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Property Testing with Erasures

Property Tester [Rubinfeld Sudan 96, Erasure-Resilient Property Tester [Dixit
Goldreich Goldwasser Ron 98] Raskhodnikova Thakurta Varma 16]
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Property Testing with Errors

Property Tester [Rubinfeld Sudan 96, Tolerant Property Tester
Goldreich Goldwasser Ron 98] [Parnas Ron Rubinfeld 06]
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Property Testing with Errors

Property Tester [Rubinfeld Sudan 96, Tolerant Property Tester
Goldreich Goldwasser Ron 98] [Parnas Ron Rubinfeld 06]
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Relationships Between Models

Containments are strict:

e [Fischer Fortnow 05]: standard vs. tolerant

e [Dixit R Thakurta Varma 16]: standard vs. erasure-resilient
e [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

e-testable

o-erasure-resiliently s-testable

Q, g)-tolerantly testabD




Distance Approximation for Boolean Functions

[Parnas Ron Rubinfeld 06] @
X
f(x)

=D { Algorithm J —)

Goal: Output dist(f,P) + ¢
in sublinear time
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Sublinear-Time “Restoration” Models

Local Decoding
Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest
codeword with a constant number of queries per
recovered bit.

Program Checking

Input: A program P computing f correctly on most
inputs.

Requirement: Self-correct program P: for a given
input x, compute f(x) by making a few calls to P.

Local Reconstruction
Input: Function f nearly satisfying some property P
Requirement: Reconstruct function f to ensure that
the reconstructed function g satisfies P, changing
f only when necessary. For each input x, compute
g(x) with a few queries to f.




Generalization: Local Computation

[Rubinfeld Tamir Vardi Xie 2011]
e Compute the i-th character y; of a legal output y.

e |f there are several legal outputs for a given input, be
consistent with one.

e Example: maximal independent set in a graph.



Data Stream Model [ Alon Matias Szegedy 96]

B|L|A|-|B|L|A-|B|L|A-|B|L|Al-|B|L|A-|B|L|Al-|B|L|A|- >
Streammg (1) Quickly process each element
Algorithm

E (3) Quickly produice output

(2) Limited working memory

Motivation: internet traffic analysis

Model the stream as m elements from [n], e.g.,
(a,a,,...,ay) =3,573,7,5,4, ..

Goal: Compute a function of the stream, e.g., median, number of distinct
elements, longest increasing sequence.



Streaming Puzzle

‘ _// A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.
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Sampling from a Stream of Unknown Length

Warm-up: Find a uniform sample s from a stream (a4, a,, ..., a,,)
of known length m.
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Sampling from a Stream of Unknown Length

Problem: Find a uniform sample s from a stream (a4, a,, ..., @,,)
of unknown length m

‘Algorithm (Reservoir Sampling) A

1. Initially, s « a4

3. On seeing the tt" element, s « a; with probability 1/t J

Analysis:

What is the probability that s = a; at sometime t = i?

1 1 1
Pris = aq;] = (1—i+1)-...-(1—?>

i
1 t—1 1

i i+1 7t ¢t
Space: O(k (logn + logm)) bits to get k samples.
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Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n]™

e The frequency vector of the streamis f = (fq, .-, fn),
where f; is the number of times i appears in the stream

* The p-th frequency momentis F, = ||f||z = Di=1 fip

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3
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Summary

Streaming Model

e Reservoir sampling

e Distinct Elements (approximating F)
e k-wise independent hashing
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