Sublinear Algorithms

LECTURE 8

Last time

- Streaming
- Distinct Elements
- *k*-wise independent hash functions **Today**
- Approximate counting
- Estimation of the 2nd moment
- Linear sketching

Sign up for project meetings, scribing, grading on Piazza

Sofya Raskhodnikova; Boston University

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times *i* appears in the stream
- The *p*-th frequency moment is $F_p = ||f||_p^p = \sum_{i=1}^n f_i^p$

 $F_{0} \text{ is the number of nonzero entries of } f \text{ (# of distinct elements)}$ $F_{1} = m \text{ (# of elements in the stream)}$ $F_{2} = \left| \left| f \right| \right|_{2}^{2} \text{ is a measure of non-uniformity}$ used e.g. for anomaly detection in network analysis $F_{\infty} = \max_{i} f_{i} \text{ is the most frequent element}$

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Approximate Counting: Estimating F₁

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Warm-up: Compute *m*. How much space do you need?

Goal: Estimate m up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$

Today: $O(\varepsilon^{-2} \log \log m)$ space algorithm [Morris 78]

Morris Algorithm (initial version)

```
1. Initialize X \leftarrow 0
```

- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$
- Intuitively, X is keeping track of log(m + 1)
- Intuitively, expected increment to 2^X at each step is $2^X \cdot 2^{-X} = 1$.

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$\mathbb{E}[2^{X_i}] \stackrel{\bullet}{=} \mathbb{E}\left[\mathbb{E}[2^{X_i} \mid X_{i-1}]\right]$$

= $\mathbb{E}[2^{X_{i-1}+1} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
= $\mathbb{E}[2 + 2^{X_{i-1}} - 1] = \mathbb{E}[2^{X_{i-1}}] + 1 = i + 1$

Claim. $Var[2^X] \le m^2/2$

Variance Calculation

 $\operatorname{Var}[2^X] \le m^2/2$ Claim. by definition of variance **Proof**: $Var[2^{x_i}] = \mathbb{E}[(2^{x_i})^2] - \mathbb{E}[2^{x_i}]^2$ by our calculation of $= \left[\left[2^{2\chi_i} \right] - (i+1)^2 \right]$ expectation $\mathbb{E}\left[2^{2^{X_i}}\right] = \mathbb{E}\left[\mathbb{E}\left[2^{2^{X_i}} | X_{i-i}\right]\right] \qquad \text{by compact form of Low of Total} \\ \underset{\text{Expectation}}{\overset{\text{by compact form of Low of Total}}$ $= \left[\left[2^{2(X_{i-1}+1)}, 2^{-X_{i-1}} + 2^{2X_{i-1}} (1-2^{-X_{i-1}}) \right] \right]$ $= \mathbb{E} \left[2^{\times i-1+2} + 2^{2 \times i-1} - 2^{\times i-1} \right]$ $= \mathbb{E} \left[3 \cdot 2^{X_{i-1}} + 2^{2X_{i-1}} \right] = 3i + \mathbb{E} \left[2^{2X_{i-1}} \right]$ $= [+3(1+2+...+i) = [+3i\frac{(i+1)}{2}$ by induction $Var[2^{X_i}] = E[2^{2X_i}] - (i+1)^2$ $= \frac{1}{2} + \frac{3}{2}i^{2} + \frac{3}{2}i - i^{2} - 2i - 1$ $= \frac{12}{2} - \frac{1}{2} + \frac{3}{2}i^{2} + \frac{3}{2}i - \frac{1}{2}i^{2}$ Recall that X=Xm. 6

Morris Algorithm: Analysis

Morris Algorithm (initial version)

- 1. Initialize $X \leftarrow 0$
- 2. For each element, increment X by 1 w. p. 2^{-X}
- 3. Return $\widetilde{m} = 2^X 1$.
- Let X_i represent X after i elements.
- $2^{X_0} = 1$ By the compact form of the Law of Total Expectation

•
$$\mathbb{E}[2^{X_i}] \stackrel{\bullet}{=} \mathbb{E}\left[\mathbb{E}[2^{X_i} \mid X_{i-1}]\right]$$

= $\mathbb{E}[2^{X_i} \cdot 2^{-X_{i-1}} + 2^{X_{i-1}} \cdot (1 - 2^{-X_{i-1}})]$
= $\mathbb{E}[2 + 2^{X_{i-1}} - 1] = \mathbb{E}[2^{X_{i-1}}] + 1 = i + 1$

Claim. $Var[2^X] \le m^2/2$

- By Chebyshev, $\Pr[|\widetilde{m} m| \ge \varepsilon m] \le \frac{\operatorname{Var}[\widetilde{m}]}{(\varepsilon \cdot m)^2} \le \frac{1}{2\varepsilon^2}$
- Idea: to reduce variance, keep t independent counters and average their estimates.

