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PAC Learning [Valiant 84]

PAC means Probably Approximately Correct”

C is a class of functions of the form f: Q — {0,1}.
D is a distribution over ().

The learner L is given parameters €,8 € (0,1) and aset S of m
examples drawn i.i.d. from D and labeled with a function f € C:

{(x,f(x)): X € S}.
Goal of L: to find a Aypothesis h € C with error less than &:
errq(h): = Plz‘)[f(x) + h(x)].
x~

An algorithm L is a PAC-learner for a class C if the probability
it returns a hypothesis h with errqy(h) < eisatleast 1 — 6.

The probability is taken over distribution 2 and the coins of £



ERM

ERM stands for "empirical risk minimization”
e Empirical error (or empirical risk) of a hypothesis h is
errs(h):= Pr[f(x) # h(x)]
x~

e An empirical risk minimizer is a hypothesis that has the
smallest errs among all hypothesis in the class, i.e., it mislabels
the smallest number of examplesin S.

e We will see that returning an ERM hypothesis is a great
strategy for the learner.



Big Question

For a given class C,
what sample size m
is sufficient for PAC learning?



Vapnik-Chervonenkis (VC) Dimension

e We will think of functions f € C as indicator functions for sets.
e For this part, we will equate them with sets. l.e., now f € ().

e ForafinitesetS € (), the projection of C onto S is
[e(S)={hNS:h €C}
In the old notation, this is the set of possible labelings of S by hypotheses from €

e AsetSisshattered by C if |HC(S)| = 2151 j.e., no labeling is
ruled out.

e Note thatif S is shattered by C, then so is every subset of S.

e The VC dimension of a class C is the size of the largest set
shattered by C:
VC(C) = max{|S|: S shattered by C}
o Letllp(m) := sgg}zslfim{lne(s)l}' i.e., the maximum size of a
projection of C for an m-element set.



Sauer’s Lemma

/Sauer’s Lemma [Vapnik Chervonenkis 71]

Let C be a class of Boolean functions and d = VC(C)<co.

\Then [Me(m) < (Smd) < (%)d = O(md)




Sample complexity of PAC learning

/I'heorem [Vapnik Chervonenkis] \

Let £ be an algorithm that outputs an ERM hypothesis. Then L is a
PAC learner for class C if the number of samples it gets satisfies

m = %(logz (HC(Zm)) + log, g) . )

Proof: We define several bad events. Want to show: Pr[4] < 6.

1. Failure event of the algorithm, expressed as a function of sample S ~ D™:
A = A(S):3h € Csuch thaterrs(h) = 0, buterrp(h) > ¢

2. Another event (that, as we will show, has related probability to Pr[A4]),
expressed as a function of two i.i.d. samples, S and S’, of size m:
B = B(S,S"):3h € C such that errs(h) = 0, but erre/(h) > €/2

3. Event B; parameterized by o € {0,1}™ and expressed as a function of
two i.i.d. samples, S = {xy, ..., x;,} and S’ = {x1, ..., x;n }.
Define T = {z4, ..., z,} and T' = {zq, ..., zp,},
where z; = x; and z; = x; if 0; = 1;and z; = x; and z; = x;, otherwise.
B, = B(S,S"):3h € C such thaterry(h) = 0, buterr;/(h) > ¢/2

o




Relating the probabilities of A and B

Pr[B] = Pr[B|A] - Pr[A] Law of total probability
(Claim ] ("Event A: 3h € € such that )
Llfm >% then Pr [B|4] == J errs(h) = 0, buterrp(h) > &.
£ s,s'~Dm 2 Event B: 3h € C such that

Proof: Suppose A occurred. ke,ﬂ,ﬂs(h) = 0, but errg (h) > 5/9

e Consider h € C such that errs(h) = 0, but errqy(h) > e.

e What's the probability that err¢/(h) > £/2?

e erry(h) isthe average of mi.i.d. Bernoulli random variables

Ecr _pmlerrg(h)] = errp(h) > ¢

- Chernoff bound for y € (0,1) and

e Pr [errsr(h) < E] <e 8 the average of m I.1.d. Bernoullis
2 with expectation u:

<el'< 1/2 PrilY < (1 —y)u] < e~V miu/2
e Pr|[B|A] =Pr [errsr(h) > g] 2%




Relating the probabilities of A and B
1

Pr[B] = Pr[B|A] - Pr|[A] > > Pr[A]
(Claim
Llfm >2 then Pr_ [Bl|4] =2 J PrlA] < 2 Pr[B]
& s,s'~Dm 2

