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Sublinear Algorithms

LECTURE 3 
Last time
• Properties of lists and functions. 
• Testing if a list is sorted/Lipschitz              

and if a function is monotone. 
• Uniform tester for half-planes.
Today
• Testing if a graph is connected.
• Estimating the number of connected 

components.
• Estimating the weight of an MST

Sofya Raskhodnikova;Boston University



Graph Properties



Testing if a Graph is Connected [Goldreich Ron] 
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation 
      (a list of neighbors for each vertex) 
• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣𝑣, 𝑖𝑖), where 𝑣𝑣 ∈  𝑉𝑉 and 𝑖𝑖 ∈ [𝑑𝑑]: entry 𝑖𝑖 of adjacency list of vertex 𝑣𝑣

Exact Answer: Ω(dn) time

• Approximate version:  
Is the graph connected or ²-far from connected?

dist 𝐺𝐺1,𝐺𝐺2 = # 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒 𝑤𝑤𝑤𝑒𝑒𝑎𝑎𝑤 𝐺𝐺1 𝑎𝑎𝑒𝑒𝑎𝑎 𝐺𝐺2 𝑎𝑎𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒
𝑎𝑎𝑒𝑒

Time: 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

 today 

+ improvement on HW2

No dependence on n!
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Testing Connectedness: Algorithm

1. Repeat  𝑠𝑠 = 8
𝜀𝜀𝑎𝑎

 times:
2.      pick a random vertex 𝑢𝑢    
3.      determine if the connected component of 𝑢𝑢 is small:

              perform BFS from 𝑢𝑢, stopping after at most 4
𝜀𝜀𝑎𝑎

 new nodes
4. Reject if a small connected component was found, otherwise accept.

Run time: 𝑂𝑂 𝑎𝑎
𝜀𝜀2𝑎𝑎2

= 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

Analysis: 

• Connected graphs are always accepted.

• Remains to show:  

If a graph is 𝜀𝜀-far from connected, it is rejected with probability  ≥ 2
3

4

Connectedness Tester(n, d, ε, query access to G)



Testing Connectedness: Analysis

• By Claim 2, at least ε𝑎𝑎𝑒𝑒
4

 nodes are in small connected components.

• By Witness lemma, it suffices to sample 2⋅4
ε𝑎𝑎𝑒𝑒/𝑒𝑒

 = 8ε𝑎𝑎 nodes to detect one 

from a small connected component.
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Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.  

Claim 2

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
4

 connected components 

of size at most 4
𝜀𝜀𝑎𝑎

.  



Testing Connectedness: Proof of Claim 1

We prove the contrapositive: 

If G has < ε𝑎𝑎𝑒𝑒
2

 connected components, one can make G connected by 
modifying < ε fraction of its representation, i.e., < ε𝑑𝑑𝑛𝑛 entries.

• If there are no degree restrictions, k components can be connected by 
adding 𝑘𝑘-1 edges, each affecting 2 nodes. Here, 𝑘𝑘 <  ε𝑎𝑎𝑒𝑒

2
 , so 2𝑘𝑘 − 2 < ε𝑑𝑑𝑛𝑛 .

• What if adjacency lists of all vertices in a component are full, 
i.e., all  vertex degrees are 𝑑𝑑?
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Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.  



Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, 
i.e., all  vertex degrees are 𝑑𝑑?

• Consider an  MST of this component.
• Let 𝑣𝑣 be a leaf of the MST.
• Disconnect 𝑣𝑣 from a node other than its parent in the MST.
• Two entries are changed while keeping the same number of components.
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𝑣𝑣

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.  



Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full, 
i.e., all  vertex degrees are 𝑑𝑑?

• Apply this to each component with <2 free spots in adjacency lists.
• Now we can connect all the components using the freed up spots while 

ensuring that we never change more than 2 spots per component.
• Thus, 𝑘𝑘 components can be connected by changing 2𝑘𝑘 spots. 

      Here, 𝑘𝑘 <  ε𝑎𝑎𝑒𝑒
2

 , so 2𝑘𝑘 < ε𝑑𝑑𝑛𝑛 .
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𝑣𝑣

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.  



