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L,-Testing and Tolerant L,,-Testing
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Monotonicity

e Domain D=[n]? (vertices of d-dim hypergrid)  (n,n,n)

=
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e Afunction f: D — Ris monotone /
if increasing a coordinate of x does g

not decrease f(x). 1

e Specialcased =1
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f:[n] = Ris monotone & f(1), ... f(n) is sorted.



Monotonicity Testers: Running Time
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L,-Testing Monotonicity of f: [n]¢ - {0, 1}

Idea: 1. Pick axis-parallel lines .

2. Sample points from each 4,

and check for violations of f|,.

[DGLRRS 99]
e Testing sortedness: If f:|n] — {0,1}is e-far from sorted then

1 . . . .
0 (E) samples are sufficient to find a violation w/ const. prob.

e Dimension reduction: For f:[n]¢ - {0,1}
d (f M)
E[do(fie, M)] = =

How many lines should we sample?

How many points form each line?



General Work Investment Problem [Goldreich 13]

e Algorithm needs to find “evidence” (e.g., a violation).
e |t can select an element from distr. II (e.g., a uniform line).
e Elements e have different quality q(e) € [0,1]

(e.g., do(fe, M)).
e Algorithm must invest more work into e with lower g(e) to

extract evidence from e (e.g., need 0 (L) samples).

q(e)
* Eeenlq(e)] = p.
What's a good work investment strategy?

Used in [Levin 85, Goldreich Levin 89], testing connectedness of a graph [Goldreich
Ron 97], testing properties of images [R 03], multi-input testing problems [G13]



Work Investment Strategies

A “Reverse’” Markov Inequality A
For a random variable X € [0,1] with expectation E[X] = p,

ul_ u
prix > 2l E.
r[ —2]—2

NS /

Proof: u < E[X] SPr[XZ%]-1+Pr[X<§]-§.

“Reverse” Markov Strategy:

1. Sample ® (i) lines.
2. Sample ® (%) points from each line.

Cost: © (#—12) gueries.



Work Investment Strategies

Bucketing idea [Levin, Goldreich 13]:
: . 1
Invest in elements of quality g(e) = P separately.

/Bucketing Inequality [Berman R Yaroslavtsev 14]

For a random variable X € [0,1] with E [X] = p, let

1 1 . 4
p; = Pr [X = ;] and k; =0 (ﬁ) foralli € [log;].

\Then H}:(;glél/“(l —p))ki < 1/3.

Bucketing Strategy: For each bucket i € [logﬂ

1. Samplek; =0 (ﬁ) lines.
2. Sample @(Zi) points from each line.

1 1 : . _ £
Cost: @ (;log;) queries (for monotonicity, u = 2d)



Proof of Bucketing Inequality

/Bucketing Inequality [Berman R Yaroslavtsev 14] I
For a random varlable X €]0,1] with E [X] = pu, let
- x _ _4In1/o
t—logﬂ, p; = Pr[Xz -|, andk; = T
Then -(1—pi <6

Proof: It suffices to prove Zle

1_[(1 -p)" S 1_[ Pt = exp (— z piki>

i€[t] €[t] i€[t]

4In1/6 4In1/6 O p;
- P zp‘ e e T 25'

41 15
Sexp(— ni/ E)

p “becausethen

U 4



Proof of Bucketing Inequality (Continued)

/Bucketing Inequality [Berman R Yaroslavtsev 14] N
For a random varlable X €[0,1] with E [X] = p, Iet1 S
i 4 . . 41In1/
t—logﬂ, p; = Pr[Xz -|, andk; = T
Qhen ‘(1 —p)k <. y
Pi _ E
Proof: It suffices to prove ey 2; = 7 -
p 1O 1 HINANE 1 1
2 _EZZi—lpr r=g ZEEFPF r ez
i=1 i=1 i=1
= . E[X] =2 a
—E [ ] =9
; 1
z < 2 L
20 T2t T4
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Monotonicity Testers: Running Time
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Testing Monotonicity of f: [n]? - {0, 1}

: : 1 1 :
e For nonadaptive, 1-sided error testers, () (Elogz) gueries are

needed.
e There is an adaptive, 1-sided error tester with O e) gueries.

