Sublinear Algorithms

LECTURE 25

Last time

- Local Computation Algorithms (LCAs)
- Distributed LOCAL model
- Maximal Independent Set (MIS)

Today

- Testing properties of distributions
- Uniformity testing
- Presentation tips

4/24/2025

Sofya Raskhodnikova; Boston University (based on lecture notes by Ronitt Rubinfeld and Sepehr Assadi

Testing Properties of Distributions

Motivation: Can we decide if a distribution (over a finite domain) satisfies a given property by examining just a few samples?

- Fix a domain [n]
- The tester gets access to i.i.d. samples from an unknown distribution μ over [n]
- It has to **accept** if μ has property \mathcal{P} and **reject** if $dist(\mu, \mathcal{P}) \ge \varepsilon$ with probability $\ge \frac{2}{3}$
- Distance measure: *total variation distance*

$$d_{TV}(\mu, \nu) = \frac{1}{2} \sum_{i \in [n]} |\mu(i) - \nu(i)|$$

= $\frac{1}{2} |\mu - \nu|_1$
= $\max \{\mu(0) - \nu(0)\}$

Here distributions are viewed as *n*-element vectors of probabilities

μ

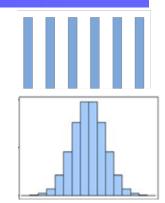
Tester

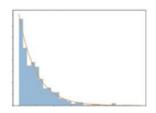
i.i.d.

samples

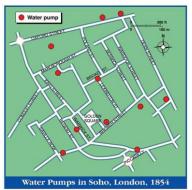
Examples of Properties of Distributions

- **Uniformity:** Is μ uniform over [n]?
- Identity: Is μ equal to a specific distribution (e.g. Binom(n, 1/2))?
- **Closeness:** Are two unknown distributions equal? (Samples from both distributions are given)
- Monotonicity: Is μ monotone?
- *k*-modality: Does μ have at most k modes?



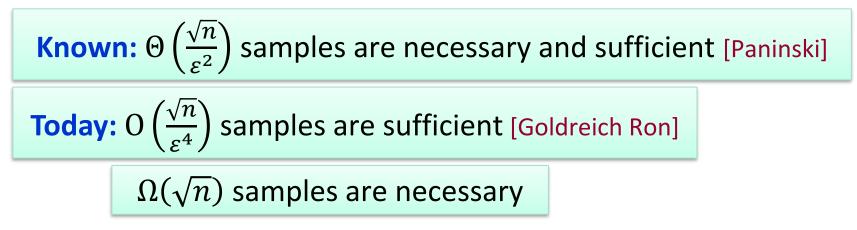


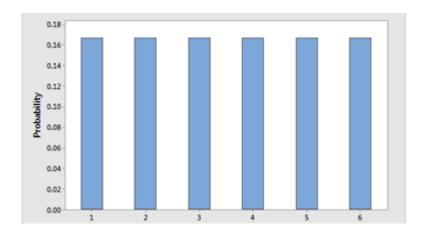
Example settings: lottery data, shopping choices, experimental outcomes, cases of cholera as a function of the distance to water sources



Testing Uniformity

- Let U_n be the uniform distribution over [n]
- Given access to i.i.d. samples from distribution μ over [n], distinguish $\mu = U_n$ from $d_{TV}(\mu, U_n) \ge \varepsilon$





Norms and L_p -distances

Facts about norms

For all vectors $x \in \mathbb{R}^n$

- 1. $||x||_1 \le \sqrt{n} ||x||_2$ 2. $||x||_p \le ||x||_q$ for all integers $p \ge q$

Main Idea in the Tester

Idea: Count the number of collisions, i.e., the pairs of equal samples.

