
2/25/2025

Sublinear Algorithms

LECTURE 9 
Last time
• Approximate counting

• Estimation of the 2nd moment

• Linear sketching

Today
• Multipurpose sketches

• Count-min and count-sketch

• Range queries, heavy hitters, quantiles

Sofya Raskhodnikova;Boston University

Project meetings (today) will be on Zoom

Project proposals due Tuesday, Feb 25 at 11am on Gradescope



Multipurpose Sketches: Problems

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),                              
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

Goal: to maintain data structures that can answer the following queries

• Point Query: For 𝑖 ∈ [𝑛], estimate 𝑓𝑖 

• Range Query: For 𝑖, 𝑗 ∈ [n], estimate 𝑓𝑖  + 𝑓𝑖+1 + . . . + 𝑓𝑗 

• Quantile Query: For 𝜙 ∈ [0, 1], find 𝑗 with 𝑓1 + . . . + 𝑓𝑗 ≈ 𝜙𝑚 

• Heavy Hitters Query: For 𝜙 ∈ [0, 1], find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚. 

Desired accuracy: ±𝜀𝑚 with error probability 𝛿 

2Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Today’s Lecture

Techniques

• Randomized Count-Min sketch

• Deterministic Count-Min sketch

• Binary trees for range and efficient heavy-hitters

• Count-Sketch = Count-Min + AMS

Takeaways

• We can do cool stuff in polylog space

• Good algorithms are versatile

• Can get better analyses using 
more than stream length

3



Initial Solution to Point Queries

• We could maintain the whole frequency vector 𝑓1, … , 𝑓𝑛

• Then, on query 𝑖, we can output 𝑓𝑖

Idea: Group counts for some numbers together

          If 𝑖 falls into bucket 𝑗, then 𝑓𝑖 ≤ 𝑐𝑗.

4

1 5 1 13 7 2 4 4 6 71

𝑐1 𝑐2 𝑐3 𝑐𝑏
…

Point Query Algorithm (initial version)

1. Sample a hash function ℎ ∶ 𝑛 → [𝑏] from a 2-wise independent family 

2. Initialize counters 𝑐1, … , 𝑐𝑏 to 0

3. For each element 𝑎, increment cℎ 𝑎  by 1. 

4. To answer a point query 𝑖, return cℎ 𝑖 . Never underestimate



Initial Solution to Point Queries: Analysis

• Fix 𝑖∗ ∈ [𝑛]. 

• Let 𝑍 = 𝑐ℎ 𝑖∗ − 𝑓𝑖∗ be the overestimation error.

• For all 𝑖 ≠ 𝑖∗, let 𝑋𝑖 = ቊ
1 if ℎ 𝑖 = ℎ 𝑖∗

0 otherwise

• By Markov’s inequality, if 𝑏 = 2/𝜀 then 

Pr 𝑍 ≥ 𝜀𝑚 ≤
𝔼 𝑍

𝜀𝑚
≤

1

𝜀𝑏
≤

1

2

5

𝑍 = 

𝑖≠𝑖∗

𝑋𝑖 ⋅ 𝑓𝑖 𝔼 𝑍 = 

𝑖≠𝑖∗

𝔼 𝑋𝑖 ⋅ 𝑓𝑖 =
1

𝑏


𝑖≠𝑖∗

𝑓𝑖 ≤
𝑚

𝑏

𝔼 𝑋𝑖 = Pr[ℎ 𝑖 = ℎ(𝑖∗)] =
1

𝑏

Point Query Algorithm (initial version)

1. Sample a hash function ℎ ∶ 𝑛 → [𝑏] from a 2-wise independent family 

2. Initialize counters 𝑐1, … , 𝑐𝑏 to 0

3. For each element 𝑎, increment cℎ 𝑎  by 1. 

4. To answer a point query 𝑖, return cℎ 𝑖 . Never underestimate

by 2-wise independence

by linearity of

expectation

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors-3.pdf



Count-Min Sketch [Cormode Muthukrishnan 05]

