$\Pr\left[X \ge \frac{\mu}{2}\right] \ge \frac{\mu}{2}.$$

Proof:
$$\mu \leq \mathbb{E}[X] \leq \Pr\left[X \geq \frac{\mu}{2}\right] \cdot 1 + \Pr\left[X < \frac{\mu}{2}\right] \cdot \frac{\mu}{2}$$
.

"Reverse" Markov Strategy:

- 1. Sample $\Theta\left(\frac{1}{\mu}\right)$ lines.
- 2. Sample $\Theta\left(\frac{1}{\mu}\right)$ points from each line.

Cost:
$$\Theta\left(\frac{1}{\mu^2}\right)$$
 queries.

Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:

Invest in elements of quality $q(e) \ge \frac{1}{2^i}$ separately.

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \ge \mu$, let

$$p_i = \Pr\left[X \ge \frac{1}{2^i}\right] \text{ and } k_i = \Theta\left(\frac{1}{2^i \mu}\right) \text{ for all } i \in \left[\log \frac{4}{\mu}\right].$$

Then $\prod_{i=1}^{\log 4/\mu} (1-p_i)^{k_i} \le 1/3$.

Bucketing Strategy: For each bucket $i \in \left[\log \frac{4}{\mu}\right]$

- 1. Sample $k_i = \Theta\left(\frac{1}{2^i \mu}\right)$ lines.
- 2. Sample $\Theta(2^i)$ points from each line.

Cost:
$$\Theta\left(\frac{1}{\mu}\log\frac{1}{\mu}\right)$$
 queries (for monotonicity, $\mu=\frac{\varepsilon}{2d}$)

Proof of Bucketing Inequality

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \ge \mu$, let $t = \log \frac{4}{\mu}$, $p_i = \Pr[X \ge \frac{1}{2^i}]$, and $k_i = \frac{4 \ln 1/\delta}{2^i \mu}$.

Then $\prod_{i=1}^t (1-p_i)^{k_i} \leq \delta$.

Proof: It suffices to prove $\sum_{i \in [t]} \frac{p_i}{2^i} \ge \frac{\mu}{4}$ because then

$$\begin{split} & \prod_{i \in [t]} (1 - p_i)^{k_i} & \leq \prod_{i \in [t]} e^{-p_i k_i} &= \exp\left(-\sum_{i \in [t]} p_i k_i\right) \\ &= \exp\left(-\sum_{i \in [t]} p_i \cdot \frac{4 \ln 1/\delta}{2^i \mu}\right) = \exp\left(-\frac{4 \ln 1/\delta}{\mu} \sum_{i \in [t]} \frac{p_i}{2^i} \cdot\right) \\ &\leq \exp\left(-\frac{4 \ln 1/\delta}{\mu} \cdot \frac{\mu}{4}\right) \end{split}$$

Proof of Bucketing Inequality (Continued)

Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable $X \in [0,1]$ with $\mathbb{E}[X] \ge \mu$, let $t = \log \frac{4}{\mu}$, $p_i = \Pr[X \ge \frac{1}{2^i}]$, and $k_i = \frac{4 \ln 1/\delta}{2^i \mu}$.

Then $\prod_{i=1}^t (1-p_i)^{k_i} \leq \delta$.

Proof: It suffices to prove $\sum_{i \in [t]} \frac{p_i}{2^i} \ge \frac{\mu}{4}$.

$$\sum_{i=1}^{\infty} \frac{p_i}{2^i} = \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} \Pr\left[X \ge \frac{1}{2^i}\right] \ge \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} \Pr\left[X \in \left(\frac{1}{2^i}, \frac{1}{2^{i-1}}\right)\right]$$

$$\ge \frac{1}{2} \mathbb{E}[X] \ge \frac{\mu}{2}$$

$$\infty$$

$$\sum_{i=t+1}^{\infty} \frac{p_i}{2^i} \le \sum_{i=t+1}^{\infty} \frac{1}{2^i} \le \frac{1}{2^t} \le \frac{\mu}{4}$$

$$\sum_{i=t+1}^{\infty} \frac{p_i}{2^i} = \sum_{i=t+1}^{\infty} \frac{p_i}{2^i} - \sum_{i=t+1}^{\infty} \frac{p_i}{2^i} \ge \frac{\mu}{2} - \frac{\mu}{4} \ge \frac{\mu}{4}$$

