Sublinear Algorithms

LECTURE 5 Last time

- Limitations of sublinear-time algorithms
- Yao's Minimax Principle
 - Examples: testing 0*, sortedness, monotonicity

Today

- Limitations of sublinear-time algorithms
 Communication complexity
- Testing with adversarial erasures.

HW2 due date moved to Tuesday

Sofya Raskhodnikova; Boston University

Reminder: Yao's Minimax Principle

Consider a computational problem on a finite domain.

• The following statements are equivalent.

(Statement 1				
	For every probabilistic algorithm \mathcal{A} of complexity q there exists an input x s.t.				
	$\Pr_{\substack{\text{coin tosses of } \mathcal{A}}} [\mathcal{A}(x) \text{ is wrong}] > 1/3.$				
`	Coin tosses of A				

Sta	ten	nen	t 2
010	CC.II		

There is a distribution D on the inputs, s.t. for every deterministic algorithm \mathcal{A} of complexity q, $\Pr_{x \leftarrow D}[\mathcal{A}(x) \text{ is wrong}] > 1/3.$

• The direction needed for lower bounds:

Yao's Minimax Principle (easy direction): Statement 2 \Rightarrow Statement 1.

Review Question

To prove a lower bound of q on the query complexity of some problem \mathcal{P} ,

which of the following statements could we aim to prove?

- A. There exists an input x on which every randomized q-query algorithm \mathcal{A} for \mathcal{P} errs with probability greater than 1/3.
- B. For every deterministic q-query algorithm \mathcal{A} for \mathcal{P} , there exists a distribution \mathcal{D} on the inputs on which \mathcal{A} errs with probability greater than 1/3.
- C. For every distribution \mathcal{D} on the inputs, there exists a deterministic qquery algorithm \mathcal{A} for \mathcal{P} that errs with probability greater than 1/3.
- D. None of the above.

Communication Complexity

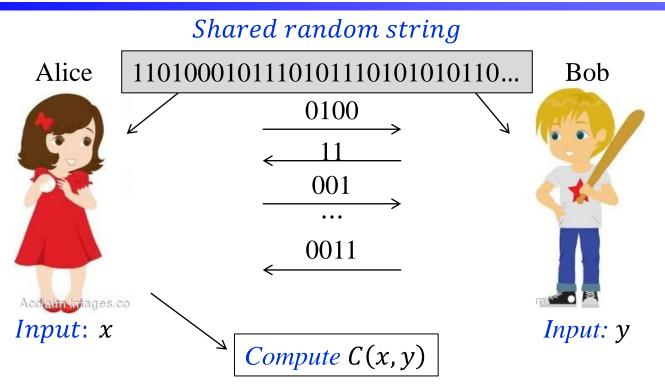
A Method for Proving Lower Bounds

[Blais Brody Matulef 11]

Use known lower bounds for other models of computation

Partially based on slides by Eric Blais

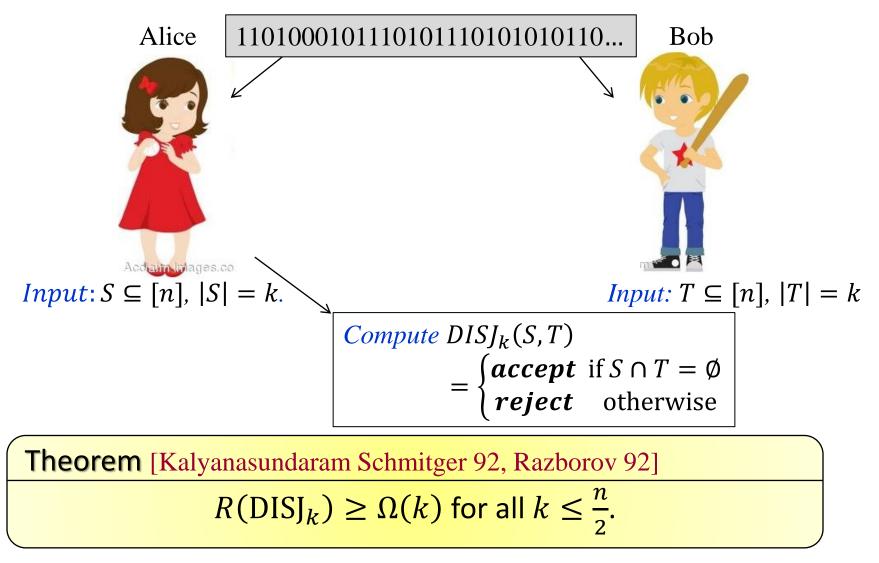
(Randomized) Communication Complexity



Goal: minimize the number of bits exchanged.

