
1/28/2025

Sublinear Algorithms

LECTURE 3
Last time
• Properties of lists and functions.
• Testing if a list is sorted/Lipschitz

and if a function is monotone.
• Uniform tester for half-planes.
Today
• Testing if a graph is connected.
• Estimating the number of connected

components.
• Estimating the weight of an MST

Sofya Raskhodnikova;Boston University

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation
 (a list of neighbors for each vertex)
• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣𝑣, 𝑖𝑖), where 𝑣𝑣 ∈ 𝑉𝑉 and 𝑖𝑖 ∈ [𝑑𝑑]: entry 𝑖𝑖 of adjacency list of vertex 𝑣𝑣

Exact Answer: Ω(dn) time

• Approximate version:
Is the graph connected or ²-far from connected?

dist 𝐺𝐺1,𝐺𝐺2 = # 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒 𝑤𝑤𝑤𝑒𝑒𝑎𝑎𝑤 𝐺𝐺1 𝑎𝑎𝑒𝑒𝑎𝑎 𝐺𝐺2 𝑎𝑎𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒
𝑎𝑎𝑒𝑒

Time: 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

 today

+ improvement on HW2

No dependence on n!

3

Testing Connectedness: Algorithm

1. Repeat 𝑠𝑠 = 8
𝜀𝜀𝑎𝑎

 times:
2. pick a random vertex 𝑢𝑢
3. determine if the connected component of 𝑢𝑢 is small:

 perform BFS from 𝑢𝑢, stopping after at most 4
𝜀𝜀𝑎𝑎

 new nodes
4. Reject if a small connected component was found, otherwise accept.

Run time: 𝑂𝑂 𝑎𝑎
𝜀𝜀2𝑎𝑎2

= 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

Analysis:

• Connected graphs are always accepted.

• Remains to show:

If a graph is 𝜀𝜀-far from connected, it is rejected with probability ≥ 2
3

4

Connectedness Tester(n, d, ε, query access to G)

Testing Connectedness: Analysis

• By Claim 2, at least ε𝑎𝑎𝑒𝑒
4

 nodes are in small connected components.

• By Witness lemma, it suffices to sample 2⋅4
ε𝑎𝑎𝑒𝑒/𝑒𝑒

 = 8ε𝑎𝑎 nodes to detect one

from a small connected component.

5

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.

Claim 2

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
4

 connected components

of size at most 4
𝜀𝜀𝑎𝑎

.

Testing Connectedness: Proof of Claim 1

We prove the contrapositive:

If G has < ε𝑎𝑎𝑒𝑒
2

 connected components, one can make G connected by
modifying < ε fraction of its representation, i.e., < ε𝑑𝑑𝑛𝑛 entries.

• If there are no degree restrictions, k components can be connected by
adding 𝑘𝑘-1 edges, each affecting 2 nodes. Here, 𝑘𝑘 < ε𝑎𝑎𝑒𝑒

2
 , so 2𝑘𝑘 − 2 < ε𝑑𝑑𝑛𝑛 .

• What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are 𝑑𝑑?

6

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are 𝑑𝑑?

• Consider an MST of this component.
• Let 𝑣𝑣 be a leaf of the MST.
• Disconnect 𝑣𝑣 from a node other than its parent in the MST.
• Two entries are changed while keeping the same number of components.

7

𝑣𝑣

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.

Freeing up an Adjacency List Entry

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are 𝑑𝑑?

• Apply this to each component with <2 free spots in adjacency lists.
• Now we can connect all the components using the freed up spots while

ensuring that we never change more than 2 spots per component.
• Thus, 𝑘𝑘 components can be connected by changing 2𝑘𝑘 spots.

 Here, 𝑘𝑘 < ε𝑎𝑎𝑒𝑒
2

 , so 2𝑘𝑘 < ε𝑑𝑑𝑛𝑛 .

8

𝑣𝑣

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.

Testing Connectedness: Proof of Claim 2

• By Claim 1, there are at least ε𝑎𝑎𝑒𝑒
2

 connected components.

• Their average size is at most 𝑒𝑒
ε𝑎𝑎𝑒𝑒/2

 = 2
ε𝑎𝑎.

• By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

9

Claim 1

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
2

 connected components.

Claim 2

If G is ε-far from connected, it has ≥ ε𝑎𝑎𝑒𝑒
4

 connected components

of size at most 4
𝜀𝜀𝑎𝑎

.