• Correctness: Pr 𝑓𝑖 ≤ ෩𝑓𝑖 ≤ 𝑓𝑖 + 𝜀𝑚

= 1 − Pr all 𝑡 hash functions overestimate by more than 𝜀𝑚

≥ 1 −
1

2

𝑡

= 1 − 𝛿

• Space: 𝑂 𝑡 (log 𝑛 + log 𝑏)  for the hash functions + 

    𝑂 𝑡𝑏 log 𝑚  for the counters

     Total:    𝑂 log 𝑛 +
1

𝜀
log 𝑚 log

1

𝛿
 

6

Point Query Algorithm

1. Set 𝑡 = log2 1/𝛿 and 𝑏 = 2/𝜀

2. Sample 𝑡 hash functions ℎ𝑗: 𝑛 → [𝑏] from a 2-wise independent family 

3. Initialize 𝑡𝑏 counters 𝑐𝑗,𝑘 to 0

4. For each element 𝑎 and each 𝑗 ∈ [𝑡], increment c𝑗,ℎ 𝑎  by 1. 

5. To answer a point query 𝑖, return ෩𝑓𝑖 = min
𝑗∈[𝑡]

c𝑗,ℎ 𝑖 . Never underestimate

since hash functions are chosen independently

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Review: Is Count-Min a linear sketch?

Recall a linear sketch 

• is given by a (maybe randomly chosen) 𝑘 × 𝑛 matrix 𝑆,

• stores 𝑆𝑓 (a vector with 𝑘 entries) where 𝑓 is the frequency vector of the 
stream

True or false? Count-Min is linear.

7



Is randomization necessary for streaming?

• Count-Min relies heavily on hash functions being random

– Space 𝑂 log 𝑛 +
1

𝜀
log 𝑚 log

1

𝛿
 dominated by hash functions if 𝑛 is big

• Can we get away without randomness? 

– Not possible for many tasks (e.g.. distinct elements)

– What about point queries?

• What do we need from the hash functions?

– In some bucket, 𝑖∗ should collide with “few” other stream elements

– But we actually bounded the average over hash functions we use of the number 
of collisions

– Suffices for each 𝑖 ≠ 𝑖∗ to collide for 𝜖/2 fraction of the hash functions

9



CR-Precis: Deterministic Count-Min [Ganguly Majumder 07]

Use deterministic hash functions: 

ℎ𝑗 𝑎 = 𝑎 mod 𝑝𝑗, where 𝑝𝑗 is the 𝑗-th prime, for 𝑗 ∈ [𝑡]

Analysis: Fix 𝑖∗ ∈ 𝑛 . Define 𝑧1, … , 𝑧𝑡 such that 𝑐𝑗,ℎ𝑗 𝑖∗ = 𝑓𝑖∗ + 𝑧𝑗, that is,

𝑧𝑗 = 

𝑖≠𝑖∗:ℎ𝑗 𝑖 =ℎ𝑗 𝑖∗

𝑓𝑖

• Let 𝐵𝑖 = {𝑗: ℎ𝑗 𝑖 = ℎ𝑗 𝑖∗ }

• Claim: For each 𝑖 ≠ 𝑖∗, we have 𝐵𝑖 ≤ log 𝑛.

• Thus, σ𝑗∈ 𝑡 𝑧𝑗 = σ𝑖 σ𝑗:ℎ𝑗 𝑖 =ℎ𝑗 𝑖∗ 𝑓𝑖 = σ𝑖 σ𝑗∈𝐵𝑖
𝑓𝑖 ≤ σ𝑖 𝑓𝑖 log 𝑛 = 𝑚 log 𝑛

෪𝑓𝑖∗ = min
𝑗∈[𝑡]

c𝑗,ℎ 𝑖∗ = min
𝑗∈[𝑡]

(𝑓𝑖∗ + 𝑧𝑗) = 𝑓𝑖∗ + min
𝑗∈[𝑡]

𝑧𝑗 ≤ 𝑓𝑖∗ +
𝑚 log 𝑛

𝑡

• We set 𝑡 =
log 𝑛

𝜀 
to get 𝑓𝑖 ≤ ෩𝑓𝑖 ≤ 𝑓𝑖 + 𝜀𝑚

• Requires keeping at most 𝑡 ⋅ 𝑝𝑡 = ෨𝑂
log2 𝑛

𝜀2 
counters since 𝑝𝑡 = 𝑂(𝑡 log 𝑡)

10

by Chinese Remainder Theorem

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf

by number theory 

magic
Exercise: Improve this construction using error-correcting codes. 