f	L_0	L_p
$[n] \rightarrow \{0,1\}$	$\Theta\left(\frac{1}{\varepsilon}\right)$	$\Theta\left(\frac{1}{oldsymbol{arepsilon}^p}\right)$
$[n]^d \rightarrow \{0,1\}$	$0\left(\frac{d}{\varepsilon} \cdot \log \frac{d}{\varepsilon}\right)$ [Berman Raskhodnikova Yaroslavtsev 14] $0\left(\frac{d^{1/2+o(1)}}{\varepsilon^2}\right)$ [Black Chakrabarty Seshadhri 23]	$O\left(\min\left\{\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}, \frac{d^{1/2+o(1)}}{\varepsilon^{2p}}\right\}\right)$ $\Omega\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d=2$ nonadaptive 1-sided error $O\left(\frac{1}{\varepsilon^{p}}\right) \text{ for constant } d$ adaptive 1-sided error

Testing Monotonicity of $f: [n]^2 \rightarrow \{0, 1\}$

- For nonadaptive, 1-sided error testers, $\Omega\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ queries are needed.
- There is an adaptive, 1-sided error tester with $O\left(\frac{1}{\varepsilon}\right)$ queries. Method: testing via learning.

Partial Learning

- An ε -partial function g with domain D and range R is a function $g: D \to R \cup \{?\}$ that satisfies $\Pr_{x \in D}[g(x) = ?] \le \varepsilon$.
- An ε -partial function g agrees with a function f if g(x) = f(x) for all x on which $g(x) \neq ?$.
- Given a function class \mathcal{C} , let $\mathcal{C}_{\varepsilon}$ denote the class of ε -partial functions, each of which agrees with some function in \mathcal{C} .
- An ε -partial learner for a function class $\mathcal C$ is an algorithm that, given a parameter ε and oracle access to a function f, outputs a hypothesis $g \in \mathcal C_{\varepsilon}$ or fails.

 Moreover, if $f \in \mathcal C$ then it outputs g that agrees with f.

Lemma (Conversion from Learner to Tester)

If there is an ε -partial learner for a function class \mathcal{C} that makes $q(\varepsilon)$ queries then \mathcal{C} can be ε -tested with 1-sided error with $q(\varepsilon/2) + O(1/\varepsilon)$ queries.

Proof of the Conversion Lemma

Lemma (Conversion from Learner to Tester)

If there is an ε -partial learner for a function class \mathcal{C} that makes $q(\varepsilon)$ queries then \mathcal{C} can be ε -tested with 1-sided error with $q(\varepsilon/2) + O(1/\varepsilon)$ queries.

Proof:

Tester (Input: ε , D; query access to function f on domain D)

- 1. Run the learner with parameter $\frac{\varepsilon}{2}$ to get an $\frac{\varepsilon}{2}$ -partial function g.
- 2. If the learner fails, reject.
- 3. Repeat $\frac{2 \ln 3}{\varepsilon}$ times:
- 4. Query f at a uniformly random point $x \in D$.
- 5. **Reject** if $g(x) \neq ?$, but $g(x) \neq f(x)$.
- 6. Accept.

Correctness:

- 1. If $f \in \mathcal{C}$, then the learner outputs a hypothesis g that agrees with f on all non-question-marks. So, the tester accepts.
- 2. If f is ε -far from \mathcal{C} , then the learner either fails or outputs $g \in \mathcal{C}_{\varepsilon/2}$. In the latter case, g differs from f on $\geq \varepsilon$ fraction of positions, at most $\varepsilon/2$ of which can be ?'s. The Witness lemma implies probability of rejection $\geq 2/3$

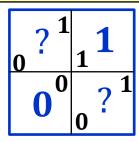
Partial Learner of Monotone functions $f: [n]^2 \to \{0, 1\}$

Lemma

There is an ε -partial learner for the class of monotone Boolean functions over $[n]^2$ that makes $O(1/\varepsilon)$ queries.

Idea:

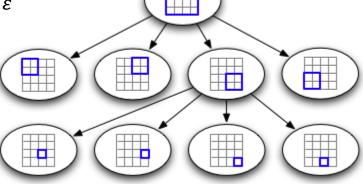
Divide the grid into quarters.



- Query the bottom left and the top right corner for each quarter.
- If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at $\log \frac{1}{\varepsilon} + 1$ levels.

• If $\geq 2^{j+1}$ nodes at level j are ?, fail.



