2142025

Sublinear Algorithms

L ECTURE 5

Last time

» Limitations of sublinear-time algorithms

* Yao’s Minimax Principle
« Examples: testing 0%, sortedness,

monotonicity

Today

» Limitations of sublinear-time algorithms
« Communication complexity

» Testing with adversarial erasures.

HW?2 due date moved to Tuesday

Sofya Raskhodnikova;Boston University

Reminder: Yao’s Minimax Principle

Consider a computational problem on a finite domain.

e The following statements are equivalent.

(Statement 1 \

For every probabilistic algorithm A of complexity g there exists an input x s.t.
Pr [A(x) 1s wrong]| > 1/3.

coin tosses of A

“ Statement 2 A
There is a distribution D on the inputs,

s.t. for every deterministic algorithm A of complexity q,
Pl;) [A(x) 1s wrong] > 1/3.
\- - /

e The direction needed for lower bounds:

Yao’s Minimax Principle (easy direction): Statement 2 = Statement 1.

Review Question

To prove a lower bound of g on the query complexity of some problem P,
which of the following statements could we aim to prove?

A.

There exists an input x on which every randomized g-query algorithm A
for P errs with probability greater than 1/3.

For every deterministic g-query algorithm A for P, there exists a

distribution D on the inputs on which A errs with probability greater
than 1/3.

For every distribution D on the inputs, there exists a deterministic g-
query algorithm A for P that errs with probability greater than 1/3.

None of the above.

Communication Complexity

A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds

(Randomized) Communication Complexity

Shared random string
Alice |1101000101110101110101010110... | Bob

/ 0100 \

O O 1 {;i-f"' :

0011 !!
Input: x \ Input: y

Compute C(x,y)

4
®

o @ ’ 4
! 4

Goal: minimize the number of bits exchanged.

e Communication complexity of a protocol is the maximum number of bits
exchanged by the protocol.

e Communication complexity of a function C, denoted R(C), is the
communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ,,

Alice

1101000101110101110101010110...

Bob

W

Input:S € [n], |S]

SN

N

P
y

|

Input: T <

Compute DIS], (S, T)

reject

otherwise

_ {accept ifSNT =0

n], |IT| =k

(Theorem [Kalyanasundaram Schmitger 92, Razborov 92]

L R(DIS];,) = Q(k) forall k < g

—

A lower bound using CC method

Testing if a Boolean function is a k-parity

Linear Functions Over Finite Field IF,

A Boolean function f:{0,1}* — {0,1} is linear (also called parity) if

flxy, .o, xy) =ayxy + -+ anx,%for some dq, ...,a, € {0,1}

no free term

e Work in finite field IF,

— Other accepted notation for F,: GF, and Z, example

— Addition and multiplication is mod. 2) . 001001

= x=(x1, o, %), Y=y, -, Yn), that is, x, y € {0,1} 011001
X+ y=(x1 + Y1, e, X + V) 010000

Linear Functions Over Finite Field IF,

A

o

Boolean function f:{0,1}" — {0,1} is linear (also called parity) if

~

f(xq,..,xy) = ayxy + -+ a,x, forsomeay,...,a, € {0,1}

) [n] is a shorthand for {1, ... n}

f(x1, e, X)) = Djes X forsome S C n].

/

Notation: ys(x) = Xes X;-

Testing If a Boolean function is Linear

Input: Boolean function f:{0,1}"* — {0,1}
Question:
Is the function linear or e-far from linear
(= 2" values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in O (é) time

10

k-Parity Functions

/kelParity Functions)
A function f : {0,1}" — {0,1} is a k-parity if
f(x) = xs(x) = Xiesxi
_for some set S < [n] of size |S| = k.)

11

Testing If a Boolean Function is a k-Parity

Input: Boolean function f:{0,1}" — {0,1} and an integer k
Question: Is the function a k-parity or e-far from a k-parity
(= £2™ values need to be changed to make it a k-parity)?

Time:
O(k log k) [Chakraborty Garcia—-Soriano Matsliah]

Q(min(k,n — k)) [Blais Brody Matulef 11]
e Today: Q(k) fork <n/2
Q;// Today’s bound implies Q(min(k,n — k))

12

Representing Functions as Vectors

Stack the 2™ values of f(x) and treat it as a vector in {O,l}zn.

07 £(0000)
1 £(0001)
1 £(0010)
0 £(0011)
1 £(0100)
f=1 :
1 f(1101)
0 £(1110)
0. F(1111)]

l_Inear functions

There are 2" linear functions: one for each subset S € [n].

Xo

01

- O O OO0

o o

X{1} =

01

Ok OR

o -

. b—\Ob—‘-r—\O:

o -

Parity on the positions indexed by set S is y¢(x, ..., x,,) = 2 X;

LES

14

Important Fact About Linear Functions

[Fact. Two different linear functions disagree on half of the values.

e Consider functions ys and yr where S # T.

