Sublinear Algorithms

| ECTURE 4

Last time

* Testing If a graph Is connected.

» Estimating the number of connected
components.

» Estimating the weight of a MST

Today
» Limitations of sublinear-time algorithms

* Yao’s Minimax Principle
HW?2 is owt tomight, due next Thursday at 11ams

1/30/2025 _ o
Sofya Raskhodnikova;Boston University



Query Complexity

e Query complexity of an algorithm is the maximum number of queries
the algorithm makes.

— Usually expressed as a function of input length (and other parameters)
— Example: the test for sortedness (from Lecture 2) had query complexity

O (logn) for constant &, more precisely O (10%)
— running time = query complexity
e Query complexity of a problem P, denoted q(P), is the query

complexity of the best algorithm for the problem.

— Whatis g(testing sortedness)? How do we know that there is no
better algorithm?

Today: Techniques for proving lower bounds on g(P).



Yao's Principle

A Method for Proving Lower Bounds



Yao’s Minimax Principle

Consider a computational problem on a finite domain.

e The following statements are equivalent.

( Statement 1 \
LFor every probabilistic algorithm A of complexity g there exists an input x s.tJ

Pr [A(x) 1s wrong]| > 1/3.

coin tosses of A

“ Statement 2 A
There is a distribution D on the inputs,

s.t. for every deterministic algorithm A of complexity q,
Pl}) [A(x) is wrong] > 1/3.
\- - /

e The direction needed for lower bounds:

Yao’s Minimax Principle (easy direction): Statement 2 = Statement 1.



Proof of Easy Direction of Yao’s Principle

e Consider a finite set of inputs X (e.g., all inputs of length n).

e Consider a randomized algorithm that takes an input x € X,
makes < g queries to x and outputs accept or reject.

e Every randomized algorithm can be viewed as a distribution u
on deterministic algorithms (which are decision trees).

e LetY be the set of all g-query deterministic algorithms that run
on inputs in X.



Proof of Easy Direction of Yao’s Principle

e Consider a matrix M with
— rows indexed by inputs x from X,
— columns indexed by algorithms y from Y,

|1 ifalgorithm y is correct on input x
- entry M(x,y) = {O if algorithm y is wrong on input x

|y
1 0

1

e Then an algorithm A is a distribution u over columns Y with
probabilities satisfying X.,,cy u(y) = 1.



Rephrasing Statements 1 and 2 in Terms of M

Statement 1 \

For every probabilistic algorithm A of complexity g there exists an input x s.t.
Pr [A(x) 1s wrong] > 1/3.

coin tosses of

e For all distributions u over columns Y, there exists a row x s.t.
Pr [M(x,y) =0] > 1/3.
y<u
. Statement 2 N
There is a distribution D on the inputs,
s.t. for every deterministic algorithm A of complexity q,
9 x<P—II‘) [A(x) is wrong] > 1/3. J

e There is a distribution D over rows X, s.t. for all columns vy,
IM(x,y) =0] >1/3.

Pr
x<D



Statement 2 = Statement 1

e Suppose there is a distribution D over X, s.t. for all columns y,
x(P_l;)[M(x,y) =0] > 1/3.

e Then for all distributions u overY,
x(P_lz)[M(x,y) =0] > 1/3.
yeu

e Then for all distributions u overY, there exists a row x,

Pr [M(x,y) =0] > 1/3.
YU

|y
1 0

1




Yao’s Principle (Easy Direction)

( Statement 1 \
LFor every probabilistic algorithm A of complexity g there exists an input X s.tj

Pr [A(X) 1s wrong] > 1/3.

coin tosses of A

; Statement 2 )

There is a distribution D on the inputs,
s.t. for every deterministic algorithm of complexity q,
Pl;) [A(X) 1s wrong] > 1/3.
. -l 4

e The direction needed for lower bounds:

Yao’s Minimax Principle (easy direction): Statement 2 = Statement 1.

NOTE: Also applies to restricted algorithms
e 1-sided error tests
e nonadaptive tests



Yao’s Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Gamel \
Move 1. Al selects a g-query randomized algorithm A for the problem.
Move 2. Lola selects an input on which A errs with largest probability.

e — | )

4 Game2 )
Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a g-query deterministic algorithm with as large
Qorobability of success on Lola’s distribution as possible. )
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Toy Example: a Lower Bound for Testing 0*

Input: string of n bits
Question: Does the string contain only O’s or is it e-far form the all-0 string?