Testing if a Graph is Connected [Goldreich Ron]

10

Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation
 (a list of neighbors for each vertex)
• maximum degree 𝑑𝑑

Connected or
𝜀𝜀-far from connected?

 𝑂𝑂 1
𝜀𝜀2𝑎𝑎

 time

 (no dependence on 𝑛𝑛)

Randomized Approximation
in sublinear time

A Simple Example

Approximating # of Connected Components
[Chazelle Rubinfeld Trevisan]
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation
 (a list of neighbors for each vertex)
• maximum degree 𝑑𝑑

Exact Answer: Ω(𝑑𝑑𝑛𝑛) time
Additive approximation: # of CC ±εn
 with probability ≥ 2/3
Time:

• Known: 𝑂𝑂 𝑎𝑎
𝜀𝜀2

log 1
𝜀𝜀

, Ω 𝑎𝑎

𝜀𝜀2

• Today: 𝑂𝑂 𝑎𝑎
𝜀𝜀3

. No dependence on n!

13Partially based on slides by Ronitt Rubinfeld:
http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

Breaks C up into
 contributions

of different nodes

Approximating # of CCs: Main Idea
• Let 𝐶𝐶 = number of components
• For every vertex 𝑢𝑢, define

𝑛𝑛𝑢𝑢 = number of nodes in u’s component
– for each component A: ∑𝑢𝑢∈𝐴𝐴

1
𝑒𝑒𝑢𝑢

= 1

∑
𝑢𝑢∈𝑉𝑉

1

𝑛𝑛𝑢𝑢
= 𝐶𝐶

• Estimate this sum by estimating 𝑛𝑛𝑢𝑢’s for a few random nodes
– If 𝑢𝑢’s component is small, its size can be computed by BFS.
– If 𝑢𝑢’s component is big, then 1/𝑛𝑛𝑢𝑢 is small, so it does not

contribute much to the sum
– Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]

14

Approximating # of CCs: Algorithm
Estimating 𝑛𝑛𝑢𝑢 = the number of nodes in 𝑢𝑢’s component:

• Let estimate �𝑛𝑛𝑢𝑢 = min 𝑛𝑛𝑢𝑢, 2
𝜀𝜀

– When 𝑢𝑢’s component has · 2/ε nodes , �𝑛𝑛𝑢𝑢 = 𝑛𝑛𝑢𝑢
– Else �𝑛𝑛𝑢𝑢 = 2/ε, and so 0 < 1

�𝑒𝑒𝑢𝑢
− 1

𝑒𝑒𝑢𝑢
< 1

�𝑒𝑒𝑢𝑢
= 𝜀𝜀

2

• Corresponding estimate for C is �̂�𝐶 = ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢

. It is a good estimate:

�̂�𝐶 − 𝐶𝐶 = ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢
− ∑𝑢𝑢∈𝑉𝑉

1
𝑒𝑒𝑢𝑢

≤ ∑𝑢𝑢∈𝑉𝑉
1
�𝑒𝑒𝑢𝑢
− 1

𝑒𝑒𝑢𝑢
≤ 𝜀𝜀𝑒𝑒

2

1. Repeat s=Θ(1/ε2) times:
2. pick a random vertex 𝑢𝑢
3. compute �𝑛𝑛𝑢𝑢 via BFS from 𝑢𝑢, stopping after at most 2/ε new nodes
4. Return �̃�𝐶 = (average of the values 1/ �𝑛𝑛𝑢𝑢) ∙ 𝑛𝑛

Run time: 𝑂𝑂 𝑎𝑎
𝜀𝜀3

15

�

𝑎𝑎
𝑏𝑏
𝑐𝑐

1
�𝑛𝑛𝑢𝑢
−

1
𝑛𝑛𝑢𝑢

≤
𝜀𝜀
2

APPROX_#_CCs (n, d, ε, query access to G)

Approximating # of CCs: Analysis

Want to show: Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

≤ 1
3

Let Yi = 1/ �𝑛𝑛𝑢𝑢for the ith vertex 𝑢𝑢 in the sample

• Y = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
Yi = �̃�𝐶

𝑒𝑒

• 𝔼𝔼[Y] = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
𝔼𝔼[Yi] = E[Y1] = 1

𝑒𝑒
∑𝑢𝑢∈𝑉𝑉

1
�𝑒𝑒𝑢𝑢

= �̂�𝐶
𝑒𝑒

 Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

= Pr 𝑛𝑛𝑌𝑌 − 𝑛𝑛𝔼𝔼 𝑌𝑌 > 𝜀𝜀𝑒𝑒
2

= Pr Y − 𝔼𝔼 Y > 𝜀𝜀
2
≤ 2𝑒𝑒−

𝜀𝜀2𝑠𝑠
2

• Need 𝑠𝑠 = Θ 1
𝜀𝜀2

 samples to get probability ≤ 1
3

16

Let Y1, … , Ys be independently distributed random variables in [0,1].

