Sublinear Algorithms

LLECTURE /

_ast time

» Tolerant testing and distance estimation
* Online erasure-resilient testing

 Other models of computation

» Streaming

Today

* Project discussion
 Counting the number of distinct elements In

a stream
Siigm wp for project meetings (next week), scribing, grading

2/25/2025

Sofya Raskhodnikova;Boston University

Streaming Puzzle

. // A stream contains n — 1 distinct elements from [n] in arbitrary order.
Problem: Find the missing element, using O (log n) space.

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n|™
Goal: Output the number of distinct elements in the stream.

Exact solutions:
e Store the stream: O(mlogn) bits.
e Store n bits, indicating whether each domain element has appeared.

Known lower bounds:

e Every deterministic algorithm requires Q0(m) bits
(even for a constant-factor approximation).

e Every exact algorithm (even randomized) requires Q(n) bits.

Need to use both randomization and approximation to get polylog(m, n) space

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n|™

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + €) with probability = 2/3

e Studied by [Flajolet Martin 83, Alon Matias Szegedy 96,...]

e Today: 0(¢~?logn) space algorithm
[Bar-Yossef Jayram Kumar Sivakuar Trevisan 02]

e Optimal: 0(e72 + logn) space algorithm [Kane Nelson Woodruff 10]

Counting Distinct Elements

Input: a stream (a4, a,, ..., a,,) € [n]™
Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + &) with probability = 2/3

/Algorithm)
1. Apply a random hash function h : [n] — [n] to each element.

2. Compute X, the t-th smallest value of the hash seen where t = 10 / £2.
3. Return? =¢- n/X as estimate for r, the number of distinct elements. 4

Analysis:
e Algorithm uses O(e7? logn) bits of space (not accounting for storing h).
e We'll show: estimate 7 has good accuracy with reasonable probability.

[Claim. Pr(|f —r| < er] =22/3]

Counting Distinct Elements: Analysis

[Claim. Pr[|[f—7r|<er]=> 2/3} X: t-th smallest hashed value
- 2
Proof: Suppose the distinct elements are ey, ..., e, f L :O //i(
r = n
* Overestimation:
Pr|7 = 1+£r—Pr[—> 1+]—P
= (1+e) (1+or r[<
o let; = 1|h(e) < 7is|and Y = X7 !
[l)] ElY] =377
- ¢ Var[Y] < E[Y]

E[Y] =r-E[Y;] =71

r(1+e)_1+£

ZVar
Z IE[YZ] Z E[Y;

Var|[Y] = Var

Counting Distinct Elements: Analysis

X: t-th smallest hashed value

[Claim. Pr[|Ff —r| < er] = 2/3}

- t = 2
Proof: Suppose the distinct elements are eq, ..., e, A
r=t-n/X
e Overestimation:
t-n

Pr[# = (1 + &)r] = Pr [— > (1+ 8)7”] = Pr [X r(1+ ¢)

) LetY—ﬂ[h(el)_ o)]andY Nie IE[Y]=1_T_€
Var[Y] < E[Y]

] =Pr[Y > t] = Pr[Y >(1+ S)IE[Y]J

t'n

Pr[XSm

e By the ChebysheV’s inequality, for e < 2/3,
Var[Y] 1 1+e 1+e¢

Priy 2 (1 + O] < e < gy~ 6 = 10

IA
N =

~</e Underestimation: A similar analysis shows Pr[7 < (1 — &)r] < %

Removing the Random Hashing Assumption

Idea: Use limited independence

o Afamily H = {h:[a] — [b]} of hash functions is k-wise independent if for
all distinct x4, ..., x;, € [a] and all y4, ..., yx € |b],

Pr [h(x1) = ¥1, . hCx) = Yl = 7
Note: a uniformly random family is k-wise independent for all k
e Observations: For x4, ..., X; as above,
1. h(x,) is uniform over [b];

2. h(xy), ..., h(x}) are mutually independent.

Construction of k-wise Independent Family

Idea: Use limited independence

o Afamily H = {h:[a] — [b]} of hash functions is k-wise independent if for
all distinct x4, ..., x;, € [a] and all y4, ..., yx € |b],

1
Pr[aGe) =1, h06) = il = 73

fonstruction of k-wise Independent Family of Hash Functions \

1. Letp beaprime.

2. Consider the set of polynomials of degree k — 1 over F,,
H ={h:{0,..,p—1} > {0,...,p — 1}
h(x) = g X1 + -+ c1x + ¢, with ¢y, ..., ci—1 € Fp)

Q To sample h € H, sample ¢y, ..., Cr—1 € [F, u.i.r. /

e Spacetostore his O(klogp)
e For arbitrary a, b, need O(k - (loga + log b)) space.