Want to show: Pr[B] < 6/2



Bounding the Probability of B

Want to show: Pr[B] < 6/2

(Claim 2

\

Pr

L Pr [B] =
s,s'~Dm s,s'~Dm g~{0,1}M

[B] J

Proof:

/Event B:3h € C such that

\

errs(h) = 0, buterrg (h) > ¢/2.
Event B,: 3h € C such that

kerrT(h) = 0, buterr;/(h) > ¢/ 2/

(S5,S") and (T, T") have the same distribution.
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Bounding the Probability of B,

Want to show: Pr [B,] < 6/2
S,S', o

We will show: Pr[B,] < 6/2 forall S, S’
(o)

Claim 3

\

Forall 5,5’ e Q™ and all h: Q — {0,1},
Pr m[errT(h) = 0, but err,(h) > /2]

|

Event B,: 3h € C such that
errr(h) = 0, but err,/(h) > g/2.

o~{0.1 —sm/2
\ = 2 /
Proof: Let’s organize the answers of h on the examplesin S and S’ in a table.
h(x1) h(xz) h(Xm)
h(x1) h(xz) h(Xm)

e If both answers in some column are wrong, erry(h) = 0 cannot occur. «_

e |f more than (1 — 5) m columns have both answers right,

&
errr(h) > - cannot occur.
2

e Assumer = em/2 columns have one correct and one wrong answer.
e Forerry(h) = 0 to occur, 0 must send all the right answers from the r

columns to T and all the wrong onesto T’

e The probability of this is 277 < 27¢m/2

Pr[B,] =0
(o)
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Bounding the Probability of B,

Want to show: Pr [B,] < 6/2
S,S', o

(Claim 3 A
Forall 5,5’ e Q™ and all h: Q — {0,1},
Pr m[errT(h) = 0, but err,(h) > /2]

o~{0,1}
N < 2—em/2 )
(Claim 4 A

Forall s,S" € ™,

< .D—&Em/2
\ a~{I()>F1}m[BG]_HC(2m) g y

|

Event B,: 3h € C such that
errr(h) = 0, but err,/(h) > g/2.

Proof: Take a union bound over a set of hypotheses that contains one
representative for each projection in[1(S U S"),
i.e., for each possible labeling of S U S’ by a hypothesis from C.
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Bounding the Probability of B,

Want to show: Pr [B,] < 6/2
S,S', o

Want: [Io(2m) - 276m/2 < 2

2

(Claim 4 h
Forall s,s’ € ™,
< . 9—&m/2
L GN{[(’)rl}m[Ba] <He(2m) -2 )

Equivalently, HC’(Zm) el < 2Em/2

Take the log of both sides: log, (H@(Zm)) + log, % Tm

Rearrange: m - (logz (Hc(Zm)) + log, E)
/Theorem [Vapnik Chervonenkis] \

Let £ be an algorithm that outputs an ERM hypothesis. Then £ is a

PAC learner for class C if the number of samples it gets satisfies

2 ( 2
m = —| log, (1o (2m) | + log; )

\_ ( ) o) )

Rearrange: m = %(log2 (HC(Zm)) + log, %)
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Bounding the Probability of B,

Want to show: Pr [B,] < 6/2
S,S', o

Want: p(2m) - 2752 < 2

(Claim 4 h
Forall s,s’ € ™,
< . 9—&m/2
L GN{[(’)rl}m[Ba] <He(2m) -2 )

Equivalently, HC’(Zm) el < 2Em/2

Take the log of both sides: log, (HC(Zm)) + log, %

Em
2

Rearrange: m = - (log2 (Hc(zm)) + log, E)

o

(d log, (Zem) + log, %)

Let £ be an algorithm that outputs an ERM hypothesis. Then £ is a
PAC learner for class C if the number of samples it gets satisfies

2 2
m > — (logz (HC(Zm)) + log, 8)

Algebraic

1 1 1 :
m=20 (; (d log; + logg)) suffices.

m d
/Theorem [Vapnik Chervonenkis] By Sauer’s lemma, Hc(m) < (S d) < (@)

d

/

manipulations give that



Sample Complexity of PAC Learning

/Theorem N\
Let C be a class of functions 0 — {0,1} with finite VC-dimension d.
Then, for some constants C; and C,,
the sample complexity m(e, §) of PAC-learning C satisfies
Cq 1 C, 1 1
K ?(d+log§> < m(g, 9) S?(dlogg+log5> : /
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