- Communication complexity of a protocol is the maximum number of bits exchanged by the protocol.
- Communication complexity of a function C, denoted R(C), is the communication complexity of the best protocol for computing C.

Example: Set Disjointness DISJ_k



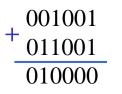
A lower bound using CC method

Testing if a Boolean function is a k-parity

A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is *linear* (also called *parity*) if $f(x_1, ..., x_n) = a_1 x_1 + \dots + a_n x_n$ for some $a_1, ..., a_n \in \{0,1\}$ no free term

- Work in finite field \mathbb{F}_2
 - Other accepted notation for \mathbb{F}_2 : GF_2 and \mathbb{Z}_2
 - Addition and multiplication is mod 2
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$, that is, $x, y \in \{0, 1\}^n$ $x + y = (x_1 + y_1, ..., x_n + y_n)$

example



Notation: $\chi_S(x) = \sum_{i \in S} x_i$.

Testing if a Boolean function is Linear

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$

Question:

Is the function linear or ε -far from linear ($\geq \varepsilon 2^n$ values need to be changed to make it linear)?

Later in the course:

Famous BLR (Blum Lubi Rubinfeld 90) test runs in $O\left(\frac{1}{c}\right)$ time

k-Parity Functions

k-Parity Functions

A function $f : \{0,1\}^n \to \{0,1\}$ is a *k*-parity if $f(x) = \chi_S(x) = \sum_{i \in S} x_i$ for some set $S \subseteq [n]$ of size |S| = k.

Testing if a Boolean Function is a k-Parity

Input: Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and an integer k

Question: Is the function a k-parity or ε -far from a k-parity

($\geq \varepsilon 2^n$ values need to be changed to make it a k-parity)?

Time:

 $O(k \log k)$ [Chakraborty Garcia–Soriano Matsliah]

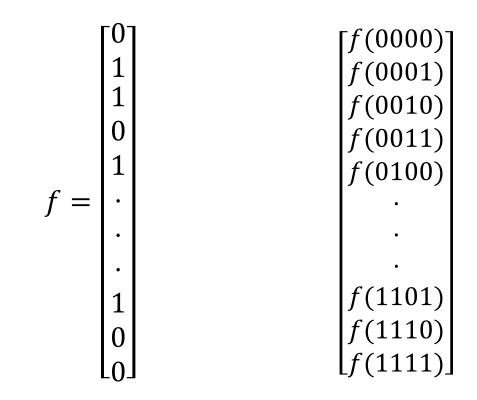
 $\Omega(\min(k, n - k))$ [Blais Brody Matulef 11]

• Today: $\Omega(k)$ for $k \le n/2$

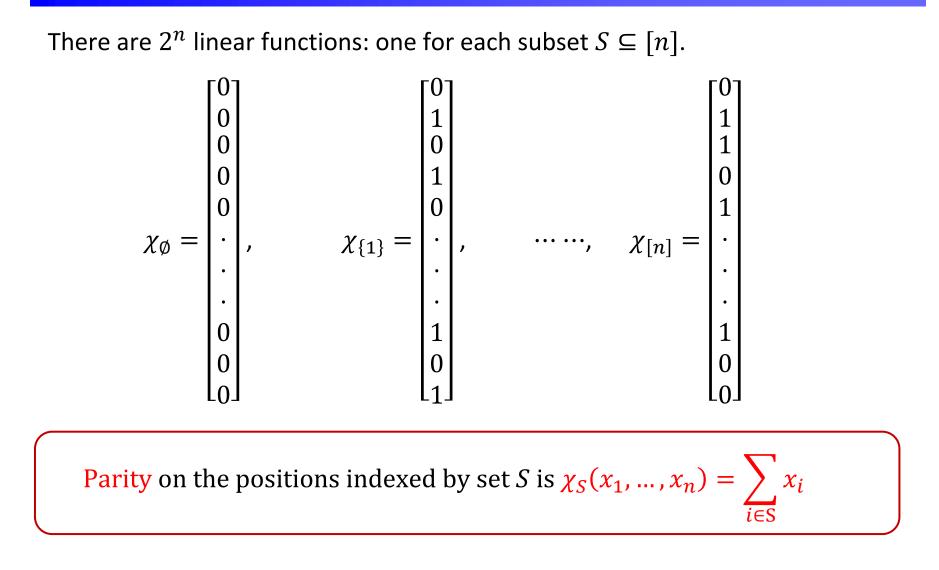
 $\int D$ Today's bound implies $\Omega(\min(k, n - k))$