Testing Connectedness: Proof of Claim 2

• By Claim 1, there are at least ε𝑎𝑎𝑒𝑒
2

 connected components.

• Their average size is at most  𝑒𝑒
ε𝑎𝑎𝑒𝑒/2

 = 2
ε𝑎𝑎.

•  By an averaging argument (or Markov inequality), at least half of the 
components are of size at most twice the average.
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Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.  

Claim 2

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
4

 connected components 

of size at most 4
𝜀𝜀𝑎𝑎

.  



Testing if a Graph is Connected [Goldreich Ron] 
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Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation 
      (a list of neighbors for each vertex) 
• maximum degree 𝑑𝑑

Connected or 
𝜀𝜀-far from connected?

 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

 time

                                                        (no dependence on 𝑛𝑛)



Randomized Approximation 
in sublinear time

A Simple Example



Approximating # of Connected Components
[Chazelle Rubinfeld Trevisan] 
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation 
      (a list of neighbors for each vertex) 
• maximum degree 𝑑𝑑

Exact Answer: Ω(𝑑𝑑𝑛𝑛) time
Additive approximation:  # of CC ±εn
                  with probability  ≥ 2/3
Time: 

• Known: 𝑂𝑂 𝑎𝑎
𝜀𝜀2

log 1
𝜀𝜀

, Ω 𝑎𝑎

𝜀𝜀2

• Today:  𝑂𝑂 𝑎𝑎
𝜀𝜀3

. No dependence on n!

13Partially based on slides by Ronitt Rubinfeld: 
http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Breaks C up into
 contributions

of different nodes

Approximating # of CCs: Main Idea
• Let 𝐶𝐶 = number of components
• For every vertex 𝑢𝑢, define

𝑛𝑛𝑢𝑢 = number of nodes in u’s component
– for each component A:   ∑𝑢𝑢∈𝐴𝐴

1
𝑒𝑒𝑢𝑢

= 1 

∑
𝑢𝑢∈𝑉𝑉

1

𝑛𝑛𝑢𝑢
= 𝐶𝐶

• Estimate this sum by estimating 𝑛𝑛𝑢𝑢’s for a few random nodes 
– If 𝑢𝑢’s component is small, its size can be computed by BFS.
– If 𝑢𝑢’s component is big, then 1/𝑛𝑛𝑢𝑢 is small, so it does not 

contribute much to the sum
– Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
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Approximating # of CCs: Algorithm
Estimating 𝑛𝑛𝑢𝑢 = the number of nodes in 𝑢𝑢’s component: 

•  Let estimate �𝑛𝑛𝑢𝑢 = min 𝑛𝑛𝑢𝑢, 2
𝜀𝜀

– When 𝑢𝑢’s component has  ·  2/ε nodes , �𝑛𝑛𝑢𝑢 = 𝑛𝑛𝑢𝑢
– Else  �𝑛𝑛𝑢𝑢 = 2/ε, and so 0 < 1

�𝑒𝑒𝑢𝑢
− 1

𝑒𝑒𝑢𝑢
< 1

�𝑒𝑒𝑢𝑢
= 𝜀𝜀

2

•  Corresponding estimate for C is �̂�𝐶 = ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢

.  It is a good estimate: 

�̂�𝐶 − 𝐶𝐶 = ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢
− ∑𝑢𝑢∈𝑉𝑉

1
𝑒𝑒𝑢𝑢

≤ ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢
− 1

𝑒𝑒𝑢𝑢
≤ 𝜀𝜀𝑒𝑒

2

1. Repeat  s=Θ(1/ε2) times:
2.      pick a random vertex 𝑢𝑢    
3.      compute �𝑛𝑛𝑢𝑢 via BFS from 𝑢𝑢, stopping after at most 2/ε new nodes
4.    Return �̃�𝐶 = (average of the values 1/ �𝑛𝑛𝑢𝑢) ∙ 𝑛𝑛

Run time: 𝑂𝑂 𝑎𝑎
𝜀𝜀3

15

�

𝑎𝑎
𝑏𝑏
𝑐𝑐

1
�𝑛𝑛𝑢𝑢
−

1
𝑛𝑛𝑢𝑢

≤
𝜀𝜀
2

APPROX_#_CCs (n, d, ε, query access to G)



