Sublinear Algorithms

LECTURE 22

Last time

- L_p -testing of monotonicity
- Work investment strategy
- Testing via learning

Today

• PAC learning and VC-dimension

Project Reports are due April 24

Sofya Raskhodnikova; Boston University

PAC means ``Probably Approximately Correct''

- Let Ω be a (finite or infinite) domain.
- Let \mathcal{C} be a class of Boolean functions on domain Ω , i.e., functions of the form $f: \Omega \to \{0,1\}$
- Let \mathcal{D} be a distribution over Ω .
- The learner \mathcal{L} is given parameters $\varepsilon, \delta \in (0,1)$ and a set S of mexamples drawn i.i.d. from \mathcal{D} and labeled with a function $f \in \mathcal{C}$: $\{(x, f(x)): x \in S\}.$
- Goal of \mathcal{L} : to find a *hypothesis* $h \in \mathcal{C}$ with error less than ε : $err_{\mathcal{D}}(h) := \Pr_{x \sim \mathcal{D}}[f(x) \neq h(x)].$
- An algorithm \mathcal{L} is a PAC-learner for a class \mathcal{C} if the probability it returns a hypothesis h with $err_{\mathcal{D}}(h) \leq \varepsilon$ is at least 1δ . The probability is taken over distribution \mathcal{D} and the coins of \mathcal{L}

The probability is taken over distribution \mathcal{D} and the coins of \mathcal{L} .

ERM

ERM stands for ``empirical risk minimization"

- Empirical error (or empirical risk) of a hypothesis h is $err_{S}(h) := \Pr_{x \sim S}[f(x) \neq h(x)]$
- An empirical risk minimizer is a hypothesis that has the smallest err_S among all hypothesis in the class, i.e., it mislabels the smallest number of examples in S.
- We will see that returning an ERM hypothesis is a great strategy for the learner.

For a given class C, what sample size mis sufficient for PAC learning?

Vapnik-Chervonenkis (VC) Dimension

- We will think of functions $f \in C$ as indicator functions for sets.
- For this part, we will equate them with sets. I.e., now $f \subseteq \Omega$.
- For a finite set $S \subseteq \Omega$, the projection of \mathcal{C} onto S is $\Pi_{\mathcal{C}}(S) \coloneqq \{h \cap S : h \in \mathcal{C}\}$

In the old notation, this is the set of possible labelings of *S* by hypotheses from \mathcal{C}

- A set *S* is shattered by *C* if $|\Pi_{\mathcal{C}}(S)| = 2^{|S|}$, i.e., no labeling is ruled out.
- Note that if S is shattered by C, then so is every subset of S.
- The VC dimension of a class C is the size of the largest set shattered by C:

 $VC(C) \coloneqq \max\{|S|: S \text{ shattered by } C\}$

• Let $\Pi_{\mathcal{C}}(m) \coloneqq \max_{S \subseteq \Omega, |S|=m} \{ |\Pi_{\mathcal{C}}(S)| \}$, i.e., the maximum size of a projection of \mathcal{C} for an m-element set.

Sauer Lemma

Sauer Lemma [Vapnik Chervonenkis]

Let C be a class of Boolean functions and $d = VC(C) < \infty$.

Then
$$\Pi_{\mathcal{C}}(m) \le {\binom{m}{\le d}} \le {\binom{em}{d}}^d = O(m^d)$$
 ${\binom{m}{\le d}} \operatorname{is} \Sigma_{i=0}^d {\binom{m}{i}}$
If $VC(\mathcal{C}) = \infty$, then $\Pi_{\mathcal{C}}(m) = 2^m$ for all m

Proof (by a shifting argument): Fix a set S of size m.

- Let $\mathcal{F}=\Pi_{\mathcal{C}}(S)$, i.e., it is a family of subsets of [m].
- W.l.o.g. m > d Otherwise, $\binom{m}{< d}$ is 2^m , and the lemma holds.
- We will transform family ${m {\cal F}}$ into a family ${m {\cal G}}$ by using shifting

1. Repeat until no further change is possible:2. for
$$i = 1$$
 to m3. for all $F \in \mathcal{F}$ do4. if $F - \{i\} \notin \mathcal{F}$ then replace F by $F - \{i\}$ 5. Set $\mathcal{G} = \mathcal{F}$ and return \mathcal{G}

Proof Sauer Lemma

Sauer Lemma [Vapnik Chervonenkis]

Let C be a class of Boolean functions and $d = VC(C) < \infty$.

Then
$$\Pi_{\mathcal{C}}(m) \leq {\binom{m}{\leq d}} \leq {\left(\frac{em}{d}\right)^d} = O(m^d)$$

Proof (continued): Properties of the transformation.

- 1. $|\mathcal{G}| = |\mathcal{F}|$
- 2. If $A \subset S$ is shattered by \mathcal{G} , then A is shattered by \mathcal{F}

By (3)

By (2)

- 2. **for** i = 1 to m
 - for $all F \in \mathcal{F}$ do

if
$$F - \{i\} \notin \mathcal{F}$$
 then replace F by $F - \{i\}$

5. Set $\mathcal{G} = \mathcal{F}$ and return \mathcal{G}

3. If $A \in G$, then so is every subset of A. G is closed under taking subsets

3. 4.

Instead of upper bounding $|\mathcal{F}|$, we upper bound $|\mathcal{G}|$.

- Every member of *G* is shattered by *G*, so it is also shattered by *F*.
- Thus, every member of G has size at most d, and

$$|\boldsymbol{\mathcal{G}}| \leq \binom{m}{\leq d}$$

Proof Sauer Lemma

Proof (continued): It remains to verify:

2. If $A \subset S$ is shattered by \mathcal{G} , then A is shattered by \mathcal{F}

Fix some execution of Steps 3-4 for some specific setting of *i*.

1. Repeat until no further change is possible:
2. for
$$i = 1$$
 to m
3. for all $F \in \mathcal{F}$ do
4. if $F - \{i\} \notin \mathcal{F}$ then replace F by $F - \{i\}$
5. Set $\mathcal{G} = \mathcal{F}$ and return \mathcal{G}

Let \mathcal{F} and \mathcal{F}' be the family before and after the execution, resp.

- Consider A shattered by \mathcal{F}' . We need to show: A is shattered by \mathcal{F} .
- W.l.o.g. assume $i \in A$.
- Fix $R \subseteq A$. Need to show: $\exists T \in \mathcal{F}$ such that $A \cap T = R$
- Then $\exists F' \in \mathcal{F}'$ such that $A \cap F' = R$ A shatter
 - If $i \in R$, then $F' \in \mathcal{F}$.
 - Suppose $i \notin R$. Then $\exists T' \in \mathcal{F}'$ such that $A \cap T' = R \cup \{i\}$. Set $T = T' - \{i\}$ $T \in \mathcal{F}$, since T' wasn't replaced in Step 4, and $A \cap T = R$.

Otherwise, intersections of *A* with members of the family are not affected by the operation (removal of *i* from the sets)

8

A shattered by ${oldsymbol{\mathcal{F}}}'$

Sauer Lemma

Sauer Lemma [Vapnik Chervonenkis]

Let C be a class of Boolean functions and $d = VC(C) < \infty$.

Then
$$\Pi_{\mathcal{C}}(m) \leq {\binom{m}{\leq d}} \leq {\left(\frac{em}{d}\right)^d} = O(m^d)$$