Representing Functions as Vectors

Stack the 2^n values of $f(\mathbf{x})$ and treat it as a vector in $\{0,1\}^{2^n}$.



Linear functions



Important Fact About Linear Functions

Fact. Two different linear functions disagree on half of the values.

- Consider functions χ_S and χ_T where $S \neq T$.
 - Let *i* be an element on which *S* and *T* differ (w.l.o.g. $i \in S \setminus T$)
 - Pair up all *n*-bit strings: $(x, x^{(i)})$ where $x^{(i)}$ is x with the *i*th bit flipped.
 - For each such pair, $\chi_S(\mathbf{x}) \neq \chi_S(\mathbf{x}^{(i)})$ but $\chi_T(\mathbf{x}) = \chi_T(\mathbf{x}^{(i)})$

So, χ_S and χ_T differ on exactly one of x, $x^{(i)}$.

Since all x's are paired up,

 χ_S and χ_T differ on half of the values.

Corollary. A k'-parity function, where $k' \neq k$, is $\frac{1}{2}$ -far from every k-parity.

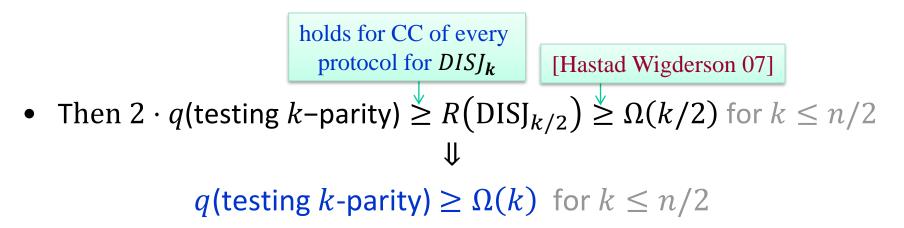
X

 $\mathbf{x}^{(i)}$

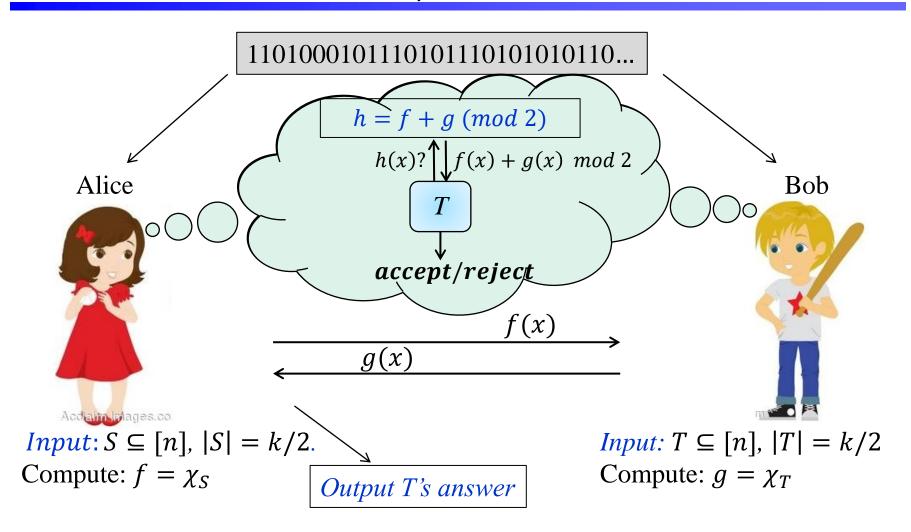
Reduction from $DISJ_{k/2}$ to Testing k-Parity

- Let *T* be the best tester for the *k*-parity property for ε = 1/2

 query complexity of T is *q*(testing *k*-parity).
- We will construct a communication protocol for $DISJ_{k/2}$ that runs T and has communication complexity $2 \cdot q$ (testing k-parity).



