
2/25/2025

Sublinear Algorithms

LECTURE 7
Last time
• Tolerant testing and distance estimation

• Online erasure-resilient testing

• Other models of computation

• Streaming

Today
• Project discussion

• Counting the number of distinct elements in

a stream

Sofya Raskhodnikova;Boston University

Sign up for project meetings (next week), scribing, grading

Streaming Puzzle

A stream contains 𝑛 − 1 distinct elements from 𝑛 in arbitrary order.

 Problem: Find the missing element, using 𝑂(log 𝑛) space.

2

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Output the number of distinct elements in the stream.

Exact solutions:

• Store the stream: O(𝑚 log 𝑛) bits.

• Store 𝑛 bits, indicating whether each domain element has appeared.

Known lower bounds:

• Every deterministic algorithm requires Ω(𝑚) bits
(even for a constant-factor approximation).

• Every exact algorithm (even randomized) requires Ω 𝑛 bits.

Need to use both randomization and approximation to get polylog(𝑚, 𝑛) space

3

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

• Studied by [Flajolet Martin 83, Alon Matias Szegedy 96,...]

• Today: 𝑂(𝜀−2 log 𝑛) space algorithm
[Bar−Yossef Jayram Kumar Sivakuar Trevisan 02]

• Optimal: 𝑂(𝜀−2 + log 𝑛) space algorithm [Kane Nelson Woodruff 10]

4

Counting Distinct Elements

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

Analysis:

• Algorithm uses 𝑂(𝜀−2 log 𝑛) bits of space (not accounting for storing ℎ).

• We'll show: estimate ǁ𝑟 has good accuracy with reasonable probability.

5

Algorithm

1. Apply a random hash function ℎ ∶ 𝑛 → [𝑛] to each element.

2. Compute 𝑋, the 𝑡-th smallest value of the hash seen where 𝑡 = 10 ⁄ 𝜀2.

3. Return ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋 as estimate for 𝑟, the number of distinct elements.

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥ 2/3

Counting Distinct Elements: Analysis

Proof: Suppose the distinct elements are 𝑒1, … , 𝑒𝑟

• Overestimation:

Pr ǁ𝑟 ≥ 1 + 𝜀 𝑟 = Pr
𝑡 ⋅ 𝑛

𝑋
≥ 1 + 𝜀 𝑟 = Pr 𝑋 ≤

𝑡 ⋅ 𝑛

𝑟 1 + 𝜀

• Let 𝑌𝑖 = 𝟙 ℎ(𝑒𝑖) ≤
𝑡⋅𝑛

𝑟 1+𝜀
 and 𝑌 = σ𝑖=1

𝑟 𝑌𝑖

𝔼 𝑌 = 𝑟 ⋅ 𝔼 𝑌1 = 𝑟 ⋅
𝑡

𝑟 1 + 𝜀
=

𝑡

1 + 𝜀

Var 𝑌 = Var ෍

𝑖=1

𝑟

𝑌𝑖 = ෍

𝑖=1

𝑟

Var 𝑌𝑖

≤ ෍

𝑖=1

𝑟

𝔼 𝑌𝑖
2 = ෍

𝑖=1

𝑟

𝔼 𝑌𝑖 = 𝔼 𝑌

6

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥ 2/3 𝑋: 𝑡-th smallest hashed value

 𝑡 = 10 ⁄ 𝜀2

ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋

𝔼[𝑌] =
𝑡

1 + 𝜀
Var 𝑌 ≤ 𝔼[𝑌]

Counting Distinct Elements: Analysis

Proof: Suppose the distinct elements are 𝑒1, … , 𝑒𝑟

• Overestimation:

Pr ǁ𝑟 ≥ 1 + 𝜀 𝑟 = Pr
𝑡 ⋅ 𝑛

𝑋
≥ 1 + 𝜀 𝑟 = Pr 𝑋 ≤

𝑡 ⋅ 𝑛

𝑟 1 + 𝜀

• Let 𝑌𝑖 = 𝟙 ℎ(𝑒𝑖) ≤
𝑡⋅𝑛

𝑟 1+𝜀
 and 𝑌 = σ𝑖=1

𝑟 𝑌𝑖

Pr 𝑋 ≤
𝑡 ⋅ 𝑛

𝑟 1 + 𝜀
= Pr 𝑌 ≥ 𝑡 = Pr 𝑌 ≥ 1 + 𝜀 𝔼 𝑌

• By the Chebyshev’s inequality, for 𝜀 ≤ 2/3,

Pr 𝑌 ≥ 1 + 𝜀 𝔼 𝑌 ≤
Var[𝑌]