Morris Algorithm: Improvement

Morris Algorithm

- 1. Initialize t independent counters $X \leftarrow 0$
- 2. For each element, increment each X by 1 w. p. 2^{-X}
- 3. Return \widetilde{m} = the average of $2^{X} 1$ over all counters
- Then $E[\widetilde{m}]$ remains m
- But $Var[\widetilde{m}]$ is $\frac{1}{t} \cdot Var[2^X]$

$$\mathbb{E}[2^X] = m + 1$$

Claim. $Var[2^X] \le m^2/2$

• By Chebyshev, $\Pr[|\widetilde{m} - m| \ge \varepsilon m] \le \frac{\operatorname{Var}[\widetilde{m}]}{(\varepsilon \cdot m)^2} \le \frac{1}{2t\varepsilon^2}$

• It is sufficient to set
$$t = O\left(\frac{1}{\varepsilon^2}\right)$$

Frequency Moments Estimation

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

- The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times *i* appears in the stream
- The *p*-th frequency moment is $F_p = ||f||_p^p = \sum_{i=1}^n f_i^p$

 $F_{0} \text{ is the number of nonzero entries of } f \text{ (# of distinct elements)}$ $F_{1} = m \text{ (# of elements in the stream)}$ $F_{2} = \left| \left| f \right| \right|_{2}^{2} \text{ is a measure of non-uniformity}$ used e.g. for anomaly detection in network analysis $F_{\infty} = \max_{i} f_{i} \text{ is the most frequent element}$

Goal: Estimate F_p up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq 2/3$

Estimating F₂ [Alon Matias Szegedy 96]

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

Goal: Estimate F_2 up to a multiplicative factor $(1 \pm \varepsilon)$ with probability $\geq \frac{2}{3}$

Today: $O(\varepsilon^{-2} (\log m + \log n))$ space algorithm

AMS Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by $h(a) \leftarrow$

Add or subtract 1

4. Return X^2 .

- Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$
- Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$
- Let's compute the expectation and variance of X^2

The expectation of X^2

AMS Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by h(a)
- 4. Return X^2 .
 - Let $Z = (z_1, \dots, z_n)$, where $z_i = h(i)$

• Then, at the end,
$$X = Z \cdot f = \sum_{i \in [n]} z_i f_i$$

$$X^{2} = \left(\sum_{i \in [n]} z_{i}f_{i}\right)^{2} = \sum_{i \in [n]} \sum_{j \in [n]} z_{i}z_{j}f_{i}f_{j}$$

$$\mathbb{E}[X^{2}] = \sum_{i \in [n]} \sum_{j \in [n]} \mathbb{E}[z_{i}z_{j}] f_{i}f_{j}$$
 by linearity of expectation

$$= \sum_{i \in [n]} \mathbb{E}[z_{i}^{2}]f_{i}^{2} + \sum_{i \neq j} \mathbb{E}[z_{i}] \cdot \mathbb{E}[z_{j}] f_{i}f_{j}$$
 2-wise independent

$$= \sum_{i \in [n]} f_{i}^{2} = F_{2}$$

$$Z_{i}^{2} = 1$$
11

Add or subtract 1

 $\mathbb{E}[X^2] = F_2$

The variance of X^2

AMS Algorithm (initial version)

 $\frac{2}{1}$

- 1. Sample a hash function $h : [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 2. Initialize $X \leftarrow 0$
- 3. For each element a, increment X by h(a)

4. Return X^2 .

- Let $Z = (z_1, ..., z_n)$, where $z_i = h(i)$
- Then, at the end, $X = Z \cdot f = \sum_{i \in [n]} z_i f_i$ $Var[X^2] = \mathbb{E}[X^4] - (\mathbb{E}[X^2])^2$

$$= \sum_{i,j,k,\ell \in [n]} \mathbb{E}[z_i z_j z_k z_\ell] f_i f_j f_k f_\ell - F_2^2 \qquad \text{by linearity of expectation}$$
$$= \sum_{i,j,k,\ell \in [n]} \mathbb{E}[z_i^4] f_i^4 + 6 \sum_{i=1}^{n} \mathbb{E}[z_i^2] \cdot \mathbb{E}[z_i^2] f_i^2 f_j^2 - F_2^2 \qquad z_i \text{'s are}$$