Let Y = 1
𝑒𝑒
⋅ ∑

𝑒𝑒

𝑒𝑒=1
Yi (called sample mean). Then Pr Y − 𝔼𝔼 Y ≥ 𝜀𝜀 ≤ 2e−2𝑒𝑒𝜀𝜀2.

Hoeffding Bound

Approximating # of CCs: Analysis

So far: �̂�𝐶 − 𝐶𝐶 ≤ 𝜀𝜀𝑒𝑒
2

 Pr �̃�𝐶 − �̂�𝐶 > 𝜀𝜀𝑒𝑒
2

≤ 1
3

• With probability ≥ 2
3
 ,

�̃�𝐶 − 𝐶𝐶 ≤ �̃�𝐶 − �̂�𝐶 + �̂�𝐶 − 𝐶𝐶 ≤
𝜀𝜀𝑛𝑛
2

+
𝜀𝜀𝑛𝑛
2
≤ 𝜀𝜀𝑛𝑛

Summary:
The number of connected components in 𝑛𝑛-vetex graphs of
degree at most 𝑑𝑑 can be estimated within ±𝜀𝜀𝑛𝑛 in time 𝑂𝑂 𝑎𝑎

𝜀𝜀3
.

17

Minimum spanning tree (MST)
• What is the cheapest way to connect all the nodes?
Input: a weighted graph
with n vertices and m edges

• Exact computation:
– Deterministic 𝑂𝑂(𝑚𝑚 ∙ inverse-Ackermann(𝑚𝑚)) time [Chazelle]

– Randomized 𝑂𝑂(𝑚𝑚) time [Karger Klein Tarjan]

1

3

7

5

2
4

18Partially based on slides by Ronitt Rubinfeld:
http://stellar.mit.edu/S/course/6/fa10/6.896/courseMaterial/topics/topic3/lectureNotes/lecst11/lecst11.pdf

Approximating MST Weight in Sublinear Time
[Chazelle Rubinfeld Trevisan]
Input: a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) on 𝑛𝑛 vertices
• in adjacency lists representation
• maximum degree 𝑑𝑑 and maximum allowed weight w
• weights in {1,2,…,w}
Output: (1+ ε)-approximation to MST weight, 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀
Time:

• Known: 𝑂𝑂 𝑎𝑎𝑤𝑤
𝜀𝜀3

log 𝑎𝑎𝑤𝑤
𝜀𝜀

, Ω 𝑎𝑎𝑤𝑤
𝜀𝜀2

• Today: 𝑂𝑂 𝑎𝑎𝑤𝑤4log 𝑤𝑤
𝜀𝜀3

19

No dependence on n!

Idea Behind Algorithm

• Characterize MST weight in terms of the number of connected
components in certain subgraphs of G

• Already know that number of connected components can be
estimated quickly

20

• Recall Kruskal’s algorithm for computing MST exactly.

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MST) + 2 ⋅ (# weight-2 edges in MST)

= 𝑛𝑛 – 1 + (# of weight-2 edges in MST)
= 𝑛𝑛 – 1 + (# of CCs induced by weight-1 edges) −1

weight 1

weight 2
connected components
induced by weight-1 edges

MST

MST and Connected Components: Warm-up

MST has 𝑛𝑛 − 1 edges

By Kruskal

MST and Connected Components
In general: Let 𝐺𝐺𝑒𝑒 = subgraph of 𝐺𝐺 containing all edges of weight ≤ 𝑖𝑖

𝐶𝐶𝑒𝑒 = number of connected components in 𝐺𝐺𝑒𝑒
Then MST has 𝐶𝐶𝑒𝑒 − 1 edges of weight > 𝑖𝑖.