Let i be an element on which S and T differ
(w.lLo.g.i € S\T)
Pair up all n-bit strings: (x, x())
where x(is x with the ith bit flipped.
For each such pair, xs(x) # xs(x®)
but y7(x) = xr(x®)
So, xs and y7 differ on exactly one of x, x@,

Since all x’s are paired up,
Xs and y7 differ on half of the values.

0 T 0
1 1
1 0

x| a b
0 1

x®Ol1—all b
0 0
1 0
0 1

Xs(X) xr(x)

[Corollary. A k'-parity function, where k' # k, is %-far from every k-parity.

|

15

Reduction from DISJy , to Testing k-Parity

e LetT be the best tester for the k-parity property fore = 1/2
— query complexity of T is g(testing k-parity).
* We will construct a communication protocol for DIS] /2 that runs
T and has communication complexity 2 - g(testing k—parity).

holds for CC of every
protocol for DISJ [Hastad Wigderson 07]

e Then 2 - g(testing k—parity) % R(DIS]k/Z) % O(k/2)
U
q(testing k-parity) = Q(k)

16

Reduction from DISJy , to Testing k-Parity

1101000101110101110101010110...

\/_\/ e
h=f+g (mod 2)
h(x)? || f(x) + g(x) mod 2
Alice Bob
T O
P00 T Ooogm ,

ac;cept/rejec

f(x)

v

< g(x)

Input S C [n], |S| = k/\ Input: T € [n], |T| = k/2
Compute: f)(S Compute: g = yr

Output T's answer

e T receives its random bits from the shared random string.

17

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T
Correctness:

e h=f+g(mod2)=ys+ xr (mod2)= ysar
o |SAT|=|S|+I|T|=2|SNT|

)k if SNT =0
lSATl_{Sk—Z if SNT # @

B k—parity if SNT=0
5 k’—'\parity wherek’ #k if SNT # 0@

1/2-far from every k-parity

Summary: q(testing k-parity) = Q.(k) fork < n/2

18

Testing Lipschitz Property
onh Hypercube

Lower Bound

Lipschitz Property of Functions f: {0,1}"*->R

e Afunction f : {0,1}" - Riis Lipschitz
if changing a bit of x changes f(x) by at most 1.

e

N
<3

e |s f Lipschitz or e-far from Lipschitz Lipschitz

(f has to change on many points to become Lipschitz)?
— Edge (x,y) isviolated by f if |f(x) — f(y)| > 1.

-

\}(

Time: 2
- 0(n/¢), logarithmic in the size of the input, 2"
[Chakrabarty Seshadhri]

Ly

%—far from Lipschitz
— Q(n) [Jha Raskhodnikova]

20

Testing Lipschitz Property

/Theorem

Testing Lipschitz property of functions f: {0,1}" — {0,1,2}
__requires ()(n) queries.

QL// Prove it.

21

Summary of Lower Bound Methods

e Yao’s Principle

— testing membership in 1%, sortedness of a list, and monotonicity
of Boolean functions

e Reductions from communication complexity problems
— testing if a Boolean function is a k-parity

22

Other Models of Sublinear
Computation

Algorithms Resilient to Erasures (or Errors)

1l LA -{BlL|L| L|B|LIA-|BJLI|A-|L/LIA-|B|LIA-|B|L|Lf-|BlLIA

\ \ A
e A I e

Y \

randomized algorithm

e < « fraction of the input is erased (or modified)
adversarially before algorithm runs

e Algorithm does not know in advance what’s erased
(or modified)
e Can we still perform computational tasks?

24

Property Testing

Property Tester [Rubinfeld Sudan 96,
Goldreich Goldwasser Ron 98]
£ R
YES | far from
< YES
- J
Accept \.N.Ith Don't Reject v.vith
probability care probability
=>2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places
25

Property Testing with Erasures

Property Tester [Rubinfeld Sudan 96, Erasure-Resilient Property Tester [Dixit
Goldreich Goldwasser Ron 98] Raskhodnikova Thakurta Varma 16]
e < (fraction of the input is erased
adversarially
4 b 4 Can be Any completion\
YES | ¢ far from completed| ¢ is far from
) YES to YES YES
AN 4 \ N /
A e
ccept \.N.Ith Don’t Reject v.v!th Accept \.N.Ith Don't Reject vy!th
probability care probability probability care probability
>2/3 >2/3 >2/3 >2/3

Two objects are at distance € = they differ in an ¢ fraction of places
26

Can We Make Testers a-Erasure-Resilient?

It is easy if a tester makes only uniform queries
(and the property is extendable).

e Use the original tester as black box and ignore erasures:

1 :
0 (E) factor query complexity overhead for all o € (0,1).
e Applies to many properties
— Monotonicity over poset domains
[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]

— Convexity of black and white images
[Berman Murzabulatov Raskhodnikova 16]

— Boolean arrays having at most k alternations in values

27

Erasure-Resilient Sortedness Tester?