- What is the probability of two samples colliding under U_n ?
- In general?

$$\Pr_{x,y\sim\mu}[x=y] =$$

Collisions Theorem [for far distributions]

If distribution μ satisfies $d_{TV}(\mu, U_n) \ge \varepsilon$ then $||\mu||_2^2 \ge (1 + 4\varepsilon^2)\frac{1}{n}$

Proof of Collision Theorem

Collisions Theorem [for far distributions]

If distribution μ satisfies $d_{TV}(\mu, U_n) \ge \varepsilon$ then $||\mu||_2^2 \ge (1 + 4\varepsilon^2)\frac{1}{n}$

Proof: We first consider $||\mu - U_n||_2^2$ and then use the relationships between the norms.

$$\begin{aligned} \left\| \mu - U_n \right\|_2^2 &= \sum_{i \in [n]} \left(\mu(i) - \frac{1}{n} \right)^2 \\ &= \sum_{i \in [n]} \mu(i)^2 - 2 \sum_{i \in [n]} \frac{\mu(i)}{n} + \sum_{i \in [n]} \frac{1}{n^2} \\ &= \left\| \mu \right\|_2^2 - \frac{2}{n} + \frac{1}{n} \\ &= \left\| \left\| \mu \right\|_2^2 - \frac{1}{n} + \frac{1}{n} \right\| \\ \end{aligned}$$

$$\begin{aligned} ||\mu||_{2}^{2} &= \left||\mu - U_{n}|\right|_{2}^{2} + \frac{1}{n} \\ &\geq \frac{1}{n} \cdot \left||\mu - U_{n}|\right|_{2}^{2} + \frac{1}{n} \\ &\geq \frac{4\varepsilon^{2}}{n} + \frac{1}{n} \end{aligned} \qquad \begin{aligned} ||x||_{1} &\leq \sqrt{n} ||x||_{2} \text{ for all vectors } x \in \mathbb{R}^{n} \\ &= \frac{1}{n} \cdot \left(2d_{TV}(\mu, U_{n})\right)^{2} + \frac{1}{n} \\ &\geq \frac{4\varepsilon^{2}}{n} + \frac{1}{n} \end{aligned}$$

Algorithm for Testing Uniformity

Uniformity Tester

3.

1. Sample
$$x_1, ..., x_s$$
, where $s = const \cdot \frac{\sqrt{n}}{\epsilon^4}$

For all indices $i, j \in [s]$, where i < j, let Y_{ij} be the indicator for $x_i = x_j$ 2.

3. Set
$$Y \leftarrow \frac{\sum_{i,j \in [s]: i < j} Y_{ij}}{\binom{s}{2}}$$

4. If $Y \leq \left(1 + \frac{\varepsilon^2}{2}\right) \cdot \frac{1}{n}$, accept; otherwise, reject.

Analysis: Suppose *Y* estimates $||\mu||_2^2$ within a factor of $1 \pm \frac{\varepsilon^2}{2}$

If
$$\mu = U_n$$
, then $||\mu||_2^2 = \frac{1}{n}$ and $Y \le \left(1 + \frac{\varepsilon^2}{2}\right) \cdot \frac{1}{n}$ The tester correctly accepts.

If
$$d_{TV}(\mu, U_n) \ge \varepsilon$$
, then $||\mu||_2^2 \ge (1 + 4\varepsilon^2) \frac{1}{n}$ and $Y \ge \left(1 - \frac{\varepsilon^2}{2}\right) \cdot (1 + 4\varepsilon^2) \frac{1}{n}$

$$\left(1 - \frac{\varepsilon^2}{2}\right) \cdot \left(1 + 4\varepsilon^2\right) = 1 + 4\varepsilon^2 - \frac{\varepsilon^2}{2} - 2\varepsilon^4 > 1 + \frac{\varepsilon^2}{2}$$
 The tester correctly rejects.

