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Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3



Approximate Counting: Estimating F4

Input: a stream (a4, a,, ..., a,,) € [n]™
Warm-up: Compute m. How much space do you need?

Goal: Estimate m up to a multiplicative factor (1 + €) with probability > %

Today: O(¢~%loglogm) space algorithm [Morris 78]

Morris Algorithm (initial version) )
1. Initialize X « 0
2. For each element, increment X by 1 w. p. 27X

\3. Return7i = 2% —1 )

e Intuitively, X is keeping track of log(m + 1)
e Intuitively, expected increment to 2% at each step is 2% - 274 = 1.



Morris Algorithm: Analysis

Morris Algorithm (initial version) )
1. Initialize X < 0
For each element, increment X by 1 w. p. 27%

2.
\3. Returnii = s — il p

e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
« E[2%] = E[E[ 2% | X;_4 ]]

— [E[ZXi—1+1 .2~ Xi—1 4 2Xi—1 . (]_ _ Z_Xi—l)]

= E[2 + 2%i-1 — 1] = E[2%i1]+ 1 =i+ 1

E[2X]=m + 1

[Claim. Var[2%] < m?/2 ]




Variance Calculation
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Morris Algorithm: Analysis

Morris Algorithm (initial version) )
1. Initialize X < 0
2. Foreach element, increment X by 1 w. p. 27%
\3. Returniii = 2% — 1. )
e Let X; represent X after i elements.
e 2% =1 By the compact form of the Law of Total Expectation
o E[2%] = E[E[2% | X;_, ]|
E[2X]=m + 1

= E[2%i - 27%i-1 4 241 . (1 — 27%i-1)]
= E[2 4+ 2%i-1 — 1] = E[2%i-1]+ 1 =i+ 1

[Claim. Var[2%] < m?/2 ]

e By Chebyshev, Pr[|m — m| = em] <

e |dea: to reduce variance, keep t independent counters and average their
estimates.



Morris Algorithm: Improvement

Morris Algorithm N

1. |Initialize t independent counters X < 0
2. For each element, increment each X by 1 w. p. 27%
\3. Return 711 = the average of 2% — 1 over all counters 4

e Then E[m] remains m
e ButVar[m]is % - Var[2%]

E[2X]=m+ 1

[Claim. Var[2%] < m?/2 ]

Var[m] 1

e By Chebyshev, Pr[|m — ml = Em] < (e:m)?2 = 2te?

. « . 1
e |tissufficienttosett =0 (;)




Frequency Moments Estimation

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

e The p-th frequency moment is Fp = ||f||5 = ?zl fl-p

F, is the number of nonzero entries of f (# of distinct elements)
F;, = m (# of elements in the stream)

2
F, = ||f||2 is a measure of non-uniformity

used e.g. for anomaly detection in network analysis

F, = max f; is the most frequent element
l

Goal: Estimate F, up to a multiplicative factor (1 £ €) with probability = 2/3



Estimating F, [Alon Matias Szegedy 96]

Input: a stream (a4, a,, ..., a,,) € [n|™

Goal: Estimate F, up to a multiplicative factor (1 & ¢) with probability >

wilN

Today: 0(¢~% (logm + logn)) space algorithm
/AMS Algorithm (initial version) N\

Sample a hash function h : [n] - {—1,1} from a 4-wise independent family
Initialize X « 0

For each element a, increment X by h(a) < Add or subtract 1
Return X 2. 4

(A woN R

e letZ =(z4,...,2,), Where z; = h(i)
e Then,attheend, X =Z - f = Y Zifi

e Let’s compute the expectation and variance of X2
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The expectation of X?

/AMS Algorithm (initial version) N\

1. Sample a hash function h : [n] = {—1,1} from a 4-wise independent family
2. |Initialize X < 0
3. Foreach element a, increment Xby h(a) < Addorsubtract 1
\4. Return X2 4
e letZ =(z4,...,2,), Where z; = h(i) E[X?] = F,

Then, attheend, X =Z - f = Zle[n] Zifi

X2=<z Zl-fl> z Zzlzjflf]
i€[n]

lE n
[E[XZ] — z E[z; ]] fzf] by linearity of expectation
/ Z;’s are
= z Elz fz Z Efz] 1fif;  2-wise independent
%]
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The variance of X?

