Sublinear Algorithms

LECTURE 23

Last time

- PAC learning and VC-dimension
- Sauer Lemma

Today

- PAC learning and VC-dimension
- The sample complexity of PAC learning

Project Reports are due April 24

Sofya Raskhodnikova; Boston University

PAC means ``Probably Approximately Correct''

- C is a class of functions of the form $f: \Omega \to \{0,1\}$.
- \mathcal{D} is a distribution over Ω .
- The learner \mathcal{L} is given parameters $\varepsilon, \delta \in (0,1)$ and a set S of m examples drawn i.i.d. from \mathcal{D} and labeled with a function $f \in \mathcal{C}$: $\{(x, f(x)): x \in S\}.$
- Goal of \mathcal{L} : to find a *hypothesis* $h \in \mathcal{C}$ with error less than ε : $err_{\mathcal{D}}(h) := \Pr_{x \sim \mathcal{D}}[f(x) \neq h(x)].$
- An algorithm \mathcal{L} is a PAC-learner for a class \mathcal{C} if the probability it returns a hypothesis h with $err_{\mathcal{D}}(h) \leq \varepsilon$ is at least 1δ .

The probability is taken over distribution \mathcal{D} and the coins of \mathcal{L} .

ERM

ERM stands for ``empirical risk minimization"

- Empirical error (or empirical risk) of a hypothesis h is $err_{S}(h) := \Pr_{x \sim S}[f(x) \neq h(x)]$
- An empirical risk minimizer is a hypothesis that has the smallest err_S among all hypothesis in the class, i.e., it mislabels the smallest number of examples in S.
- We will see that returning an ERM hypothesis is a great strategy for the learner.

For a given class C, what sample size mis sufficient for PAC learning?

Vapnik-Chervonenkis (VC) Dimension

- We will think of functions $f \in C$ as indicator functions for sets.
- For this part, we will equate them with sets. I.e., now $f \subseteq \Omega$.
- For a finite set $S \subseteq \Omega$, the projection of \mathcal{C} onto S is $\Pi_{\mathcal{C}}(S) \coloneqq \{h \cap S : h \in \mathcal{C}\}$

In the old notation, this is the set of possible labelings of *S* by hypotheses from \mathcal{C}

- A set *S* is shattered by *C* if $|\Pi_{\mathcal{C}}(S)| = 2^{|S|}$, i.e., no labeling is ruled out.
- Note that if S is shattered by C, then so is every subset of S.
- The VC dimension of a class C is the size of the largest set shattered by C:

 $VC(C) \coloneqq \max\{|S|: S \text{ shattered by } C\}$

• Let $\Pi_{\mathcal{C}}(m) \coloneqq \max_{S \subseteq \Omega, |S|=m} \{ |\Pi_{\mathcal{C}}(S)| \}$, i.e., the maximum size of a projection of \mathcal{C} for an *m*-element set.

Sauer's Lemma

Sauer's Lemma [Vapnik Chervonenkis 71]

Let C be a class of Boolean functions and $d = VC(C) < \infty$.

Then
$$\Pi_{\mathcal{C}}(m) \leq {\binom{m}{\leq d}} \leq {\left(\frac{em}{d}\right)^d} = O(m^d)$$

Sample complexity of PAC learning

Theorem [Vapnik Chervonenkis]

Let \mathcal{L} be an algorithm that outputs an ERM hypothesis. Then \mathcal{L} is a PAC learner for class \mathcal{C} if the number of samples it gets satisfies

$$m \ge \frac{2}{\varepsilon} \left(\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \right)$$

Proof: We define several bad events.

1. Failure event of the algorithm, expressed as a function of sample $S \sim \mathcal{D}^m$: A = A(S): $\exists h \in \mathcal{C}$ such that $err_S(h) = 0$, but $err_\mathcal{D}(h) > \varepsilon$

Want to show: $\Pr[A] \leq \delta$.