Counting Distinct Elements: Final Algorithm

Input: a stream (a4, a,, ..., a,,) € [n|™

Goal: Estimate the number of distinct elements in the stream up to a
multiplicative factor (1 + &) with probability = 2/3

mgorithm N\

1. Sample a hash function h : [n] — [n] from a 2-wise independent
family and apply h to each element

2. Compute X, the t-th smallest value of the hash seen where t = 10 / &2

Q Return 7 =t - n/X as estimate for r, the number of distinct elements. 4

Analysis:
e Algorithm uses O(e7?logn) bits of space
e Qur correctness analysis applies.

10

Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3

11

Approximate Counting: Estimating F4

Input: a stream (a4, a,, ..., a,,) € [n]™
Warm-up: Compute m. How much space do you need?

Goal: Estimate m up to a multiplicative factor (1 + €) with probability > %

Today: O(¢~%loglogm) space algorithm [Morris 78]

Morris Algorithm (initial version))
1. Initialize X « 0
2. For each element, increment X by 1 w. p. 27X

\3. Return i = 2% — 1.)

e Intuitively, X is keeping track of log(m + 1)
e Intuitively, expected increment to 2% at each step is 2% - 274 = 1.

12

Morris Algorithm: Analysis

Morris Algorithm (initial version))
1. Initialize X < 0
For each element, increment X by 1 w. p. 27%

2.
\3. Returnii = R — | p

e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
« E[2%] = E[E[2% | X;_4]]

— [E[ZXi—1+1 .2~ Xi—1 4 2Xi—1 . (]_ _ Z_Xi—l)]

= E[2 + 2%i-1 — 1] = E[2%i1]+ 1 =i+ 1

E[2X]=m + 1

[Claim. Var[2%] < m?/2]

13

Variance Calculation

[Claim. Var[2X] < m?/2
Proof . Var[257 =EL@°F)- ELRD" 6y defimtion rmrionce
- &{ QzXc] — (4) %\a oun c,alw(qi'(w of "
ECIQ.XLJ -l El 22)«‘ Xi-fﬂ by compack Form D'FEL;\MOFTo“}aﬁk

(xi-l+') - -1 QXL.-J "'X(,'—l
- Lo SR (R ﬂ
4 Xieg i
CE[2, gt o o]
. . X{-l
= [E[2 1XH ¥ QQ‘X“'J: 3C+EY_D}]

i [(L+1) n
o s »(1ras 0= 1 by

Y 1)((} _ ([--} I)L
L4 20 2t -2
L . <.

N TP
2 PR

Rocoll thok X=Xm . 14

ool

Morris Algorithm: Analysis

Morris Algorithm (initial version))
1. Initialize X < 0
2. Foreach element, increment X by 1 w. p. 27%
\3. Returniii = 2% — 1.)
e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
o E[2%] = E[E[2% | X;_,]|
E[2X]=m + 1

= E[2%i - 27%i-1 4 241 . (1 — 27%i-1)]
= E[2 4+ 2%i-1 — 1] = E[2%i-1]+ 1 =i+ 1

[Claim. Var[2%] < m?/2]

e By Chebyshev, Pr[|m — m| = em] <

e |dea: to reduce variance, keep t independent counters and average their

estimates.
15

Morris Algorithm: Improvement

Morris Algorithm N

1. |Initialize t independent counters X < 0
For each element, increment each X by 1 w. p. 27X

e Then E[m] remains m
e ButVar[m]is % - Var[2%]

E[2X]=m+ 1

[Claim. Var[2%] < m?/2]

Var[m] 1

e By Chebyshev, Pr[|m — ml = Em] < (e:m)?2 = 2te?

. « . 1
e |tissufficienttosett =0 (;)

2.
\3. Return 711 = the average of 2% — 1 over all counters 4

16

Summary

Streaming Model

Reservoir sampling

Distinct Elements (approximating Fj)
k-wise independent hashing

Morris counter

17

	Slide 1: Sublinear Algorithms
	Slide 2: Streaming Puzzle
	Slide 3: Counting Distinct Elements
	Slide 4: Counting Distinct Elements
	Slide 5: Counting Distinct Elements
	Slide 6: Counting Distinct Elements: Analysis
	Slide 7: Counting Distinct Elements: Analysis
	Slide 8: Removing the Random Hashing Assumption
	Slide 9: Construction of bold italic k-wise Independent Family
	Slide 10: Counting Distinct Elements: Final Algorithm
	Slide 11: Frequency Moments Estimation
	Slide 12: Approximate Counting: Estimating bold italic cap F sub bold 1
	Slide 13: Morris Algorithm: Analysis
	Slide 14: Variance Calculation
	Slide 15: Morris Algorithm: Analysis
	Slide 16: Morris Algorithm: Improvement
	Slide 17: Summary