$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i < j} f_i^2 f_j^2 - F_2^2 \le 4 \sum_{i < j} f_i^2 f_j^2 \le 2F_2^2$$

 $\frac{1}{1}$

Add or subtract 1

 $\mathbb{E}[X^2] = F_2$

4-w

Estimating F₂ [Alon Matias Szegedy 96]

AMS Algorithm

- 1. $t \leftarrow 20/\varepsilon^2$ Run *t* copies of initial algorithm and average the results
- 2. Sample *t* independent hash functions $h_i: [n] \rightarrow \{-1,1\}$ from a 4-wise independent family
- 3. Initialize t counters $X_i \leftarrow 0$
- 4. For each element a, increment each X_i by $h_i(a)$
- 5. Return $Y = \frac{1}{t} \sum_{i \in [t]} X_i^2$.
 - We proved: $\mathbb{E}[X_i^2] = F_2$ and $\operatorname{Var}[X_i^2] \le 2F_2^2$
 - Then $\mathbb{E}[Y] = \mathbb{E}[X_i^2] = F_2$ and $\operatorname{Var}[Y] = \frac{1}{t}\operatorname{Var}[X_i^2] \le \frac{2}{t}F_2^2$ X_i^2 are independent
 - Correctness: $\Pr[|Y F_2| \ge \varepsilon \cdot F_2] = \Pr[|Y \mathbb{E}[Y]| \ge \varepsilon \cdot F_2]$ $\leq \frac{\operatorname{Var}[Y]}{(\varepsilon \cdot F_2)^2} \leq \frac{2F_2^2}{t \cdot \varepsilon^2 \cdot F_2^2} = \frac{1}{10}$ Chebyshev
 - Space: $O(t \log n)$ to store hash functions + $O(t \log m)$ to store X_i 's $O\left(\frac{1}{\varepsilon^2}(\log n + \log m)\right)$

General Technique: Linear Sketching

• A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.

×

- *Zf* can be computed incrementally:
 - Suppose we have a sketch Zf of the current frequency vector f.
 - If we see an occurrence of *i*, the new frequency vector is $f' = f + e_i$.
 - We update the sketch by adding column i of Z to Zf:

 $Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-\text{th column of } Z)$

 In the AMS algorithm, Z was a matrix of -1s and 1s, with each row chosen independently from a 4-wise independent family

General Technique: Linear Sketching

• A sketching algorithm stores a random matrix $Z \in \mathbb{R}^{t \times n}$ where $t \ll n$ and computes projection Zf of the frequency vector f.

X

- *Zf* can be computed incrementally:
 - Suppose we have a sketch Zf of the current frequency vector f.
 - If we see an occurrence of *i*, the new frequency vector is $f' = f + e_i$.
 - We update the sketch by adding column i of Z to Zf:

 $Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-\text{th column of } Z)$

- In general: Need to chose the random matrix so that
 - relevant properties of f can be estimated with high probability from Zf
 - Z can be stored efficiently

+

Multipurpose Sketches: Problems

Input: a stream $\langle a_1, a_2, ..., a_m \rangle \in [n]^m$

• The frequency vector of the stream is $f = (f_1, ..., f_n)$, where f_i is the number of times *i* appears in the stream

Goal: to maintain data structures that can answer the following queries

- Point Query: For $i \in [n]$, estimate f_i
- Range Query: For $i, j \in [n]$, estimate $f_i + f_{i+1} + \ldots + f_j$
- Quantile Query: For $\phi \in [0, 1]$, find j with $f_1 + \ldots + f_j \approx \phi m$
- Heavy Hitters Query: For $\phi \in [0, 1]$, find all *i* with $f_i \ge \phi m$.

Desired accuracy: $\pm \varepsilon m$ with error probability δ

Initial Solution to Point Queries

- We could maintain the whole frequency vector $(f_1, ..., f_n)$
- Then, on query i, we can output f_i

Idea: Group counts for some numbers together

If *i* falls into bucket *j*, then $f_i \leq c_j$.

Point Query Algorithm (initial version)

- 1. Sample a hash function $h : [n] \rightarrow [b]$ from a 2-wise independent family
- 2. Initialize counters c_1, \ldots, c_b to 0
- 3. For each element a, increment $c_{h(a)}$ by 1.
- 4. To answer a point query *i*, return $c_{h(i)}$.

Never underestimate