𝜀 ⋅ 𝔼 𝑌 2
≤

1

𝜀2𝔼 𝑌
=

1 + 𝜀

𝜀2 ⋅ 𝑡
=

1 + 𝜀

10
≤

1

6

• Underestimation: A similar analysis shows Pr ǁ𝑟 ≤ 1 − 𝜀 𝑟 ≤
1

6
7

Claim. Pr ǁ𝑟 − 𝑟 ≤ 𝜀𝑟 ≥ 2/3 𝑋: 𝑡-th smallest hashed value

 𝑡 = 10 ⁄ 𝜀2

ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋

𝔼[𝑌] =
𝑡

1 + 𝜀
Var 𝑌 ≤ 𝔼[𝑌]

Removing the Random Hashing Assumption

Idea: Use limited independence

• A family ℋ = {ℎ: 𝑎 → 𝑏 } of hash functions is 𝑘-wise independent if for
all distinct 𝑥1, … , 𝑥𝑘 ∈ [𝑎] and all 𝑦1, … , 𝑦𝑘 ∈ 𝑏 ,

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑦1, … , ℎ 𝑥𝑘 = 𝑦𝑘 =
1

𝑏𝑘

 Note: a uniformly random family is 𝑘-wise independent for all 𝑘

• Observations: For 𝑥1, … , 𝑥𝑘 as above,

1. ℎ(𝑥1) is uniform over 𝑏 ;

2. ℎ 𝑥1 , … , ℎ(𝑥𝑘) are mutually independent.

8Based on Sepehr Assadi’s lecture notes for CS 514 (Lecture 7, 03/20/20) at Rutgers

Construction of 𝒌-wise Independent Family

Idea: Use limited independence

• A family ℋ = {ℎ: 𝑎 → 𝑏 } of hash functions is 𝑘-wise independent if for
all distinct 𝑥1, … , 𝑥𝑘 ∈ [𝑎] and all 𝑦1, … , 𝑦𝑘 ∈ 𝑏 ,

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑦1, … , ℎ 𝑥𝑘 = 𝑦𝑘 =
1

𝑏𝑘

• Space to store ℎ is 𝑂 𝑘 log 𝑝

• For arbitrary 𝑎, 𝑏, need 𝑂 𝑘 ⋅ log 𝑎 + log 𝑏 space.

9Based on Sepehr Assadi’s lecture notes for CS 514 (Lecture 7, 03/20/20) at Rutgers

Construction of 𝑘-wise Independent Family of Hash Functions

1. Let 𝑝 be a prime.

2. Consider the set of polynomials of degree 𝑘 − 1 over 𝔽𝑝

ℋ = {ℎ: {0, … , 𝑝 − 1} → 0, … , 𝑝 − 1
 ℎ 𝑥 = 𝑐𝑘−1𝑥𝑘−1 + ⋯ + 𝑐1𝑥 + 𝑐0, with 𝑐0, … , 𝑐𝑘−1 ∈ 𝔽𝑝}

3. To sample ℎ ∈ ℋ, sample 𝑐0, … , 𝑐𝑘−1 ∈ 𝔽𝑝 u.i.r.

Counting Distinct Elements: Final Algorithm

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + 𝜀) with probability ≥ 2/3

Analysis:

• Algorithm uses 𝑂(𝜀−2 log 𝑛) bits of space

• Our correctness analysis applies.

10

Algorithm

1. Sample a hash function ℎ ∶ 𝑛 → [𝑛] from a 2-wise independent
family and apply ℎ to each element

2. Compute 𝑋, the 𝑡-th smallest value of the hash seen where 𝑡 = 10 ⁄ 𝜀2

3. Return ǁ𝑟 = 𝑡 ⋅ 𝑛/𝑋 as estimate for 𝑟, the number of distinct elements.

Frequency Moments Estimation

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

• The 𝑝-th frequency moment is 𝐹𝑝 = 𝑓
𝑝

𝑝
= σ𝑖=1

𝑛 𝑓𝑖
𝑝

 𝐹0 is the number of nonzero entries of 𝑓 (# of distinct elements)

 𝐹1 = 𝑚 (# of elements in the stream)

 𝐹2 = 𝑓
2

2
 is a measure of non-uniformity

 used e.g. for anomaly detection in network analysis

 𝐹∞ = max
𝑖

𝑓𝑖 is the most frequent element

Goal: Estimate 𝐹𝑝 up to a multiplicative factor (1 ± 𝜀) with probability ≥ 2/3

11

Approximate Counting: Estimating 𝑭𝟏

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

Warm-up: Compute 𝑚. How much space do you need?