7

- 2. Another event (that, as we will show, has related probability to Pr[A]), expressed as a function of two i.i.d. samples, S and S', of size m: B = B(S, S'): $\exists h \in C$ such that $err_S(h) = 0$, but $err_{S'}(h) > \varepsilon/2$
- 3. Event B_{σ} parameterized by $\sigma \in \{0,1\}^m$ and expressed as a function of two i.i.d. samples, $S = \{x_1, ..., x_m\}$ and $S' = \{x'_1, ..., x'_m\}$. Define $T = \{z_1, ..., z_m\}$ and $T' = \{z'_1, ..., z'_m\}$, where $z_i = x_i$ and $z'_i = x'_i$ if $\sigma_i = 1$; and $z_i = x'_i$ and $z'_i = x_i$, otherwise. $B_{\sigma} = B(S, S')$: $\exists h \in C$ such that $err_T(h) = 0$, but $err_{T'}(h) > \varepsilon/2$ Based on lecture notes by Nika Haghtalab

Relating the probabilities of A and B

$$\Pr[B] \ge \Pr[B|A] \cdot \Pr[A]$$

Claim

If
$$m \ge \frac{8}{\varepsilon}$$
 then $\Pr_{s,s' \sim \mathcal{D}^m}[B|A] \ge \frac{1}{2}$

Proof: Suppose *A* occurred.

Law of total probability

Event $A: \exists h \in C$ such that $err_{S}(h) = 0$, but $err_{D}(h) > \varepsilon$.

Event *B*: $\exists h \in C$ such that $err_{S}(h) = 0$, but $err_{S'}(h) > \varepsilon/2$.

- Consider $h \in \mathcal{C}$ such that $err_{\mathcal{S}}(h) = 0$, but $err_{\mathcal{D}}(h) > \varepsilon$.
- What's the probability that $err_{S'}(h) > \varepsilon/2$?
- $err_{S'}(h)$ is the average of m i.i.d. Bernoulli random variables $\mathbb{E}_{S'\sim \mathcal{D}^m}[err_{S'}(h)] = err_{\mathcal{D}}(h) > \varepsilon$

•
$$\Pr\left[err_{S'}(h) \le \frac{\varepsilon}{2}\right] \le e^{-\frac{m\varepsilon}{8}}$$

 $\le e^{-1} \le 1/2$
• $\Pr[B|A] \ge \Pr\left[err_{S'}(h) \ge \frac{\varepsilon}{2}\right] \ge \frac{1}{2}$

Chernoff bound for $\gamma \in (0,1)$ and the average of *m* i.i.d. Bernoullis with expectation μ : $\Pr[Y < (1 - \gamma)\mu] \le e^{-\gamma^2 m \mu/2}$

Relating the probabilities of A and B

Bounding the Probability of B

Want to show:
$$\Pr[B] \leq \delta/2$$

Claim 2

$$\Pr_{s,s'\sim \mathcal{D}^m}[B] = \Pr_{s,s'\sim \mathcal{D}^m,\sigma\sim\{0,1\}^m}[B_\sigma]$$

Event $B: \exists h \in C$ such that $err_{S}(h) = 0$, but $err_{S'}(h) > \varepsilon/2$. **Event** $B_{\sigma}: \exists h \in C$ such that $err_{T}(h) = 0$, but $err_{T'}(h) > \varepsilon/2$.

Proof:

(S, S') and (T, T') have the same distribution.

Want to show:
$$\Pr_{S,S',\sigma}[B_{\sigma}] \le \delta/2$$
We will show: $\Pr_{\sigma}[B_{\sigma}] \le \delta/2$ for all S,S' Claim 3For all $S,S' \in \Omega^m$ and all $h: \Omega \to \{0,1\}$,
 $\Pr_{\sigma \sim \{0,1\}^m}[err_T(h) = 0, but err_{T'}(h) > \varepsilon/2]$ $\leq 2^{-\varepsilon m/2}$

Proof: Let's organize the answers of h on the examples in S and S' in a table.

$h(x_1)$	$h(x_2)$	 $h(x_m)$
$h(x_1')$	$h(x_2')$	 $h(x'_m)$

- If both answers in some column are wrong, $err_T(h) = 0$ cannot occur. $\Pr_{\sigma}[B_{\sigma}] = 0$
- If more than $\left(1-\frac{\varepsilon}{2}\right)m$ columns have both answers right, $err_{T'}(h) > \frac{\varepsilon}{2}$ cannot occur. •
- Assume $r \ge \varepsilon m/2$ columns have one correct and one wrong answer.
- For $err_{T}(h) = 0$ to occur, σ must send all the right answers from the r columns to T and all the wrong ones to T'
- The probability of this is $2^{-r} \leq 2^{-\varepsilon m/2}$

Proof: Take a union bound over a set of hypotheses that contains one representative for each projection in $\Pi_{\mathcal{C}}(S \cup S')$,

i.e., for each possible labeling of $S \cup S'$ by a hypothesis from C.

