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Last time
• PAC learning and VC-dimension

• Sauer Lemma
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• PAC learning and VC-dimension

• The sample complexity of PAC learning
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PAC Learning [Valiant 84]

PAC means ``Probably Approximately Correct’’

• 𝒞 is a class of functions of the form 𝑓: Ω → 0,1 . 

• 𝒟 is a distribution over Ω.

• The learner 𝓛 is given parameters 𝜀, 𝛿 ∈ (0,1) and a set S of 𝑚 
examples drawn i.i.d. from 𝒟 and labeled with a function 𝑓 ∈ 𝒞:

𝑥, 𝑓 𝑥 : 𝑥 ∈ 𝑆 .

• Goal of 𝓛: to find a hypothesis ℎ ∈ 𝒞 with error less than 𝜀:
𝑒𝑟𝑟𝒟 ℎ : = Pr

𝑥∼𝒟
𝑓 𝑥 ≠ ℎ 𝑥 .

• An algorithm 𝓛 is a PAC-learner for a class 𝒞 if the probability 
it returns a hypothesis ℎ with 𝑒𝑟𝑟𝒟 ℎ ≤ 𝜀 is at least 1 − 𝛿.
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The probability is taken over distribution 𝒟 and the coins of 𝓛. 



ERM

ERM stands for ``empirical risk minimization’’

• Empirical error (or empirical risk) of a hypothesis ℎ is
𝑒𝑟𝑟𝑆 ℎ : = Pr

𝑥∼𝑆
𝑓 𝑥 ≠ ℎ 𝑥

• An empirical risk minimizer is a hypothesis that has the 
smallest 𝑒𝑟𝑟𝑆 among all hypothesis in the class, i.e., it mislabels 
the smallest number of examples in 𝑆.

• We will see that returning an ERM hypothesis is a great 
strategy for the learner.
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Big Question

For a given class 𝒞,                                                           
what sample size 𝑚                                                         

is sufficient for PAC learning?  
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Vapnik-Chervonenkis (VC) Dimension

• We will think of functions 𝑓 ∈ 𝒞 as indicator functions for sets.

• For this part, we will equate them with sets. I.e., now 𝑓 ⊆ Ω.

• For a finite set 𝑆 ⊆ Ω, the projection of 𝒞 onto 𝑆 is 
Π𝒞(𝑆) ≔ ℎ ∩ 𝑆: ℎ ∈ 𝒞

• A set 𝑆 is shattered by 𝒞 if Π𝒞(𝑆) = 2 𝑆 , i.e., no labeling is 

ruled out.

• Note that if 𝑆 is shattered by 𝒞, then so is every subset of S.

• The VC dimension of a class 𝒞 is the size of the largest set 
shattered by 𝒞:

𝑉𝐶(𝒞) ≔ max 𝑆 : 𝑆 shattered by 𝒞

• Let Π𝒞 𝑚 ≔ max
𝑆⊆Ω, 𝑆 =𝑚

Π𝒞(𝑆) , i.e., the maximum size of a 

projection of 𝒞 for an 𝑚-element set. 5

In the old notation, this is the set of possible labelings of 𝑆 by hypotheses from 𝒞 
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Sauer’s Lemma [Vapnik Chervonenkis 71]

 Let 𝒞 be a class of Boolean functions and 𝑑 = 𝑉𝐶(𝒞)<∞.

Then Π𝒞 𝑚 ≤
𝑚

≤ 𝑑
≤

𝑒𝑚

𝑑

𝑑
= 𝑂 𝑚𝑑  

Sauer’s Lemma



Sample complexity of PAC learning

Proof: We define several bad events.

1. Failure event of the algorithm, expressed as a function of sample 𝑆 ∼ 𝒟𝑚:

           𝐴 = 𝐴 𝑆 : ∃ℎ ∈ 𝒞 such that 𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝒟 ℎ > 𝜀 

2. Another event (that, as we will show, has related probability to Pr[𝐴]),       
expressed as a function of two i.i.d. samples, 𝑆 and 𝑆′, of size 𝑚:

𝐵 = 𝐵 𝑆, 𝑆′ : ∃ℎ ∈ 𝒞 such that 𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝑆′ ℎ > 𝜀/2

3. Event 𝐵𝜎 parameterized by 𝜎 ∈ 0,1 𝑚 and expressed as a function of                
two i.i.d. samples, 𝑆 = {𝑥1, … , 𝑥𝑚} and 𝑆′ = {𝑥1

′ , … , 𝑥𝑚
′ }.

        Define 𝑇 = {𝑧1, … , 𝑧𝑚} and 𝑇′ = 𝑧1
′ , … , 𝑧𝑚

′ ,                                                            

        where 𝑧𝑖 = 𝑥𝑖 and 𝑧𝑖
′ = 𝑥𝑖

′ if 𝜎𝑖 = 1; and 𝑧𝑖 = 𝑥𝑖
′ and 𝑧𝑖

′ = 𝑥𝑖, otherwise.