Method: testing via learning.

12



Partial Learning

e An e-partial function g with domain D and range R is a function
g: D — R U{?}that satisfies PerD[g(x) = ?]<e.
X

e An g-partial function g agrees with a function f if
g(x) = f(x) forall x on which g(x) #>.

e Given a function class C, let C, denote the class of e-partial functions,
each of which agrees with some function in C.

e An e-partial learner for a function class C is an algorithm that,
given a parameter € and oracle access to a function f,
outputs a hypothesis g € C; or fails.

Moreover, if f € C then it outputs g that agrees with f.

" Lemma (Conversion from Learner to Tester) A

If there is an e-partial learner for a function class C that makes q(¢) queries

then C can be e-tested with 1-sided error with g(e/2) + 0(1/¢) queries.
-

13



Proof of the Conversion Lemma

" Lemma (Conversion from Learner to Tester) A

If there is an e-partial learner for a function class C that makes q(¢) queries

then C can be e-tested with 1-sided error with g(¢/2) + O(1/¢) queries.
-

Proof: /Tester (Input: &, D; query access to function f on domain D)

1. Run the learner with parameter 2 to get an g-partial function g.
If the learner fails, reject.

2
3. Repeat 218—113 times:

4. Query f at a uniformly random point x € D.
5 Reject if g(x) #?, but g(x) #+ f(x).

Q: Accept. /

Correctness:

1. If f € C, then the learner outputs a hypothesis g that agrees with f on all
non-question-marks. So, the tester accepts.

2. If fis e-far from C, then the learner either fails or outputs g € C, /> .

In the latter case, g differs from f on = ¢ fraction of positions, at most /2
of which can be ?’s. The Witness lemma implies probability of rejection = 2/3




Partial Learner of Monotone functions f: [n]* — {0, 1}

( Lemma A
There is an g-partial learner for the class of monotone Boolean functions
over [n]? that makes O0(1/¢) queries.
o J
1
ldea: 0 ? 1 B
e Divide the grid into quarters. 00 ? 1
0

e Query the bottom left and the top right corner for each quarter.
e If the value of the function is NOT determined by the corners, recurse.

Details: Keep a quad tree and stop at Iogi + 1 levels.
o If>2/"1 nodes at level j are ?, fail. %

GO)C

15



Correctness of the Learner

(Claim

Llf the input function is monotone, level j will have fewer than 2/*1 nodes ?.

:
)

Proof: Suppose f is monotone.

e Fix level j. It partitions the domain into 2/ x 2/ squares.
e Two comparable squares cannot both have ?s

e At most one square from each diagonal can have a ?

0

?

1

71 s

.

Cor. 1. Learner does not fail on monotone functions.

Cor. 2. Learner outputs an &-partial function.
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[Cor. 3. Learner’s run time is 0(1/¢).

2J
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Monotonicity Testers: Running Time
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Monotonicity Testers: Running Time
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Distance Approximation and Tolerant Testing

[n] 1)\ °/® 1
oy poviesn(() (3

[Saks Seshadhri 10]

e Time complexity of tolerant L;-testing for monotonicity is

€2
0 ((82 — 81)2) |

19



Open Problems

e Qur L,-tester for monotonicity is nonadaptive, but
adaptivity helps for Boolean range.

Is there a better adaptive tester?

* All our algorithms for L,,-testing forp = 1 were
obtained directly from L,-testers.

Can one design better algorithms by working directly
with L,-distances?

e Distance to monotoniciy of f:{0,1}¢ — {0,1} can be
approximated with 0'(\/3) additive error with poly(d, ¢)
assuming f is e-far from monotone [Pallavoor R Waingarten 21]

Take advantage of adaptivity?
Other properties?

21
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