Reduction from $DISJ_{k/2}$ to Testing k-Parity



• *T* receives its random bits from the shared random string.

Analysis of the Reduction

Queries: Alice and Bob exchange 2 bits for every bit queried by T Correctness:

•
$$h = f + g \pmod{2} = \chi_S + \chi_T \pmod{2} = \chi_{S\Delta T}$$

• $|S\Delta T| = |S| + |T| - 2|S \cap T|$

•
$$|S\Delta T| = \begin{cases} k & \text{if } S\cap T = \emptyset \\ \leq k - 2 & \text{if } S\cap T \neq \emptyset \end{cases}$$

$$h \text{ is } \begin{cases} k-\text{parity} & \text{if } S \cap T = \emptyset \\ k'-\text{parity where } k' \neq k & \text{if } S \cap T \neq \emptyset \end{cases}$$

$$\frac{1}{2-\text{far from every } k-\text{parity}}$$

Summary: q(testing k-parity) $\geq \Omega(k)$ for $k \leq n/2$

Testing Lipschitz Property on Hypercube

Lower Bound

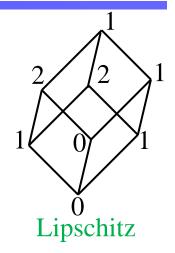
Lipschitz Property of Functions f: $\{0,1\}^n \rightarrow \mathbb{R}$

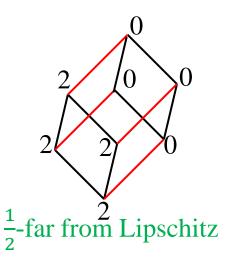
- A function f : {0,1}ⁿ → R is Lipschitz
 if changing a bit of x changes f(x) by at most 1.
- Is f Lipschitz or ε-far from Lipschitz
 (f has to change on many points to become Lipschitz)?
 Edge (x, y) is violated by f if |f(x) f(y)| > 1.

Time:

- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n

[Chakrabarty Seshadhri]





- $\Omega(n)$ [Jha Raskhodnikova]

Testing Lipschitz Property

Theorem

Testing Lipschitz property of functions f: $\{0,1\}^n \rightarrow \{0,1,2\}$ requires $\Omega(n)$ queries.

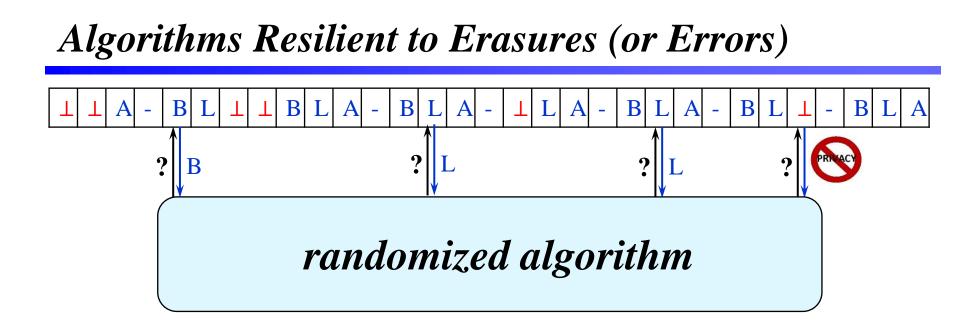
Prove it.

Summary of Lower Bound Methods

• Yao's Principle

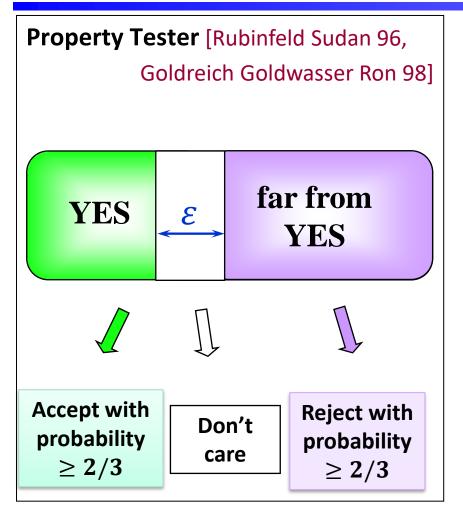
- testing membership in 1*, sortedness of a list, and monotonicity of Boolean functions
- Reductions from communication complexity problems
 - testing if a Boolean function is a k-parity