Today’s Lecture

Techniques

• Randomized Count-Min sketch

• Deterministic Count-Min sketch

• Binary trees for range and efficient heavy-hitters

• Count-Sketch = Count-Min + AMS

Takeaways

• We can do cool stuff in polylog space

• Good algorithms are versatile

• Can get better analyses using 
more than stream length

11



Multipurpose Sketches: Problems

Input: a stream 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑛 𝑚

• The frequency vector of the stream is 𝑓 = (𝑓1, … , 𝑓𝑛),                              
where 𝑓𝑖 is the number of times 𝑖 appears in the stream

Goal: to maintain data structures that can answer the following queries

• Point Query: For 𝑖 ∈ [𝑛], estimate 𝑓𝑖 

• Range Query: For 𝑖, 𝑗 ∈ [n], estimate 𝑓𝑖  + 𝑓𝑖+1 + . . . + 𝑓𝑗 

• Quantile Query: For 𝜙 ∈ [0, 1], find 𝑗 with 𝑓1 + . . . + 𝑓𝑗 ≈ 𝜙𝑚 

• Heavy Hitters Query: For 𝜙 ∈ [0, 1], find all 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚. 

Desired accuracy: ±𝜀𝑚 with error probability 𝛿 

12Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf

Denote by 𝑓 𝑖,𝑗



Range Queries

• We could estimate 𝑓 𝑖,𝑗  by ෩𝑓𝑖 + ሚ𝑓𝑖+1+. . . +෩𝑓𝑗

      But errors add up: need too much space to keep accurate enough estimates

Idea: We could estimate counts for some intervals directly by grouping 𝑖, … , 𝑗

How many intervals do we need so that

each interval is a sum of 𝑂 log 𝑛  original intervals?

13

2 4 6 81 3 5 7



Dyadic Intervals

• Exercise: Each interval [𝑖, 𝑗] is a sum of at most 2 lg 𝑛 dyadic intervals.

• Such a representation of an interval is its dyadic decomposition.

14

[𝑛]

1,
𝑛

2

𝑛

2
+ 1, 𝑛

1,
𝑛

4

𝑛

2
+ 1,

3𝑛

4

𝑛

4
+ 1,

𝑛

2

3𝑛

4
+ 1, 𝑛

… … … …

1 2 𝑛 − 1 𝑛…

lg 𝑛 + 1 

levels



Count-Min Strikes Back

• Correctness: Pr 𝑓[𝑖,𝑗] ≤ ሚ𝑓 𝑖,𝑗 ≤ 𝑓 𝑖,𝑗 + 𝜀𝑚(2 lg 𝑛) ≥ 1 − 𝛿(2 lg 𝑛)

• Space: 

      Multiply the old space complexity by log 𝑛 and divide 𝜀 and 𝛿 by log 𝑛: 

𝑂 log2 𝑛 log 𝑛 + log 𝑚
1

𝜀
log

log 𝑛

𝛿

• Quantile Query: For 𝜙 ∈ [0, 1] find 𝑗 with 𝑓1,𝑗 ≈ 𝜙𝑚

   Approximate Median: Find 𝑗 such that 𝑓1,𝑗 ≥
𝑚

2
− 𝜀𝑚 and 𝑓1,𝑗−1 ≤

𝑚

2
+ 𝜀𝑚

   We can approximate median via binary search of range queries.