Claim. Any algorithm needs €2(1/¢) queries to answer this question w.p. = 2/3.
Proof: By Yao’s Minimax Principle, enough to prove Statement 2.

/ Distribution D on n-bit strings I

 Divide the input string into 1/¢ blocks of size en.
» Lety, be the string where the ith block is 1s and remaining bits are O.
 Distribution D gives the all-0 string w.p. 1/2 and y; with w.p. 1/2,

\__ Where i is chosen uniformly at random from 1, ..., 1/e. -

0(0j0i0(0{0f0y2y2}1{2(11|2y0|0|0(0|0|0|0O|0O|0O|0O|0}0O|0O|0O
&n £n £En N £n

<= = - -l <
< > < > < < > o
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A Lower Bound for Testing 0*

Claim. Any &e-test for 0* needs Q(1/¢) queries.

Proof (continued): Now fix a deterministic tester A making q < 3_13 gueries.
1.

e At least é —q > iof the blocks do not hold any queried indices.

e Therefore, A accepts > 2/3 of the inputs y.. Thus, it is wrong with

A must accept if all answers are 0. Otherwise, it would be wrong on all-0
string, that is, with probability 1/2 with respect to D.

Letiy, ..., 1, be the positions A queries when it sees only Os. The test can

choose its queries based on previous answers. However, since all these
answers are 0 and since A is deterministic, the query positions are fixed.
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Context: [Alon Krivelevich Newman Szegedy 99]

Y

Every regular language can be tested in O(1/¢ polylog 1/¢) time12




A Lower Bound for Testing Sortedness

Input: a list of n numbers x,, x,,..., X,
Question: Is the list sorted or s-far from sorted?

Already saw: an O((log n)/¢) time tester.

Known [Ergiin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:
()(log n) queries are required for all constant ¢ < 1/2
Today: Q(log n) queries are required for all constant ¢ < 1/2

for every 1-sided error nonadaptive test.
1-sided Error Property Tester
/- A test has 1-sided error if it always accepts all \ YES | = Accept with
YES instances.
4 £ |:> Don’t care
e Atestis nonadaptive if its queries do not B frofl Reject with
_ _ VES =) probability > 2/3

K depend on answers to previous queries. /
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1-Sided Error Tests Must Catch “Mistakes”

e Apair (i,j)is violatedif i < jbutx; > x;

[ Claim. A 1-sided error test can reject only if it finds a violated pair. ]

Proof: Every sorted partial list can be extended to a sorted list.

1?2 (214 ..|7|?]|?|9
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Yao’s Principle Game [Jha]

Lola’s distribution is uniform over the following log n lists:

oce — () ~@
@) — Mm@ 0@
@)y — < @ ©e

(@) —i <@ ~®
ce ~é ~e 0é
c¢ ~o me - <é
ce ~o ™me e
¢ oo e =YY
—@® o ., — @ M..
-6 oo ~é NG

—1@® — e N®
—A @ — — @ e
— @ — — @ — @

[ Claim 1. All lists above are 1/2-far from sorted.

[ Claim 2. Every pair (I, j) is violated in exactly one list above.
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Yao’s Principle Game: Al’s Move

Al picks a set Q = {ay, ay, ..., a|q|} of positions to query.

O—0 ,',',. >O—O0—>0—>0—>0—>0 ,',. >O—0 ,
a, a, as Cl|Q|

e His test must be correct, i.e., must find a violated pair with probability =
2/3 when input is picked according to Lola’s distribution.

e ( contains a violated pair & (a;, a;;1) is violated for some i

—1
Pr [(a;, a;,1) for some i is vilolated in list £] < 0t
¢<Lola’s distribution ) logn
o If|Q| < glogn then this probability is < g By the Union Bound

* So, |Q| = Q(logn)

e By Yao’s Minimax Principle, every randomized 1-sided error J
nonadaptive test for sortedness must make ((logn) queries.
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Testing Monotonicity of
functions on Hypercube

Non-adaptive 1-sided error
Lower Bound



Boolean Functions f : {0,1}" — {0,1}

Graph representation: fo1l) ,, f(111)

A

n-dimensional hypercube

f(010) 4 } £(110)

-

f(001)