/AMS Algorithm (initial version) N\
1. Sample a hash function h : [n] = {—1,1} from a 4-wise independent family
2. Initialize X < 0
3. Foreach element a, increment Xby h(a) < Addorsubtract 1

\4. Return X2 4

e letZ =(z4,...,2,), Where z; = h(i) E[X?] = F,

Then, attheend, X = Z - f = Xiemn) Zifi
Var[X?] = E[X*] — (E[X?])?

— Z E(zzizx2s] fif; fufe — F5

by linearity of expectation

i,j,kLE[n
=2E i +6ZIE ﬁf] ~zgsare
i<j 4-wise independent
Zﬁ +6zf‘ff_F2<4Zflff < 2F; 22 =1
i<j i<j
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Estimating F, [Alon Matias Szegedy 96]

/IAMS Algorithm :

1.
2.

t « 20/&? Run t copies of initial algorithm and average the results

Sample t independent hash functions h;: [n] - {—1,1} from a 4-wise
independent family

Initialize t counters X; <« 0
For each element a, increment each X; by h;(a)

1
Return Y = < ¥;c ¢ X7 /

We proved: E|X?| = F, and Var|X?| < 2F7
Then E[Y] = E[X?] = F, and Var[Y] = %Var[XiZ] < % F2 X7 are independent

Correctness: Pr[|Y — F,| = - F,] =Pr[|Y — E[Y]| = ¢ F;]
Var[Y] 2F% 1
< < =
(e-F,)? " t-e2-Ff 10
Space: O(tlogn) to store hash functions + O(tlog m) to store X;’s

1
0 (8—2 (logn + log m)) 13

Chebyshev




General Technique: Linear Sketching

e A sketching algorithm stores a random matrix Z € RY™*™ where t < n and
computes projection Zf of the frequency vector f.

Z x [ =

e Zf can be computed incrementally:
— Suppose we have a sketch Zf of the current frequency vector f.
— If we see an occurrence of i, the new frequency vectoris f' = f + e;.
— We update the sketch by adding column i of Z to Zf : f_|_
Zf' = Z(f + e) = Zf + Ze; = Zf + (i-th column of Z)

e Inthe AMS algorithm, Z was a matrix of -1s and 1s,
with each row chosen independently from a 4-wise independent family
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General Technique: Linear Sketching

e A sketching algorithm stores a random matrix Z € RY™*™ where t < n and
computes projection Zf of the frequency vector f.

Z x [ =

e Zf can be computed incrementally:
— Suppose we have a sketch Zf of the current frequency vector f.
— If we see an occurrence of i, the new frequency vectoris f' = f + e;.
— We update the sketch by adding column i of Z to Zf : f_|_
Zf' = Z(f + e) = Zf + Ze; = Zf + (i-th column of Z)

e In general: Need to chose the random matrix so that
— relevant properties of f can be estimated with high probability from Zf
— Z can be stored efficiently
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Multipurpose Sketches: Problems

Input: a stream (a4, a,, ..., a,,) € [n|™

e The frequency vector of the streamis f = (fy, ..., fn),
where f; is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries
e Point Query: For i € [n], estimate f;

e Range Query: Fori,j € [n], estimate f; + fiy1 +... 1+ f;

* Quantile Query: For ¢ € [0, 1], find j with f; + ...+ f; = ¢pm

e Heavy Hitters Query: For ¢ € [0, 1], find all i with f; > ¢m.

Desired accuracy: +em with error probability 6
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Initial Solution to Point Queries

e We could maintain the whole frequency vector (fy, ..., f;,)
e Then, on query i, we can output f;
ldea: Group counts for some numbers together

@ & & @ © &6 &6 ©6 © 6 ® @

v ¥ ¥ ¥

If i falls into bucket j, then f; < ¢;.

/Point Query Algorithm (initial version) Y

Sample a hash function h : [n] — [b] from a 2-wise independent family

Initialize counters ¢4, ..., ¢, t0 0
For each element a, increment ¢y, by 1.

1
2
3
\4. To answer a point query i, return ¢y ). BT IeE et e 4
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