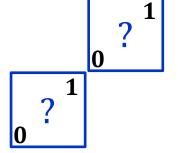
Correctness of the Learner

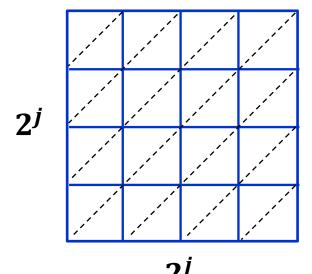
Claim

If the input function is monotone, level j will have fewer than 2^{j+1} nodes?.

Proof: Suppose f is monotone.

- Fix level j. It partitions the domain into $2^j \times 2^j$ squares.
- Two comparable squares cannot both have ?s
- At most one square from each diagonal can have a ?





Cor. 1. Learner does not fail on monotone functions.

Cor. 2. Learner outputs an ε -partial function.

Cor. 3. Learner's run time is $O(1/\varepsilon)$.

f	L_0	L_p
$[n] \rightarrow \{0,1\}$	$\Theta\left(\frac{1}{\varepsilon}\right)$	$\Theta\left(\frac{1}{oldsymbol{arepsilon}^p}\right)$
$[n]^d \rightarrow \{0,1\}$	$0\left(\frac{d}{\varepsilon} \cdot \log \frac{d}{\varepsilon}\right)$ [Berman Raskhodnikova Yaroslavtsev 14] $0\left(\frac{d^{1/2+o(1)}}{\varepsilon^2}\right)$ [Black Chakrabarty Seshadhri 23]	$O\left(\min\left\{\frac{d}{\varepsilon^p}\log\frac{d}{\varepsilon^p}, \frac{d^{1/2+o(1)}}{\varepsilon^{2p}}\right\}\right)$ $\Omega\left(\frac{1}{\varepsilon^p}\log\frac{1}{\varepsilon^p}\right) \text{ for } d=2$ nonadaptive 1-sided error $O\left(\frac{1}{\varepsilon^p}\right) \text{ for constant } d$ adaptive 1-sided error

f	L_0	L_{p}
$[n] \rightarrow [0,1]$	$\Theta\left(\frac{\log n}{\varepsilon}\right)$ [Ergün Kannan Kumar Rubinfeld Viswanathan 00, Fischer 04, Belovs, Chakrabarty Seshadhri]	$\Theta\left(\frac{1}{oldsymbol{arepsilon}^p}\right)$
$[n]^d \rightarrow [0,1]$	$\Theta\left(\frac{d \cdot \log n}{\varepsilon}\right)$ [Chakrabarty Seshadhri 13]	$O\left(\min\left\{\frac{d}{\varepsilon^{p}}\log\frac{d}{\varepsilon^{p}}, \frac{d^{1/2+o(1)}}{\varepsilon^{2p}}\right\}\right)$ $O\left(\frac{1}{\varepsilon^{p}}\log\frac{1}{\varepsilon^{p}}\right) \text{ for } d=2$ nonadaptive 1-sided error [Berman Raskhodnikova Yaroslavtsev 14, Black Chakrabarty Seshadhri 23]

^{*} Hiding some $\log 1/\varepsilon$ dependence

Distance Approximation and Tolerant Testing

Approximating L_1 -distance to monotonicity $\pm \varepsilon$ w. $p \ge 2/3$

f	L_0	L_{1}
$[n] \rightarrow [0,1]$	$\operatorname{polylog} n \cdot \left(\frac{1}{\varepsilon}\right)^{O(1/\varepsilon)}$ [Saks Seshadhri 10]	$\Theta\left(\frac{1}{\varepsilon^2}\right)$

• Time complexity of tolerant L_1 -testing for monotonicity is

$$O\left(\frac{\varepsilon_2}{(\varepsilon_2-\varepsilon_1)^2}\right).$$

Open Problems

• Our L_1 -tester for monotonicity is nonadaptive, but adaptivity helps for Boolean range.

Is there a better adaptive tester?

• All our algorithms for L_p -testing for $p \ge 1$ were obtained directly from L_1 -testers.

Can one design better algorithms by working directly with L_p -distances?

• Distance to monotonicity of $f:\{0,1\}^d \to \{0,1\}$ can be approximated with $\tilde{O}(\sqrt{d})$ additive error with poly (d,ε) assuming f is ε -far from monotone [Pallavoor R Waingarten 21]

Take advantage of adaptivity?

Other properties?