           𝐵𝜎 = 𝐵 𝑆, 𝑆′ : ∃ℎ ∈ 𝒞 such that 𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2
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Theorem [Vapnik Chervonenkis]

 
Let 𝓛 be an algorithm that outputs an ERM hypothesis. Then 𝓛  is a 
PAC learner for class 𝒞 if the number of samples it gets satisfies

𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿
 .

Want to show: Pr 𝐴 ≤ 𝛿.

Based on lecture notes by Nika Haghtalab



Relating the probabilities of 𝑨 and B

Pr[𝐵] ≥ Pr 𝐵 𝐴 ⋅ Pr 𝐴  

Proof: Suppose 𝐴 occurred.

• Consider ℎ ∈ 𝒞 such that 𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝒟 ℎ > 𝜀.

• What’s the probability that 𝑒𝑟𝑟𝑆′ ℎ > 𝜀/2?

• 𝑒𝑟𝑟𝑆′ ℎ  is the average of 𝑚 i.i.d. Bernoulli random variables

• Pr 𝑒𝑟𝑟𝑆′ ℎ ≤
𝜀

2
≤ 𝑒−

𝑚𝜀
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• Pr 𝐵 𝐴 ≥ Pr 𝑒𝑟𝑟𝑆′ ℎ ≥
𝜀

2
≥

1

2
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Law of total probability

Claim
 If 𝑚 ≥

8

𝜀
   then Pr

𝑠,𝑠′∼𝒟𝑚
𝐵 𝐴 ≥

1

2
 

Event 𝐴: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝒟 ℎ > 𝜀.

Event 𝐵: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝑆′ ℎ > 𝜀/2.

𝔼𝑆′∼𝒟𝑚 𝑒𝑟𝑟𝑆′ ℎ = 𝑒𝑟𝑟𝒟 ℎ  > 𝜀

Chernoff bound for 𝛾 ∈ 0,1  and 

the average of 𝑚 i.i.d. Bernoullis 

with expectation 𝜇:                                  

Pr 𝑌 < 1 − 𝛾 𝜇 ≤ 𝑒−𝛾2𝑚𝜇/2≤ 𝑒−1 ≤ 1/2



Relating the probabilities of 𝑨 and B

Pr[𝐵] ≥ Pr 𝐵 𝐴 ⋅ Pr 𝐴  
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≥
1

2
⋅ Pr 𝐴

Pr 𝐴 ≤ 2 Pr[𝐵]

Want to show: Pr 𝐵 ≤ 𝛿/2

Claim
 If 𝑚 ≥

8

𝜀
   then Pr

𝑠,𝑠′∼𝒟𝑚
𝐵 𝐴 ≥

1

2
 



Bounding the Probability of B

Proof:

𝑆, 𝑆′  and 𝑇, 𝑇′  have the same distribution.
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Event 𝐵: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑆 ℎ = 0, but 𝑒𝑟𝑟𝑆′ ℎ > 𝜀/2.

Event 𝐵𝜎: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2.

Claim 2
 Pr

𝑠,𝑠′∼𝒟𝑚
𝐵 = Pr

𝑠,𝑠′∼𝒟𝑚,𝜎∼ 0,1 𝑚
𝐵𝜎

Want to show: Pr 𝐵 ≤ 𝛿/2



Bounding the Probability of 𝐵𝝈

Proof:  Let’s organize the answers of ℎ on the examples in 𝑆 and 𝑆′ in a table.

• If both answers in some column are wrong, 𝑒𝑟𝑟𝑇 ℎ = 0 cannot occur.

• If more than 1 −
𝜀

2
𝑚 columns have both answers right,                                    

𝑒𝑟𝑟𝑇′ ℎ >
𝜀

2
 cannot occur.

• Assume 𝑟 ≥ 𝜀𝑚/2 columns have one correct and one wrong answer.
• For 𝑒𝑟𝑟𝑇 ℎ = 0 to occur, 𝜎 must send all the right answers from the 𝑟 

columns to 𝑇 and all the wrong ones to 𝑇′

• The probability of this is 2−𝑟 ≤ 2−𝜀𝑚/2
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Claim 3
 For all 𝑆, 𝑆′ ∈ Ω𝑚 and all ℎ: Ω → 0,1 ,

Pr
𝜎∼ 0,1 𝑚

𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2

≤ 2−𝜀𝑚/2

Want to show: Pr
𝑆,𝑆′, 𝜎

𝐵𝜎 ≤ 𝛿/2 We will show: Pr
 𝜎

𝐵𝜎 ≤ 𝛿/2 for all 𝑆, 𝑆′

ℎ(𝑥1) ℎ(𝑥2) … ℎ(𝑥𝑚)

ℎ(𝑥1
′ ) ℎ(𝑥2

′ ) … ℎ(𝑥𝑚
′ )

Pr
 𝜎

𝐵𝜎 = 0

Event 𝐵𝜎: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2.