• Let 𝛽𝛽𝑒𝑒 be the number of edges of weight > 𝑖𝑖 in MST
• Each MST edge contributes 1 to 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀, each MST edge of weight >1

contributes 1 more, each MST edge of weight >2 contributes one more, …

𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = �
𝑒𝑒=0

𝑤𝑤−1

𝛽𝛽𝑒𝑒 = �
𝑒𝑒=0

𝑤𝑤−1

(𝐶𝐶𝑒𝑒 − 1) = −𝑤𝑤 + �
𝑒𝑒=0

𝑤𝑤−1

𝐶𝐶𝑒𝑒 = 𝑛𝑛 − 𝑤𝑤 + �
𝑒𝑒=1

𝑤𝑤−1

𝐶𝐶𝑒𝑒

22

𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = 𝑛𝑛 − 𝑤𝑤 + �
𝑒𝑒=1

𝑤𝑤−1

𝐶𝐶𝑒𝑒

Claim

Algorithm for Approximating 𝒘𝒘𝑴𝑴𝑴𝑴𝑴𝑴

1. For 𝑖𝑖 = 1 to 𝑤𝑤 − 1 do:
2. �̃�𝐶𝑒𝑒 ←APPROX_#CCs(𝑛𝑛,𝑑𝑑, 𝜀𝜀

w
;𝐺𝐺𝑒𝑒).

3. Return �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛 − 𝑤𝑤 + ∑𝑒𝑒=1
𝑤𝑤−1 �̃�𝐶𝑒𝑒 .

Analysis:
• Suppose all estimates of 𝐶𝐶𝑒𝑒’s are good: �̃�𝐶𝑒𝑒 − 𝐶𝐶𝑒𝑒 ≤ 𝜀𝜀

𝑤𝑤
 𝑛𝑛.

 Then �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 = | ∑𝑒𝑒=1𝑤𝑤−1(�̃�𝐶𝑒𝑒−𝐶𝐶𝑒𝑒)| ≤ ∑𝑒𝑒=1𝑤𝑤−1 |�̃�𝐶𝑒𝑒 − 𝐶𝐶𝑒𝑒| ≤ 𝑤𝑤 ⋅ 𝜀𝜀
𝑤𝑤

 𝑛𝑛 = 𝜀𝜀𝑛𝑛

• Pr[all 𝑤𝑤 − 1 estimates are good]≥ 2/3 𝑤𝑤−1

• Not good enough! Need error probability ≤ 1
3𝑤𝑤

 for each iteration

• Then, by Union Bound, Pr[error]≤ 𝑤𝑤 ⋅ 1
3𝑤𝑤

= 1
3

• Can amplify success probability of any algorithm by repeating it and taking
the median answer.

• Can take more samples in APPROX_#CCs. What’s the resulting run time?
23

Claim. 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 𝐺𝐺 = 𝑛𝑛 − 𝑤𝑤 + ∑𝑒𝑒=1𝑤𝑤−1𝐶𝐶𝑒𝑒APPROX_MSTweight (n, d, w, ε; G)

Multiplicative Approximation for 𝒘𝒘𝑴𝑴𝑴𝑴𝑴𝑴

For MST cost, additive approximation ⟹ multiplicative approximation
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝑛𝑛 − 1 ⟹ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝑛𝑛/2 for 𝑛𝑛 ≥ 2

• 𝜀𝜀𝑛𝑛-additive approximation:
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 − 𝜀𝜀𝑛𝑛 ≤ �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝑛𝑛

• (1 ± 2𝜀𝜀)-multiplicative approximation:
𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 1 − 2𝜀𝜀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 − 𝜀𝜀𝑛𝑛 ≤ �𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝑛𝑛 ≤ 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀 1 + 2𝜀𝜀

24

	Sublinear Algorithms
	Graph Properties
	Testing if a Graph is Connected [Goldreich Ron]
	Testing Connectedness: Algorithm
	Testing Connectedness: Analysis
	Testing Connectedness: Proof of Claim 1
	Freeing up an Adjacency List Entry
	Freeing up an Adjacency List Entry
	Testing Connectedness: Proof of Claim 2
	Testing if a Graph is Connected [Goldreich Ron]
	�Randomized Approximation in sublinear time
	Approximating # of Connected Components
	Approximating # of CCs: Main Idea
	Approximating # of CCs: Algorithm
	Approximating # of CCs: Analysis
	Approximating # of CCs: Analysis
	Minimum spanning tree (MST)
	Approximating MST Weight in Sublinear Time
	Idea Behind Algorithm
	MST and Connected Components: Warm-up
	MST and Connected Components
	Algorithm for Approximating 𝒘 𝑴𝑺𝑻
	Multiplicative Approximation for 𝒘 𝑴𝑺𝑻