Approximating # of CCs: Analysis

Want to show: Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

≤ 1
3

Let Yi = 1/ �𝑛𝑛𝑢𝑢for the ith vertex 𝑢𝑢 in the sample

• Y = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
Yi = �̃�𝐶

𝑒𝑒
   

• 𝔼𝔼[Y]  = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
𝔼𝔼[Yi] = E[Y1] = 1

𝑒𝑒
∑𝑢𝑢∈𝑉𝑉

1
�𝑒𝑒𝑢𝑢

= �̂�𝐶
𝑒𝑒

 Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

= Pr 𝑛𝑛𝑌𝑌 − 𝑛𝑛𝔼𝔼 𝑌𝑌 > 𝜀𝜀𝑒𝑒
2

= Pr Y − 𝔼𝔼 Y > 𝜀𝜀
2
≤ 2𝑒𝑒−

𝜀𝜀2𝑠𝑠
2

• Need 𝑠𝑠 = Θ 1
𝜀𝜀2

 samples to get probability ≤ 1
3
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Let Y1, … , Ys be independently distributed random variables in [0,1]. 

Let Y = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
Yi (called sample mean). Then Pr Y − 𝔼𝔼 Y ≥ 𝜀𝜀 ≤ 2e−2𝑒𝑒𝜀𝜀2.

Hoeffding Bound



Approximating # of CCs: Analysis

So far: �̂�𝐶 − 𝐶𝐶 ≤ 𝜀𝜀𝑒𝑒
2

 Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

≤ 1
3

• With probability ≥ 2
3
 ,

�̃�𝐶 − 𝐶𝐶 ≤ �̃�𝐶 − �̂�𝐶 + �̂�𝐶 − 𝐶𝐶 ≤
𝜀𝜀𝑛𝑛
2

+
𝜀𝜀𝑛𝑛
2
≤ 𝜀𝜀𝑛𝑛

Summary: 
The number of connected components in 𝑛𝑛-vetex graphs of 
degree at most 𝑑𝑑 can be estimated within ±𝜀𝜀𝑛𝑛 in time 𝑂𝑂 𝑎𝑎

𝜀𝜀3
.

17



Minimum spanning tree (MST)
• What is the cheapest way to connect all the nodes?
Input: a  weighted graph 
with n vertices and m edges

• Exact computation:
– Deterministic 𝑂𝑂(𝑚𝑚 ∙ inverse-Ackermann(𝑚𝑚)) time [Chazelle]

– Randomized 𝑂𝑂(𝑚𝑚) time [Karger Klein Tarjan]

1

3

7

5

2
4

18Partially based on slides by Ronitt Rubinfeld: 
http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf



Approximating MST Weight in Sublinear Time
[Chazelle Rubinfeld Trevisan] 
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation 
• maximum degree 𝑑𝑑 and maximum allowed weight w
• weights in {1,2,…,w}
Output:  (1+ ε)-approximation to MST weight, 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀
Time: 

• Known: 𝑂𝑂 𝑎𝑎𝑤𝑤
𝜀𝜀3

log 𝑎𝑎𝑤𝑤
𝜀𝜀

, Ω 𝑎𝑎𝑤𝑤
𝜀𝜀2

• Today:  𝑂𝑂 𝑎𝑎𝑤𝑤4log 𝑤𝑤 
𝜀𝜀3

19

No dependence on n!



Idea Behind Algorithm

• Characterize MST weight in terms of the number of  connected 
components in certain subgraphs of G

• Already know that number of connected components can be 
estimated quickly

20



• Recall Kruskal’s algorithm for computing MST exactly.