Example: Testing sortedness of n-element arrays
e Every uniform tester requires Q(1/n) queries.
e [EKKRVOO] (optimal) tester that makes O(logn) queries

1(1{1(1|1}1)1j1|1|141|141}141]{L{0j0]0]0]0|0{0(0]0|0]0]0]0|0
12 T

random search element

. . 1
e (Can we make it erasure-resilient O (E) factor overhead?

e All known optimal sortedness testers [EKKRV0O, BGJIRWO09, CS13a] break
with just one erasure.

Known optimal testers for monotonicity, Lipschitz property and

convexity of functions [GGLRS00, DGLRRS99, EKKRVOO, FO4, CS13a, CS13b,
CST14, BRY14, BRY14, CDST15, KMS15, BB16, JR13, CS13a, BRY14, BRY14,

CDJS15, PRRO3, BRY14] break on a constant number of erasures.

S

28

Erasure-Resilient Sortedness Tester

/Input: g,a € (0,1); query access to an array N\
1. Repeat ©(1/¢€) times:

a. Sample uniformly until you get a nonerased search point s.

b. Binary search for s with uniform nonerased split points.

c. Rejectif there are violations along the search path.
< Accept if no violations were found. /

&

i 7
: Q\Q :
1]9 1 1] | |61 37 | L |8I8
12 4N N NN [

p1—> S < pz

29

Analysis of the Sortedness Tester

1. Array is sorted = tester accepts

2. Arrayis e-far from sorted = one iteration rejects with
probability > €

— Need to repeat only ©(1/¢) times to get error probability 2/3

: : : .]
3. Want to show: expected # of queries per iteration is O (f;
— Tester traverses a uniformly random search path in a random

binary search tree.
— The # of levels in a random binary search is O(logn) w.h.p.

Claim. Expected # of queries to one level of binary search is

0(=)

)

30

Expected Number of Queries in One lteration

At level k /OI
Q = # of queries | \Q
Q
|
|

12 < >
Interval | a; = fraction of erasures in |

nonerased points in I _ L1 —ay)

Pr [search point sisinI] =

total # nonerased points = (1 — q)

E[Q] = z E[Q|s €] Pr[s €]

intervals I inlevel k

z N\ I~ _ |
1 —a n(l—-a) l-o

31

What We Proved

e [Dixit Raskhodnikova Thakurta Varma 16]

" Theorem A

Our a-erasure-resilient e-tester for sortedness of n-element arrays

logn .
\makes 0] (s (1_00) queries for alla, € € (0,1).

)

32

Conclusion

Sublinear algorithms are possible in many settings
e simple algorithms, more involved analysis

* nice combinatorial problems

e unexpected connections to other areas

®* many open guestions

In the remainder of the course, we will cover research papers in
the area.

46

	Slide 1: Sublinear Algorithms
	Slide 2: Reminder: Yao’s Minimax Principle
	Slide 3: Review Question
	Slide 4: Communication Complexity
	Slide 5: (Randomized) Communication Complexity
	Slide 6: Example: Set Disjointness cap D cap I. cap S cap J sub bold italic k
	Slide 7: A lower bound using CC method
	Slide 8: Linear Functions Over Finite Field double-struck cap F sub 2
	Slide 9: Linear Functions Over Finite Field double-struck cap F sub 2
	Slide 10: Testing if a Boolean function is Linear
	Slide 11: k-Parity Functions
	Slide 12: Testing if a Boolean Function is a k-Parity
	Slide 13: Representing Functions as Vectors
	Slide 14: Linear functions
	Slide 15: Important Fact About Linear Functions
	Slide 16: Reduction from cap D cap I. cap S cap J sub , bold italic k over bold 2 end subscript to Testing k-Parity
	Slide 17: Reduction from cap D cap I. cap S cap J sub , bold italic k over bold 2 end subscript to Testing k-Parity
	Slide 18: Analysis of the Reduction
	Slide 19: Testing Lipschitz Property on Hypercube
	Slide 20: Lipschitz Property of Functions f:superscript base , , open brace 0,1 close brace , end base , to the n goes to ℝ
	Slide 21: Testing Lipschitz Property
	Slide 22: Summary of Lower Bound Methods
	Slide 23: Other Models of Sublinear Computation
	Slide 24: Algorithms Resilient to Erasures (or Errors)
	Slide 25:
	Slide 26:
	Slide 27: Can We Make Testers alpha-Erasure-Resilient?
	Slide 28: Erasure-Resilient Sortedness Tester?
	Slide 29: Erasure-Resilient Sortedness Tester
	Slide 30: Analysis of the Sortedness Tester
	Slide 31: Expected Number of Queries in One Iteration
	Slide 32: What We Proved
	Slide 46: Conclusion