Other Models of Sublinear Computation



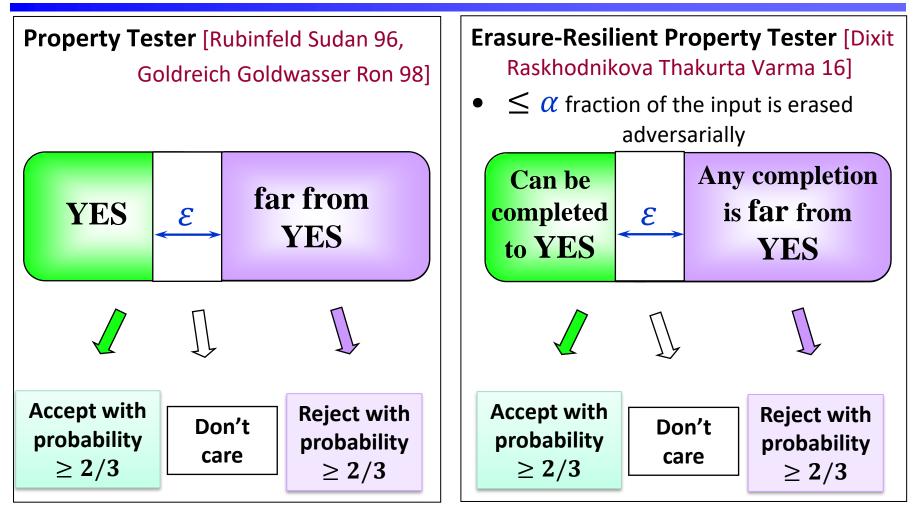
- $\leq \alpha$ fraction of the input is erased (or modified) adversarially before algorithm runs
- Algorithm does not know in advance what's erased (or modified)
- Can we still perform computational tasks?

Property Testing



Two objects are at distance ε = they differ in an ε fraction of places

Property Testing with Erasures



Two objects are at distance ε = they differ in an ε fraction of places

Can We Make Testers α -Erasure-Resilient?

It is easy if a tester makes only **uniform** queries (and the property is **extendable**).

• Use the original tester as black box and ignore erasures:

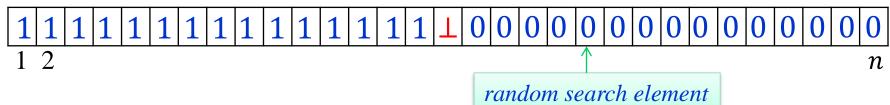
 $O\left(\frac{1}{1-\alpha}\right)$ factor query complexity overhead for all $\alpha \in (0,1)$.

- Applies to many properties
 - Monotonicity over poset domains
 [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky 02]
 - Convexity of black and white images
 [Berman Murzabulatov Raskhodnikova 16]
 - Boolean arrays having at most k alternations in values

Erasure-Resilient Sortedness Tester?

Example: Testing sortedness of *n*-element arrays

- Every uniform tester requires $\Omega(\sqrt{n})$ queries.
- [EKKRV00] (optimal) tester that makes $O(\log n)$ queries



- Can we make it erasure-resilient $O\left(\frac{1}{1-\alpha}\right)$ factor overhead?
- All known optimal sortedness testers [EKKRV00, BGJRW09, CS13a] break with just one erasure.