Suppose all weights are 1 or 2.  Then MST weight                      
= (# weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST)

=  𝑛𝑛 –  1 + (# of weight-2 edges in MST)
=  𝑛𝑛 –  1 + (# of CCs induced by weight-1 edges) −1

weight 1

weight 2
connected components
induced by weight-1 edges

MST

MST and Connected Components: Warm-up

MST has  𝑛𝑛 − 1 edges

By Kruskal



MST and Connected Components
In general:   Let 𝐺𝐺𝑒𝑒 = subgraph of 𝐺𝐺 containing all edges of weight ≤ 𝑖𝑖

𝐶𝐶𝑒𝑒 = number of connected components in 𝐺𝐺𝑒𝑒
Then MST has 𝐶𝐶𝑒𝑒 − 1 edges of weight  >  𝑖𝑖.

• Let 𝛽𝛽𝑒𝑒  be the number of edges of weight > 𝑖𝑖 in MST
• Each MST edge contributes 1 to 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀, each MST edge of weight >1 

contributes 1 more, each MST edge of weight >2 contributes one more, …

𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = �
𝑒𝑒=0

𝑤𝑤−1

𝛽𝛽𝑒𝑒 = �
𝑒𝑒=0

𝑤𝑤−1

(𝐶𝐶𝑒𝑒 − 1) = −𝑤𝑤 + �
𝑒𝑒=0

𝑤𝑤−1

𝐶𝐶𝑒𝑒 = 𝑛𝑛 − 𝑤𝑤 + �
𝑒𝑒=1

𝑤𝑤−1

𝐶𝐶𝑒𝑒
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𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = 𝑛𝑛 − 𝑤𝑤 + �
𝑒𝑒=1

𝑤𝑤−1

𝐶𝐶𝑒𝑒

Claim



Algorithm for Approximating 𝒘𝒘𝑴𝑴𝑴𝑴𝑴𝑴

1. For 𝑖𝑖 = 1 to 𝑤𝑤 − 1 do:
2.  �̃�𝐶𝑒𝑒 ←APPROX_#CCs(𝑛𝑛,𝑑𝑑, 𝜀𝜀

w
;𝐺𝐺𝑒𝑒).

3. Return �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛 − 𝑤𝑤 + ∑𝑒𝑒=1
𝑤𝑤−1 �̃�𝐶𝑒𝑒 .

Analysis:
• Suppose all estimates of 𝐶𝐶𝑒𝑒’s are good: �̃�𝐶𝑒𝑒 − 𝐶𝐶𝑒𝑒 ≤ 𝜀𝜀

𝑤𝑤
 𝑛𝑛.

      Then �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 = | ∑𝑒𝑒=1𝑤𝑤−1(�̃�𝐶𝑒𝑒−𝐶𝐶𝑒𝑒)| ≤ ∑𝑒𝑒=1𝑤𝑤−1 |�̃�𝐶𝑒𝑒 − 𝐶𝐶𝑒𝑒| ≤ 𝑤𝑤 ⋅ 𝜀𝜀
𝑤𝑤

 𝑛𝑛 = 𝜀𝜀𝑛𝑛

• Pr[all 𝑤𝑤 − 1 estimates are good]≥ 2/3 𝑤𝑤−1

• Not good enough! Need error probability ≤ 1
3𝑤𝑤

 for each iteration

• Then, by Union Bound, Pr[error]≤ 𝑤𝑤 ⋅ 1
3𝑤𝑤

= 1
3

• Can amplify success probability of any algorithm by repeating it and taking 
the median answer.

• Can take more samples in APPROX_#CCs. What’s the resulting run time?
23

Claim.   𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = 𝑛𝑛 − 𝑤𝑤 + ∑𝑒𝑒=1𝑤𝑤−1𝐶𝐶𝑒𝑒APPROX_MSTweight (n, d, w, ε; G)



Multiplicative Approximation for 𝒘𝒘𝑴𝑴𝑴𝑴𝑴𝑴

For MST cost, additive approximation ⟹ multiplicative approximation
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝑛𝑛 − 1      ⟹     𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝑛𝑛/2 for 𝑛𝑛 ≥ 2

• 𝜀𝜀𝑛𝑛-additive approximation: 
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 − 𝜀𝜀𝑛𝑛 ≤ �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝑛𝑛

• (1 ± 2𝜀𝜀)-multiplicative approximation: 
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 1 − 2𝜀𝜀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 −  𝜀𝜀𝑛𝑛 ≤ �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝑛𝑛 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 1 + 2𝜀𝜀
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