It remains to show that Y estimates $||\mu||_2^2$ within a factor of $1 \pm \frac{\varepsilon^2}{2}$ w.p. $\geq \frac{2}{2}$ 8

Analyzing the Collision Estimator

Lemma (Accuracy of Collision Estimator) $\Pr\left[\left|Y - \left|\left|\mu\right|\right|_{2}^{2}\right| > \frac{\varepsilon^{2}}{2}\left|\left|\mu\right|\right|_{2}^{2}\right] \le \frac{1}{3}$

$$Y = \frac{\sum_{i,j \in [s]: i < j} Y_{ij}}{\binom{s}{2}}; \quad s = const \cdot \frac{\sqrt{n}}{\varepsilon^4}$$
$$Y_{ij} \text{ is the indicator for } x_i = x_j$$

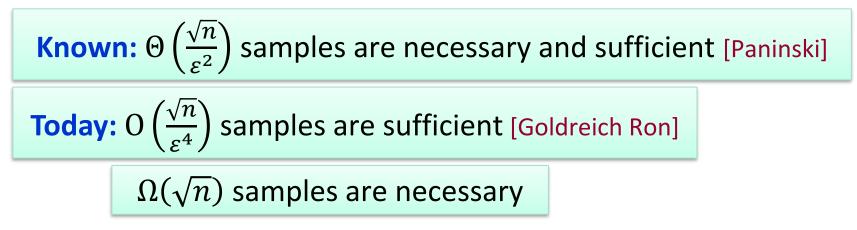
Proof: Calculate $\mathbb{E}[Y]$ Upper bound Var[Y]

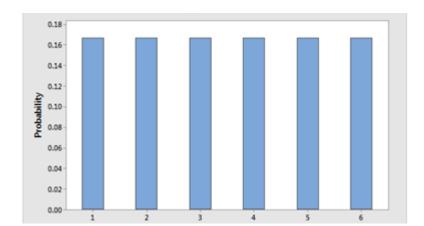
• Let
$$X = \sum_{i,j \in [s]: i < j} Y_{ij}$$
 $\mathbb{E}[X] = {S \choose 2} \mathbb{E}[Y]$

$$\operatorname{Var}[X] = {\binom{S}{2}}^2 \operatorname{Var}[Y]$$

Testing Uniformity

- Let U_n be the uniform distribution over [n]
- Given access to i.i.d. samples from distribution μ over [n], distinguish $\mu = U_n$ from $d_{TV}(\mu, U_n) \ge \varepsilon$





Presentation Tips: Motivation

Motivate like you're pitching to a venture capitalist... who only funds algorithms that don't look at the input

- \checkmark Explain what the goals of the project are.
- ✓ Provide motivation.

Presentation Tips: Structure Your Talk

Structure your talk like a sublinear algorithm: skip the boring parts

Break it into 3-5 sections:

- 1. Problem & motivation
- 2. Model & definitions
- 3. Previous work
- 4. Theorems/results
- 5. Open questions / regrets / existential uncertainty
- ✓ Include a roadmap slide.

Presentation Tips: Designing Each Slide

Keep your slides sublinear

- ✓ Don't crowd slides
- ✓ Keep the color scheme consistent (use colors to help you, but not too many colors)
- ✓ One picture is worth a thousand formulas

Presentation Tips: Tailor to Your Audience

Make jokes about being ε -far from confused

- ✓ Explain so that your fellow students can understand
- ✓ Don't explain things they already know
- $\checkmark\,$ Stress ideas they would find interesting

Your audience deserves to understand every ε fraction of your talk

- Don't rush: If you're faster than your slides, you're in an unsimulated complexity class.
- ✓ **Enunciate**: Don't let " ϵ " sound like " δ "—this isn't an adversarial channel.
- ✓ Project your voice
- Look up: Talk to the room, not your laptop (unless your laptop is enrolled in the class).
- ✓ Practice out loud

Presentation Tips: How to Fight the Fear

Today from ``BU Today'': Roughly 1/3 of American adults say they fear public speaking more than insects, needles – even murder.

- ✓ Practice
- $\checkmark\,$ Learn the first minute by heart
- ✓ Tell yourself that your audience is here to learn, not to judge you
- ✓ Make eye contact with at least one nonintimidating human
- If you know something helps you, make it likely to happen (E.g., questions from the audience help me, so I tell everybody about it, hoping that people will ask questions.
 If you like explaining to your teddy bear, bring it along.)
- ✓ Help out your presentation partner: laugh at their jokes, give them credit, etc. You are on the same team!