15

Range Query Algorithm

1. Construct lg 𝑛 + 1 Count-Min sketches, one for each level, such that            

for all intervals 𝐼 at that level, our estimate ෩𝑓𝐼 for 𝑓𝐼 satisfies

Pr 𝑓𝐼 ≤ ෩𝑓𝐼 ≤ 𝑓𝐼 + 𝜀𝑚 ≤ 1 − 𝛿

2. To answer a range query [𝑖, 𝑗], let 𝐼1, … , 𝐼𝑘 be its dyadic decomposition 

Return ሚ𝑓 𝑖,𝑗 = ሚ𝑓𝐼1
+ ⋯ + ሚ𝑓𝐼𝑘

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For 𝜙 ∈ (𝜀, 1 − 𝜀), find a set 𝑆 that 

– includes all 𝑖 with 𝑓𝑖 ≥ (𝜙 + 𝜀)𝑚

– excludes all 𝑗 with 𝑓𝑗 ≤ 𝜙 − 𝜀 𝑚

First attempt:

• Use CM sketch to evaluate ෩𝑓𝑖  for every 𝑖 ∈ [𝑛], return 𝑆 = {𝑖: ෩𝑓𝑖 ≥
𝜙𝑚}

– If all 𝒏 estimates are accurate ±𝜀𝑚, 
then 𝑆 is correct.

– Space usage?

– Why is this unsatisfactory? 

16Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For 𝜙 ∈ (𝜀, 1 − 𝜀), find a set 𝑆 that 

– includes all 𝑖 with 𝑓𝑖 ≥ (𝜙 + 𝜀)𝑚

– excludes all 𝑗 with 𝑓𝑗 ≤ 𝜙 − 𝜀 𝑚

Correctness: If 𝑓𝑖 ≥ 𝜙𝑚, then for all ancestors 𝐼 of  the leaf 𝑖,
ሚ𝑓𝐼 ≥ 𝑓𝐼 ≥ 𝜙𝑚

• If we ensure that Pr[point query overestimates by > 𝜀𝑚]≤ 𝛿/𝑛, 
then, by union bound, all point queries are correct w.p. ≥ 1 − 𝛿 

• There are at most 1/𝜙 indices 𝑖 with 𝑓𝑖 ≥ 𝜙𝑚

      Thus, 𝑂(𝜙−1 log 𝑛) time suffices for post-processing

17

Heavy Hitters Algorithm

1. Construct lg 𝑛 + 1 Count-Min sketches for levels of dyadic tree, as before

2. To answer query 𝜙, mark the root. Going level-by-level from the root,                                       

mark children 𝐼 of marked nodes if     ሚ𝑓𝐼 ≥ 𝜙𝑚

3. Return all marked leaves

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Today’s Lecture

Techniques

• Randomized Count-Min sketch

• Deterministic Count-Min sketch

• Binary trees for range and efficient heavy-hitters

• Count-Sketch = Count-Min + AMS

Takeaways

• We can do cool stuff in polylog space

• Good algorithms are versatile

• Can get better analyses using 
more than stream length

18



Count-Sketch: Count-Min+AMS combined

Claim.  𝔼 𝑟𝑗 𝑖 𝑐𝑗,ℎ𝑗 𝑖 = 𝑓𝑖  and Var 𝑟𝑗 𝑖 𝑐𝑗,ℎ𝑗 𝑖 ≤
𝐹2

𝑏
     ∀𝑗 ∈ [𝑡] 

• By Chebyshev, for 𝑏 = 2/𝜀2,

Pr 𝑓𝑖 − 𝑟𝑗 𝑖 𝑐𝑗,ℎ𝑗 𝑖 ≥ 𝜀 𝐹2 ≤
𝐹2

𝜀2𝑏𝐹2
=

1

3

• By Chernoff, for 𝑡 = Θ(log 1/𝛿)

