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Sublinear Algorithms

LECTURE 6 
Last time
• Communication complexity
• Testing with adversarial erasures
Today
• Other models of computation
• Streaming

Sofya Raskhodnikova;Boston University



Property Tester [Rubinfeld Sudan 96,
   Goldreich Goldwasser Ron 98]

randomized 
algorithm
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Property Testing with Erasures

Two objects are at distance 𝜀𝜀 = they differ in an 𝜀𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

Reject with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

YES NOfar from
YES

𝜀𝜀

Erasure-Resilient Property Tester [Dixit 
Raskhodnikova Thakurta Varma 16]

• ≤ 𝛼𝛼 fraction of the input is erased 
adversarially

Don’t 
care 

Accept with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

Reject with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

Can be 
completed 
to YES

NO
Any completion 

is far from
YES

𝜀𝜀



Property Tester [Rubinfeld Sudan 96,
   Goldreich Goldwasser Ron 98]

randomized 
algorithm

3

Property Testing with Errors

Two objects are at distance 𝜀𝜀 = they differ in an 𝜀𝜀 fraction of places

Don’t 
care 

Accept with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

Reject with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

YES NOfar from
YES

𝜀𝜀

Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼𝛼 fraction of the input is wrong

Don’t 
care 

Accept with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

Reject with 
probability 
≥ 𝟐𝟐/𝟑𝟑 

YES NOfar from
YES𝜀𝜀

𝛼𝛼



Property Tester [Rubinfeld Sudan 96,
   Goldreich Goldwasser Ron 98]

randomized 
algorithm

4

Property Testing with Errors

Two objects are at distance 𝜀𝜀 = they differ in an 𝜀𝜀 fraction of places
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Tolerant Property Tester
[Parnas Ron Rubinfeld 06]

• ≤ 𝛼𝛼 fraction of the input is wrong

Don’t 
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Relationships Between Models
Containments are strict:
• [Fischer Fortnow 05]: standard vs. tolerant
• [Dixit R Thakurta Varma 16]: standard vs. erasure-resilient 
• [R Ron-Zewi Varma 19]: erasure-resilient vs. tolerant

5

ε-testable

𝛂𝛂-erasure-resiliently ε-testable

(𝛂𝛂, ε)-tolerantly testable



Distance Approximation for Boolean Functions
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[Parnas Ron Rubinfeld 06]

Goal: Output 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓,𝒫𝒫 ± 𝜀𝜀
in sublinear time

�𝜺𝜺 Algorithm

𝒙𝒙
𝒇𝒇(𝒙𝒙)

𝜺𝜺 ∈ (𝟎𝟎,𝟏𝟏)

𝒇𝒇



Sublinear-Time “Restoration” Models
Local Decoding

Program Checking

Local Reconstruction
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Input: Function 𝑓𝑓 nearly satisfying some property 𝑃𝑃
Requirement: Reconstruct function 𝑓𝑓 to ensure that 
the reconstructed function 𝑔𝑔 satisfies 𝑃𝑃, changing 
𝑓𝑓 only when necessary. For each input 𝑥𝑥, compute 
𝑔𝑔(𝑥𝑥) with a few queries to 𝑓𝑓.

𝑓𝑓

𝑃𝑃
Input: A program 𝑃𝑃 computing 𝑓𝑓 correctly on most 
inputs.
Requirement: Self-correct program 𝑃𝑃: for a given 
input 𝑥𝑥, compute 𝑓𝑓(𝑥𝑥) by making a few calls to P.

Input: A slightly corrupted codeword
Requirement: Recover individual bits of the closest 
codeword with a constant number of queries per 
recovered bit.

𝑓𝑓



Generalization: Local Computation
[Rubinfeld Tamir Vardi Xie 2011]
• Compute the 𝑖𝑖-th character 𝑦𝑦𝑖𝑖 of a legal output 𝑦𝑦.
• If there are several legal outputs for a given input, be 

consistent with one.
• Example: maximal independent set in a graph.
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Data Stream Model [Alon Matias Szegedy 96]

Motivation: internet traffic analysis

Model the stream as 𝑚𝑚 elements from [𝑛𝑛], e.g.,
𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 = 3, 5, 3, 7, 5, 4, … 

Goal: Compute a function of the stream, e.g., median, number of distinct 
elements, longest increasing sequence.
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B L A - B L A - B L A - B L A - B L A - B L A - B L A -

(2)  Limited working memory
(3) Quickly produce output

(1) Quickly process each elementStreaming 
Algorithm

Based on Andrew McGregor’s slides: http://www.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf



Streaming Puzzle
A stream contains 𝑛𝑛 − 1 distinct elements from 𝑛𝑛  in arbitrary order. 

     Problem: Find the missing element, using 𝑂𝑂(log 𝑛𝑛) space.
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Sampling from a Stream of Unknown Length
Warm-up: Find a uniform sample 𝑠𝑠 from a stream 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚  
of known length 𝑚𝑚.
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Sampling from a Stream of Unknown Length
Problem: Find a uniform sample 𝑠𝑠 from a stream 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚  
of unknown length 𝑚𝑚

Analysis:

What is the probability that 𝑠𝑠 = 𝑎𝑎𝑖𝑖 at some time 𝑡𝑡 ≥ 𝑖𝑖?

Pr 𝑠𝑠 = 𝑎𝑎𝑖𝑖 =
1
𝑖𝑖
⋅ 1 −

1
𝑖𝑖 + 1

⋅ … ⋅ 1 −
1
𝑡𝑡

 =
1
𝑖𝑖
⋅

𝑖𝑖
𝑖𝑖 + 1

⋅ … ⋅
𝑡𝑡 − 1
𝑡𝑡

=
1
𝑡𝑡

Space: 𝑂𝑂(𝑘𝑘 log𝑛𝑛 + log𝑚𝑚)  bits to get 𝑘𝑘 samples.
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Algorithm (Reservoir Sampling)

1. Initially,  𝑠𝑠 ←  𝑎𝑎1
2. On seeing the 𝑡𝑡th element, 𝑠𝑠 ← 𝑎𝑎𝑡𝑡 with probability 1/𝑡𝑡



Frequency Moments Estimation
Input: a stream 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 ∈ 𝑛𝑛 𝑚𝑚

• The frequency vector of the stream is 𝑓𝑓 = (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛),                              
where 𝑓𝑓𝑖𝑖 is the number of times 𝑖𝑖 appears in the stream

• The 𝑝𝑝-th frequency moment is 𝐹𝐹𝑝𝑝 = 𝑓𝑓 𝑝𝑝
𝑝𝑝 = ∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖

𝑝𝑝

 𝐹𝐹0 is the number of nonzero entries of 𝑓𝑓 (# of distinct elements)
 𝐹𝐹1 = 𝑚𝑚 (# of elements in the stream)

 𝐹𝐹2 = 𝑓𝑓 2
2

 is a measure of non-uniformity                                              

            used e.g. for anomaly detection in network analysis
 𝐹𝐹∞ = max

𝑖𝑖
𝑓𝑓𝑖𝑖 is the most frequent element

Goal: Estimate 𝐹𝐹𝑝𝑝 up to a multiplicative factor (1 ± 𝜀𝜀) with probability ≥ 2/3

27



Summary
Streaming Model
• Reservoir sampling
• Distinct Elements (approximating 𝐹𝐹0)

•  𝑘𝑘-wise independent hashing
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