Sublinear Algorithms

LECTURE 6

Last time

Today

- Other models of computation
- Streaming

Property Testing with Erasures

Two objects are at distance ε = they differ in an ε fraction of places

Property Testing with Errors

Two objects are at distance ε = they differ in an ε fraction of places

YES

Reject with

probability

 $\geq 2/3$

Property Testing with Errors

Two objects are at distance ε = they differ in an ε fraction of places

Relationships Between Models

Containments are strict:

- [Fischer Fortnow 05]: standard vs. tolerant
- [Dixit R Thakurta Varma 16]: standard vs. erasure-resilient
- [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

Distance Approximation for Boolean Functions

Goal: Output $dist(f, \mathcal{P}) \pm \varepsilon$

in sublinear time

Sublinear-Time "Restoration" Models

Local Decoding

Input: A slightly corrupted codeword

Requirement: Recover individual bits of the closest codeword with a constant number of queries per recovered bit.

Program Checking

Input: A program P computing f correctly on most inputs.

Requirement: Self-correct program P: for a given input x, compute f(x) by making a few calls to P.

Local Reconstruction

Input: Function f nearly satisfying some property P Requirement: Reconstruct function f to ensure that the reconstructed function g satisfies P, changing f only when necessary. For each input x, compute g(x) with a few queries to f.

Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]

- Compute the i-th character y_i of a legal output y.
- If there are several legal outputs for a given input, be consistent with one.
- Example: maximal independent set in a graph.

Data Stream Model [Alon Matias Szegedy 96]

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g., $\langle a_1, a_2, ..., a_m \rangle = 3, 5, 3, 7, 5, 4, ...$

Goal: Compute a function of the stream, e.g., median, number of distinct elements, longest increasing sequence.

Streaming Puzzle

A stream contains n-1 distinct elements from [n] in arbitrary order.

Problem: Find the missing element, using $O(\log n)$ space.

Sampling from a Stream of Unknown Length

Warm-up: Find a uniform sample s from a stream $\langle a_1, a_2, ..., a_m \rangle$ of *known* length m.

Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream $\langle a_1, a_2, ..., a_m \rangle$ of *unknown* length m

Algorithm (Reservoir Sampling)

- 1. Initially, $s \leftarrow a_1$
- 2. On seeing the t^{th} element, $s \leftarrow a_t$ with probability 1/t

Analysis:

What is the probability that $s = a_i$ at some time $t \ge i$?

$$\Pr[s = a_i] = \frac{1}{i} \cdot \left(1 - \frac{1}{i+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{t}\right)$$
$$= \frac{1}{i} \cdot \frac{i}{i+1} \cdot \dots \cdot \frac{t-1}{t} = \frac{1}{t}$$

Space: $O(k (\log n + \log m))$ bits to get k samples.

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times i appears in the stream
- The p-th frequency moment is $F_p = \big| |f| \big|_p^p = \sum_{i=1}^n f_i^p$

 F_0 is the number of nonzero entries of f (# of distinct elements)

 $F_1 = m$ (# of elements in the stream)

 $F_2 = \left| \left| f \right| \right|_2^2$ is a measure of non-uniformity used e.g. for anomaly detection in network analysis

 $F_{\infty} = \max_{i} f_{i}$ is the most frequent element

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Summary

Streaming Model

- Reservoir sampling
- Distinct Elements (approximating F_0)
- *k*-wise independent hashing