Goal: Estimate 𝑚 up to a multiplicative factor (1 ± 𝜀) with probability ≥
2

3

Today: 𝑂(𝜀−2 log log 𝑚) space algorithm [Morris 78]

• Intuitively, 𝑋 is keeping track of log 𝑚 + 1

• Intuitively, expected increment to 2𝑋 at each step is 2𝑋 ⋅ 2−𝑋 = 1.

12

Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return ෥𝑚 = 2𝑋 − 1.

Based on Jelani Nelson’s lecture notes: https://www.sketchingbigdata.org/fall20/lec/notes.pdf

Morris Algorithm: Analysis

• Let 𝑋𝑖 represent 𝑋 after 𝑖 elements.

• 2𝑋0 = 1

• 𝔼 2𝑋𝑖 = 𝔼 𝔼 2𝑋𝑖 𝑋𝑖−1

 = 𝔼 2𝑋𝑖−1+1 ⋅ 2−𝑋𝑖−1 + 2𝑋𝑖−1 ⋅ (1 − 2−𝑋𝑖−1)

 = 𝔼 2 + 2𝑋𝑖−1 − 1 = 𝔼 2𝑋𝑖−1 + 1 = 𝑖 + 1

13

Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return ෥𝑚 = 2𝑋 − 1.

By the compact form of the Law of Total Expectation

𝔼[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2

Variance Calculation

14

Claim. Var 2𝑋 ≤ 𝑚2/2

Morris Algorithm: Analysis

• Let 𝑋𝑖 represent 𝑋 after 𝑖 elements.

• 2𝑋0 = 1

• 𝔼 2𝑋𝑖 = 𝔼 𝔼 2𝑋𝑖 𝑋𝑖−1

 = 𝔼 2𝑋𝑖 ⋅ 2−𝑋𝑖−1 + 2𝑋𝑖−1 ⋅ (1 − 2−𝑋𝑖−1)

 = 𝔼 2 + 2𝑋𝑖−1 − 1 = 𝔼 2𝑋𝑖−1 + 1 = 𝑖 + 1

• By Chebyshev, Pr | ෥𝑚 − 𝑚| ≥ 𝜀𝑚 ≤
Var[෥𝑚]

𝜀⋅𝑚 2 ≤
1

2𝜀2

• Idea: to reduce variance, keep 𝑡 independent counters and average their
estimates.

15

Morris Algorithm (initial version)

1. Initialize 𝑋 ← 0

2. For each element, increment X by 1 w. p. 2−𝑋

3. Return ෥𝑚 = 2𝑋 − 1.

By the compact form of the Law of Total Expectation

𝔼[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2

Morris Algorithm: Improvement

• Then 𝐸[෥𝑚] remains 𝑚

• But Var ෥𝑚 is
1

t
⋅ Var 2𝑋

• By Chebyshev, Pr | ෥𝑚 − 𝑚| ≥ 𝜀𝑚 ≤
Var[෥𝑚]

𝜀⋅𝑚 2 ≤
1

2𝑡𝜀2

• It is sufficient to set 𝑡 = 𝑂
1

𝜀2

16

Morris Algorithm

1. Initialize 𝑡 independent counters 𝑋 ← 0

2. For each element, increment each X by 1 w. p. 2−𝑋

3. Return ෥𝑚 = the average of 2𝑋 − 1 over all counters

𝔼[2𝑋] = 𝑚 + 1

Claim. Var 2𝑋 ≤ 𝑚2/2

Summary

Streaming Model

• Reservoir sampling

• Distinct Elements (approximating 𝐹0)

• 𝑘-wise independent hashing

• Morris counter

17

	Slide 1: Sublinear Algorithms
	Slide 2: Streaming Puzzle
	Slide 3: Counting Distinct Elements
	Slide 4: Counting Distinct Elements
	Slide 5: Counting Distinct Elements
	Slide 6: Counting Distinct Elements: Analysis
	Slide 7: Counting Distinct Elements: Analysis
	Slide 8: Removing the Random Hashing Assumption
	Slide 9: Construction of bold italic k-wise Independent Family
	Slide 10: Counting Distinct Elements: Final Algorithm
	Slide 11: Frequency Moments Estimation
	Slide 12: Approximate Counting: Estimating bold italic cap F sub bold 1
	Slide 13: Morris Algorithm: Analysis
	Slide 14: Variance Calculation
	Slide 15: Morris Algorithm: Analysis
	Slide 16: Morris Algorithm: Improvement
	Slide 17: Summary