Want to show: $\Pr[B_{\sigma}] \leq \delta/2$	Claim 4		
Want: $\Pi_{\mathcal{C}}(2m) \cdot 2^{-\varepsilon m/2} \leq \frac{\delta}{2}$	For all $S, S' \in \Omega^m$, $\Pr_{\sigma \sim \{0,1\}^m} [B_\sigma] \leq \Pi_{\mathcal{C}}(2m) \cdot 2^{-\varepsilon m/2}$		
Equivalently, $\Pi_{\mathcal{C}}(2m) \cdot \frac{2}{s} \leq 2^{\varepsilon m/2}$			
Take the log of both sides: $\log_2\left(\Pi_{\mathcal{C}}(2m)\right) + \log_2\frac{2}{\delta} \le \frac{\varepsilon m}{2}$ Rearrange: $m \ge \frac{2}{\varepsilon}\left(\log_2\left(\Pi_{\mathcal{C}}(2m)\right) + \log_2\frac{2}{\delta}\right)$			
Theorem [Vapnik Chervonenkis]			
Let \mathcal{L} be an algorithm that outputs an ERM hypothesis. Then \mathcal{L} is a			

PAC learner for class C if the number of samples it gets satisfies

$$m \ge \frac{2}{\varepsilon} \left(\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \right)$$

Rearrange:

$$m \geq \frac{2}{\varepsilon} \left(\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \right)$$

Want to show: $\Pr_{SS'\sigma}[B_{\sigma}] \leq \delta/2$	Claim 4			
Want: $\Pi_{\mathcal{C}}(2m) \cdot 2^{-\varepsilon m/2} \leq \frac{\delta}{2}$	For all $S, S' \in \Omega^m$, $\Pr_{\sigma \sim \{0,1\}^m} [B_\sigma] \leq \Pi_{\mathcal{C}}(2m) \cdot 2^{-\varepsilon m/2}$			
Equivalently, $\Pi_{\mathcal{C}}(2m) \cdot \frac{2}{\delta} \leq 2^{\varepsilon m/2}$				
Take the log of both sides: $\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \le \frac{\varepsilon m}{2}$				
Rearrange: $m \ge \frac{2}{\varepsilon} \left(\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \right)$				
Theorem [Vapnik Chervonenkis] By Sauer's lemma, $\Pi_{\mathcal{C}}(m) \le {\binom{m}{\le d}} \le {\binom{em}{d}}^d$				
Let \mathcal{L} be an algorithm that outputs an ERM hypothesis. Then \mathcal{L} is a				
PAC learner for class C if the number of samples it gets satisfies				
$m \geq \frac{2}{\varepsilon} \left(\log_2 \left(\Pi_{\mathcal{C}}(2m) \right) + \log_2 \frac{2}{\delta} \right).$				
$m \ge \frac{2}{\varepsilon} \left(d \log_2 \left(\frac{2em}{d} \right) + \log_2 \frac{2}{\delta} \right)$	Algebraic manipulations give that $m = \Theta\left(\frac{1}{\varepsilon}\left(d\log\frac{1}{\varepsilon} + \log\frac{1}{\delta}\right)\right)$ suffices.			

Sample Complexity of PAC Learning

Theorem

Let C be a class of functions $\Omega \to \{0,1\}$ with finite VC-dimension d. Then, for some constants C_1 and C_2 , the sample complexity $m(\varepsilon, \delta)$ of PAC-learning C satisfies $\frac{C_1}{\varepsilon} \left(d + \log \frac{1}{\delta} \right) \le m(\varepsilon, \delta) \le \frac{C_2}{\varepsilon} \left(d \log \frac{1}{\varepsilon} + \log \frac{1}{\delta} \right)$.