Y

f(101)

f(000) >f(100)
o vertices: bit strings of length n

° edges: (x,y) is an edge if y can be obtained from x by

increasing one bit fromOto 1 x | 001001
y [ 011001

e each vertex x is labeled with f (x)
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Boolean Functions f : {0,1}" — {0,1}

Graph representation:
n-dimensional hypercube

Vertices:
increasing weight

e 2™ vertices: bit strings of length n

F(11--11)

£(00 -+ 00)

o 2™ 1n edges: (x,y) is an edge if y can be obtained from x by

increasing one bit fromOto 1

e each vertex x is labeled with f (x)

b
y

001001

011001
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Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky,
Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky

Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

e Afunction f : {0,1}" — {0,1} is monotone
if increasing a bit of x does not decrease f (x).

monotone

e |s f monotone or g-far from monotone

(f has to change on many points to become monontone)?
— Edge x—yisviolated by f if f (x) > f ().
Time:

- 0(n/¢), logarithmic in the size of the input, 2" —-far from monotone
- Q(\/n/¢) for 1-sided error, nonadaptive tests

— Advanced techniques: ©(y/n/&?) for nonadaptive tests, QO(3/n)
[Khot Minzer Safra 15, Chen De Servidio Tang 15, Chen Waingarten Xie 17]



Hypercube 1-sided Error Lower Bound

(Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] w

Every 1-sided error nonadaptive test for monotonicity of functions
f :{0,1}" - {0,1} requires Q(y/n) queries.

e 1-sided error test must accept if no violated pair is uncovered.

Violated pair: g

— A distribution on far from monotone functions suffices.
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Hypercube 1-sided Error Lower Bound

e Hard distribution: pick coordinate i at random and output f;.

n
1 if |x| > 5 +n

n
1-— Xi if x| = E + \/ﬁ

n
n 0 if |x] < =—+/n

5 2

1 0 0
e A ‘truncation’ of an antidicator
1
antidictator
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The Fraction of Nodes in Middle Layers

/Hoeffding Bound h
Let Yy, ..., Y be independently distributed random variables in [0,1].
S
letY =2<. Y Y; (called sample mean). Then Pr[|Y — E[Y]| = €] < De2se”,
\_ © = J
E[Y]=

NS

23



Hard Functions are Far

e Hard distribution: pick coordinate i at random and output f;.

n
1 if > 5 +/n
_ n
1-— Xi if = E i \/ﬁ
n
0 if < E —+/n
4 Analysis )
e The middle contains a constant fraction of vertices.
* Edgesfrom (xq,...,%;-1,0,Xj41, ..., X) to (X1, ..., X;-1, 1, Xj 41, ..., Xp) Are
violated if both endpoints are in the middle.
All n functions are e-far from monotone for some constant ¢. ) o

N




Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries

=

[N oy
Ol = ~.

H

(@)

Pair (x,y)
can expose only

# functions exposed by g queries functions f;, f; and f;
N = Al Y,

# functions that a query pair (x, y) exposes
< # coordinates on which x and y differ

3

Only pairs of queries in the Green Band can be violated = disagreements < 2/n

" Naive Analysis
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Hypercube 1-sided Error Lower Bound

How many functions does a set of g queries expose?

® queries

=

[N oy
Ol = ~.

H

(@)

.
Claim

Pair (x,y)

can expose only

# functions exposed by g queries functions f;, f; and f;

.

<(@-1-2Vn

# functions that a query pair (x, y) exposes
< # coordinates on which x and y differ

3

Only pairs of queries in the Green Band can be violated = disagreements < 2/n
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Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

Let Q be the set of queries made.
The tester catches a violation
()
Q contains comparable x, y
that differ in coordinate i

Draw an undirected graph (Q, E)
by connected comparable queries

(Claim
# functions exposed by g queries Consider its spanning forest.
- = (q¢ A X,y exist
| ()
sufficient to consider adjacent there are adjacent vertices on the path
vertices in a minimum spanning forest from x to y that differ in coordinate i

on the query set
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Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries
2+/n—

(-

Claim

# functions exposed by g queries

<(@-1-2Vn
N
U

" Claim A

\_

Every deterministic test that makes a set Q of g queries (in the middle)
A

succeeds with probability O ( ) on our distribution.

Vi Y,

28



Hypercube 1-sided Error Lower Bound

z

Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

S

L

Every 1-sided error nonadaptive test for monotonicity of functions
f :{0,1}" - {0,1} requires Q(y/n) queries.

)
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