Pr 𝑓𝑖 − መ𝑓𝑖 ≥ 𝜀 𝐹2 ≤ 𝛿

19

Count-Sketch

1. In addition to ℎ𝑗: 𝑛 → [𝑏], use hash functions 𝑟𝑗: 𝑛 → {−1,1}

2. Maintain 𝑡𝑏 counters 𝑐𝑗,𝑘 = σ𝑖:ℎ𝑗 𝑖 =𝑘 𝑟𝑗 𝑖 𝑓𝑖

3. To answer a point query 𝑖, return መ𝑓𝑖 =median 𝑟1 𝑖 𝑐1,ℎ1 𝑖 , … , 𝑟𝑡 𝑖 𝑐𝑡,ℎ𝑡 𝑖

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf

Recall that 𝐹2 ≤ 𝐹1 = 𝑚, so this is a better 

error guarantee than just “±𝜀𝑚” 

(but 𝑏 now grows as 1/𝜀2)



Count-Sketch: Proof of Claim

Claim.  𝔼 𝑟𝑗 𝑖 𝑐𝑗,ℎ𝑗 𝑖 = 𝑓𝑖 and Var 𝑟𝑡 𝑖 𝑐𝑡,ℎ𝑡 𝑖 ≤
𝐹2

𝑏
     ∀𝑗 ∈ [𝑡]

Proof: Fix 𝑖 = 𝑖∗ and 𝑗 ∈ [𝑏]. We omit subscripts 𝑗.

• For all 𝑖 ≠ 𝑖∗, let 𝑋𝑖 = ቊ
1 if ℎ 𝑖 = ℎ 𝑖∗

0 otherwise

• Expectation:

• Variance:

20

Count-Sketch: መ𝑓𝑖 =median 𝑟1 𝑖 𝑐1,ℎ1 𝑖 , … , 𝑟𝑡 𝑖 𝑐𝑡,ℎ𝑡 𝑖

by 2-wise independence

𝔼 𝑟 𝑖∗ 𝑐ℎ 𝑖∗ = 𝔼 𝑓𝑖
∗ + 

𝑖≠𝑖∗

𝑟 𝑖 𝑟 𝑖∗ 𝑋𝑖𝑓𝑖 = 𝑓𝑖
∗

Var 𝑟 𝑖∗ 𝑐ℎ 𝑖∗ ≤ 𝔼 

𝑖≠𝑖∗

𝑟 𝑖 𝑟 𝑖∗ 𝑋𝑖𝑓𝑖

2

= 𝔼 

𝑖≠𝑖∗

𝑋𝑖
2𝑓𝑖

2 + 

𝑖≠𝑘

𝑟 𝑖 𝑟 𝑘 𝑋𝑖𝑋𝑘𝑓𝑖𝑓𝑘 =
𝐹2

𝑏

Based on Andrew McGregor’s slides: https://people.cs.umass.edu/~mcgregor/711S18/vectors -3.pdf



Today’s Lecture

Techniques

• Randomized Count-Min sketch

• Deterministic Count-Min sketch

• Binary trees for range and efficient heavy-hitters

• Count-Sketch = Count-Min + AMS

Takeaways

• We can do cool stuff in polylog space

• Good algorithms are versatile

• Can get better analyses using 
more than stream length

21


	Slide 1: Sublinear Algorithms
	Slide 2: Multipurpose Sketches: Problems
	Slide 3: Today’s Lecture
	Slide 4: Initial Solution to Point Queries
	Slide 5: Initial Solution to Point Queries: Analysis
	Slide 6: Count-Min Sketch [Cormode Muthukrishnan 05]
	Slide 7: Review: Is Count-Min a linear sketch?
	Slide 9: Is randomization necessary for streaming?
	Slide 10: CR-Precis: Deterministic Count-Min [Ganguly Majumder 07]
	Slide 11: Today’s Lecture
	Slide 12: Multipurpose Sketches: Problems
	Slide 13: Range Queries
	Slide 14: Dyadic Intervals
	Slide 15: Count-Min Strikes Back
	Slide 16: Count-Min Strikes Back (Part 2)
	Slide 17: Count-Min Strikes Back (Part 2)
	Slide 18: Today’s Lecture
	Slide 19: Count-Sketch: Count-Min+AMS combined
	Slide 20: Count-Sketch: Proof of Claim
	Slide 21: Today’s Lecture

