1/28/2025

Sublinear Algorithms

LECTURE 3

Last time

* Properties of lists and functions.

* Testing 1f a list 1s sorted/Lipschitz
and 1f a function 1s monotone.

* Uniform tester for half-planes.

Today

* Testing if a graph 1s connected.

* Estimating the number of connected
components.

 Estimating the weight of an MST

Sofya Raskhodnikova; Boston University

Graph Properties

Testing if a Graph is Connected |Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y’

e in adjacency lists representation .\.
(a list of neighbors for each vertex) .\.

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v,1),where v € V and i € [d]: entry i of adjacency list of vertex v

Exact Answer: Q3(dn) time

e Approximate version:
Is the graph connected or #-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

c2

No dependence on n!

+ improvement on HW2

Testing Connectedness: Algorithm

Connectedness Tester(n, d, €, query access to G)

8 ..
1. Repeat s = — times:

&ed
2. pick a random vertex u
3. determine if the connected component of u is small:

. 4
perform BFS from u, stopping after at most - new nodes

Q. Reject if a small connected component was found, otherwise accept. /

Run time: O (8;;2) =0 (é)

Analysis:

e Connected graphs are always accepted.

e Remains to show:

wiN

If a graph is e-far from connected, it is rejected with probability =

Testing Connectedness: Analysis

(Claim 1

y

. . ed
L If G is e-far from connected, 1t has = Tn connected componentsJ

Claim 2

~

. . edn
If G is e-far from connected, it has > e connected components

. 4
of size at most —.
sd

- /
: ed :
e By Claim 2, at least Tn nodes are in small connected components.
: : , 2-4 8
e By Witness lemma, it suffices to sample = — nodes to detect one

gdn/n &d

from a small connected component.

Testing Connectedness: Proof of Claim 1

(Claim 1 W
. . ed
L If G is e-far from connected, it has > Tn connected componentsJ

We prove the contrapositive:

If G has < gczl—n connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % ,S02k —2<edn.

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

Freeing up an Adjacency List Entry

(Claim 1

. . ed
L If G is e-far from connected, 1t has > Tn connected componentsJ

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

Freeing up an Adjacency List Entry

(Claim 1

. . ed
L If G is e-far from connected, 1t has = Tn connected componentsJ

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

e Apply this to each component with <2 free spots in adjacency lists.

e Now we can connect all the components using the freed up spots while
ensuring that we never change more than 2 spots per component.

e Thus, k components can be connected by changing 2k spots.

Edn
Here, k < — S0 2k <edn .

Testing Connectedness: Proof of Claim 2

(Claim 1

y

. . ed
L If G is e-far from connected, 1t has = Tn connected componentsJ

Claim 2

~

_

. . edn
If G is e-far from connected, it has > e connected components

. 4
of size at most —.
ed -/

: ed
e By Claim 1, there are at least Tn connected components.

e Their average size is at most

2
gdn/2 &d

e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices

e in adjacency lists representation v Y’
(a list of neighbors for each vertex) .\. .\.

e maximum degree d

Connected or
e-far from connected?
1 .
0 (T) time J
e«d

(no dependence on n)

10

Randomized Approximation
in sublinear time

A Simple Example

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]
Input: a graph ¢ = (V, E) on n vertices v
e in adjacency lists representation

(a list of neighbors for each vertex) .\. ;
e maximum degree d \
Exact Answer: Q(dn) time
Additive approximation: # of CC ten

with probability > 2/3

Time;

e Known: 0 (&%log %), Q(;iz)

No dependence on n!

13

Approximating # of CCs: Main Idea

e Let C = number of components

e For every vertex u, define
n, = number of nodes in u’s component

Breaks C up into
contributions
of different nodes

— for each component A: Y,c4 L =1

Ny

e Estimate this sum by estimating 11,’s for a few random nodes
— If u’s component is small, its size can be computed by BFS.

— If u’s component is big, then 1/n ,is small, so it does not
contribute much to the sum

— Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
14

Approximating # of CCs: Algorithm

Estimating 1, = the number of nodes in u’s component:

. PaN - 2
e |etestimate 1, = min {nu,;}
\

— When u’s component has - 2/e nodes, i, = ny,

1 1

71u

&
< —

(2

— Else 7, = 2/g, andsoO<———<—=

€
Ay Ny fAy 2

: : : 1 : :
e Corresponding estimate for Cis C = Y,,cy/ = It |sé good estimate:

|6_C| ZuEVA Zuev <Zuev 1u_n_u <7
ﬁPPROX_#_CCs (n, d, €, query access to G) N
1. Repeat s=0(1/¢?) times:
2. pick a random vertex u
3. compute 7, via BFS from u, stopping after at most 2/ new nodes
\4. Return C = (average of the values 1/7,) - n 4

Run time: O (g)