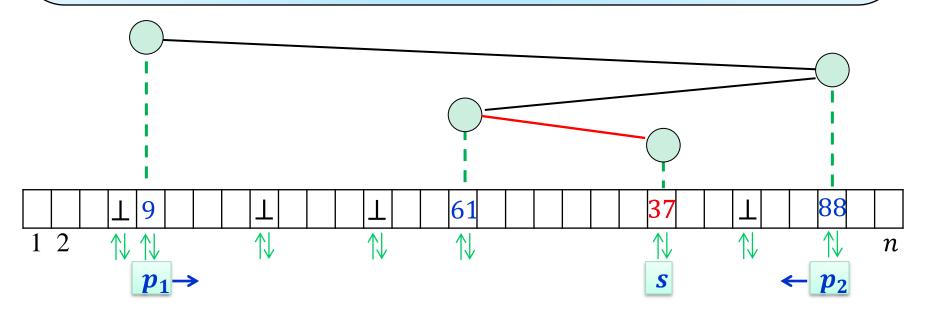
Known optimal testers for monotonicity, Lipschitz property and convexity of functions [GGLRS00, DGLRRS99, EKKRV00, F04, CS13a, CS13b, CST14, BRY14, BRY14, CDST15, KMS15, BB16, JR13, CS13a, BRY14, BRY14, CDJS15, PRR03, BRY14] break on a constant number of erasures.

Erasure-Resilient Sortedness Tester

Input: $\varepsilon, \alpha \in (0,1)$; query access to an array

1. Repeat Θ(1/ε) times:

- a. Sample uniformly until you get a nonerased *search* point *s*.
- b. Binary search for *s* with uniform nonerased *split points*.
- c. **Reject** if there are violations along the search path.
- 2. Accept if no violations were found.

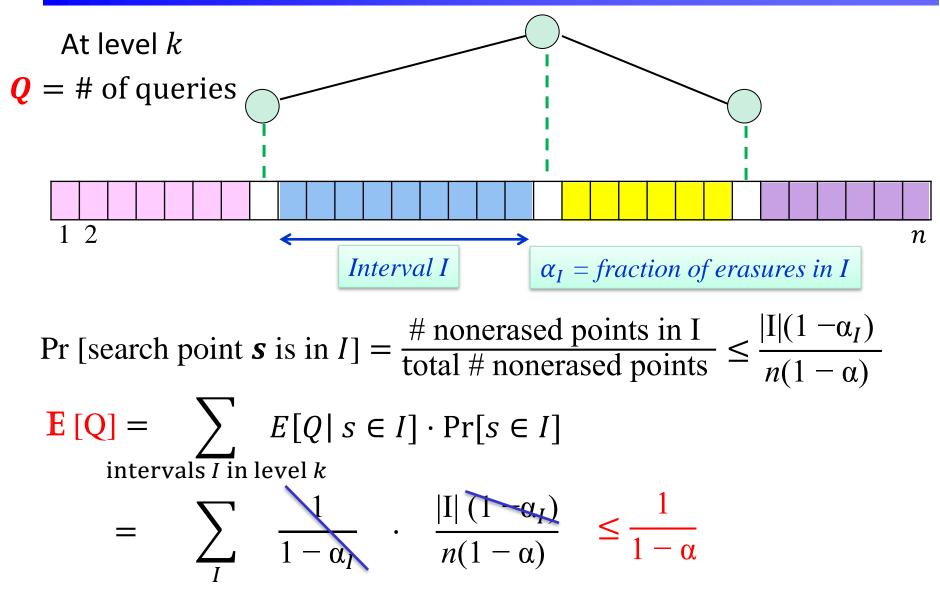


Analysis of the Sortedness Tester

- 1. Array is sorted \implies tester accepts
- 2. Array is ε -far from sorted \Rightarrow one iteration rejects with probability $\ge \varepsilon$
 - Need to repeat only $\Theta(1/\epsilon)$ times to get error probability 2/3
- 3. Want to show: expected # of queries per iteration is $O\left(\frac{\log n}{1-\alpha}\right)$
 - Tester traverses a uniformly random search path in a random binary search tree.
 - The # of levels in a random binary search is $O(\log n)$ w.h.p.

Claim. Expected # of queries to one level of binary search is $O\left(\frac{1}{1-\alpha}\right)$

Expected Number of Queries in One Iteration



What We Proved

• [Dixit Raskhodnikova Thakurta Varma 16]

Theorem

Our α -erasure-resilient ε -tester for sortedness of n-element arrays makes $O\left(\frac{\log n}{\varepsilon(1-\alpha)}\right)$ queries for all $\alpha, \varepsilon \in (0,1)$.

Conclusion

Sublinear algorithms are possible in many settings

- simple algorithms, more involved analysis
- nice combinatorial problems
- unexpected connections to other areas
- many open questions

In the remainder of the course, we will cover research papers in the area.