Bounding the Probability of 𝐵𝝈

Proof: Take a union bound over a set of hypotheses that contains one 
representative for each projection in Π𝒞 𝑆 ∪ 𝑆′ , 

i.e., for each possible labeling of 𝑆 ∪ 𝑆′ by a hypothesis from 𝒞.
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Claim 4 

For all 𝑆, 𝑆′ ∈ Ω𝑚,

Pr
𝜎∼ 0,1 𝑚

𝐵𝜎 ≤ Π𝒞 2𝑚 ⋅ 2−𝜀𝑚/2

Event 𝐵𝜎: ∃ℎ ∈ 𝒞 such that 

𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2.

Claim 3
 For all 𝑆, 𝑆′ ∈ Ω𝑚 and all ℎ: Ω → 0,1 ,

Pr
𝜎∼ 0,1 𝑚

𝑒𝑟𝑟𝑇 ℎ = 0, but 𝑒𝑟𝑟𝑇′ ℎ > 𝜀/2

≤ 2−𝜀𝑚/2

Want to show: Pr
𝑆,𝑆′, 𝜎

𝐵𝜎 ≤ 𝛿/2



Bounding the Probability of 𝐵𝝈

Want: Π𝒞 2𝑚 ⋅ 2−𝜀𝑚/2 ≤
𝛿

2

Equivalently,  Π𝒞 2𝑚 ⋅
2

𝛿
≤ 2𝜀𝑚/2

Take the log of both sides: log2 Π𝒞 2𝑚 + log2
2

𝛿
≤

𝜀𝑚

2
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Claim 4 

For all 𝑆, 𝑆′ ∈ Ω𝑚,

Pr
𝜎∼ 0,1 𝑚

𝐵𝜎 ≤ Π𝒞 2𝑚 ⋅ 2−𝜀𝑚/2

Want to show: Pr
𝑆,𝑆′, 𝜎

𝐵𝜎 ≤ 𝛿/2

Rearrange:           𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿

Theorem [Vapnik Chervonenkis]

 
Let 𝓛 be an algorithm that outputs an ERM hypothesis. Then 𝓛  is a 
PAC learner for class 𝒞 if the number of samples it gets satisfies

𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿
 .

Rearrange:           𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿



Bounding the Probability of 𝐵𝝈

Want: Π𝒞 2𝑚 ⋅ 2−𝜀𝑚/2 ≤
𝛿

2

Equivalently,  Π𝒞 2𝑚 ⋅
2

𝛿
≤ 2𝜀𝑚/2

Take the log of both sides: log2 Π𝒞 2𝑚 + log2
2

𝛿
≤

𝜀𝑚

2

𝑚 ≥
2

𝜀
𝑑 log2

2𝑒𝑚

𝑑
+ log2

2

𝛿
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Claim 4 

For all 𝑆, 𝑆′ ∈ Ω𝑚,

Pr
𝜎∼ 0,1 𝑚

𝐵𝜎 ≤ Π𝒞 2𝑚 ⋅ 2−𝜀𝑚/2

Want to show: Pr
𝑆,𝑆′, 𝜎

𝐵𝜎 ≤ 𝛿/2

Rearrange:           𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿

Theorem [Vapnik Chervonenkis]

 
Let 𝓛 be an algorithm that outputs an ERM hypothesis. Then 𝓛  is a 
PAC learner for class 𝒞 if the number of samples it gets satisfies

𝑚 ≥
2

𝜀
log2 Π𝒞 2𝑚 + log2

2

𝛿
 .

By Sauer’s lemma, Π𝒞 𝑚 ≤
𝑚

≤ 𝑑
≤

𝑒𝑚

𝑑

𝑑

Algebraic manipulations give that 

𝑚 = Θ
1

𝜀
𝑑 log

1

𝜀
+ log

1

𝛿
 suffices.



Sample Complexity of PAC Learning

15

Theorem

 
Let 𝒞 be a class of functions Ω → {0,1} with finite VC-dimension 𝑑. 
Then, for some constants 𝐶1 and 𝐶2,                                                                            
the sample complexity 𝑚(𝜀, 𝛿) of PAC-learning 𝒞 satisfies

𝐶1

𝜀
𝑑 + log

1

𝛿
 ≤ 𝑚(𝜀, 𝛿) ≤

𝐶2

𝜀
𝑑 log

1

𝜀
+ log

1

𝛿
 .
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