Approximating # of CCs: Analysis

Want to show: Pr“C C| <§ /
Hoeffdlng Bound A
Let Yy, ..., Y be independently distributed random variables in [0,1].
S
lety =1. Y Y; (called sample mean). Then Pr[|Y — E[Y]| =] < 2e725¢
- S i=1 /)
Let Y; = 1/7,for the it" vertex u in the sample
1 3 ¢
® Y—;'ilei —;
1 3 1 1 ¢
e E[Y] = S Z E[Y;] = E[Y;] = uevy T o
=1 ny

1 . 1
e Needs =0 (8—2) samples to get probability < 3

2

ETS

Pr[|é‘— ¢l >Z| = Pr[lnY—n[E[Y]l > 2 = Pr[lY—IE[Y]I >§] <2z

16

Approximating # of CCs: Analysis

So far: C-C S%
Pr||C - C| > <2
2 3
e With probability 2% J
C—c|<|C-C|+ <+ <en
Summary:

The number of connected components in n-vetex graphs of

d
degree at most d can be estimated within +&n in time O (33)

17

Minimum spanning tree (MST)

e What is the cheapest way to connect all the nodes?
Input: a weighted graph
with n vertices and m edges 3 o

e Exact computation:
— Deterministic O(m - inverse-Ackermann(m)) time [Chazelle]
— Randomized O(m) time [Karger Klein Tarjan]

18

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices

e in adjacency lists representation

e maximum degree d and maximum allowed weight w
e weightsin{1,2,...w}

Output: (1+ €)-approximation to MST weight, w;;sr

Time: |
No d d /!
e Known: O (d_\;v]Ogd_w)’ Q(d_‘;v) O depenaence on n
&E & s
4
e Today: O(dW ;ggw)

19

Idea Behind Algorithm

e Characterize MST weight in terms of the number of connected
components in certain subgraphs of G

e Already know that number of connected components can be
estimated quickly

20

MST and Connected Components: Warm-up

e Recall Kruskal’s algorithm for computing MST exactly. =

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MST) + 2 - (# weight-2 edges in MST)

= n- 1 4+ (# of weight-2 edges in MST) MST has n — 1 edges

= n-1 4+ (# of CCs induced by weight-1 edges) —1

N

connected components MST
weight 2 induced by weight-1 edges

By Kruskal

weight 1

MST and Connected Components

In general: Let G; = subgraph of G containing all edges of weight < i
C; = number of connected components in G;

Then MST has C; — 1 edges of weight > 1.

" Claim A J
w—1

WMST(G) =n—w+ z Ci

N =1

e Let f5; be the number of edges of weight > i in MST
e Each MST edge contributes 1 to wy,sr, each MST edge of weight >1

contributes 1 more, each MST edge of weight >2 contributes one more, ...

W_

w—1 1 w—1 w-1
wusr(G) = ZﬁiZ Z(Ci—l)Z—W+ZCi=n—W+ZCi
i=0 =0 =1

=0

Algorithm for Approximating w yqr

/APPROX_MSTweight (n, d, w, €; G) N [Claim. wysr(G) =n—w+3Y¥'C]

1. Fori=1tow —1do:

2. C; «APPROX_#CCs(n, d, %; Gl
\3. ReturnWysr =n—w + e C; 4

Analysis:

o,
=y

Suppose all estimates of C;’s are good: |(,~‘l~ — Ci| < % n.
Then |Wysr — wyst| = | 215 (G—=C) < ZPAHCG =Gl <w -

Pr[all w — 1 estimates are good]=> (2/3)*~!

&E
—NnN=&n
w

Not good enough! Need error probability < $ for each iteration

Then, by Union Bound, Pr[error]< w - $ — g
Can amplify success probability of any algorithm by repeating it and taking

the median answer.
Can take more samples in APPROX_#CCs. What’s the resulting run time?

23

Multiplicative Approximation for W y gt

For MIST cost, additive approximation = multiplicative approximation
Wystr =n—1 = wyer =2n/2forn=>2

e ¢n-additive approximation:

WysT — EN < WyrsT < WymsT + &n

(1 + 2¢)-multiplicative approximation:
WMST(]- — 28) < Wyst — &€n < WMST < WysT +en < WMST(l + 28)

24

	Sublinear Algorithms
	Graph Properties
	Testing if a Graph is Connected [Goldreich Ron]
	Testing Connectedness: Algorithm
	Testing Connectedness: Analysis
	Testing Connectedness: Proof of Claim 1
	Freeing up an Adjacency List Entry
	Freeing up an Adjacency List Entry
	Testing Connectedness: Proof of Claim 2
	Testing if a Graph is Connected [Goldreich Ron]
	�Randomized Approximation in sublinear time
	Approximating # of Connected Components
	Approximating # of CCs: Main Idea
	Approximating # of CCs: Algorithm
	Approximating # of CCs: Analysis
	Approximating # of CCs: Analysis
	Minimum spanning tree (MST)
	Approximating MST Weight in Sublinear Time
	Idea Behind Algorithm
	MST and Connected Components: Warm-up
	MST and Connected Components
	Algorithm for Approximating 𝒘 𝑴𝑺𝑻
	Multiplicative Approximation for 𝒘 𝑴𝑺𝑻

