Sublinear Algorithms

| ECTURE 9

Last time
« Approximate counting
 Estimation of the 2" moment

» Linear sketching

Today

» Multipurpose sketches

» Count-min and count-sketch

» Range queries, heavy hitters, quantiles

Praoject meetings (today) will be om Zooms
Project proposals due Tuesday, Feb 25 at 11am on Gradescope

2/25/2025 _ N
Sofya Raskhodnikova;Boston University

Multipurpose Sketches: Problems

Input: a stream (a4, a,, ..., a,,) € [n]™

e The frequency vector of the streamiis f = (f1, ..., fn),
where f; is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries
e Point Query: For i € [n], estimate f;

e Range Query:Fori,j € [n], estimate f; + fiy1 +...+ f;

e Quantile Query: For ¢ €[0, 1], find j with f; + ...+ f; = ¢m

e Heavy Hitters Query: For ¢ € [0, 1], find all i with f; > pm.

Desired accuracy: +em with error probability 6

Today’s Lecture

Techniques

e Randomized Count-Min sketch

e Deterministic Count-Min sketch

e Binary trees for range and efficient heavy-hitters
e Count-Sketch = Count-Min + AMS

Takeaways

e We can do cool stuff in polylog space

e Good algorithms are versatile

e Can get better analyses using
more than stream length

Initial Solution to Point Queries

e We could maintain the whole frequency vector (£, ..., ;)
e Then, on query i, we can output f;

Idea: Group counts for some numbers together

@ ® &6 @ © &6 &6 ©6 © @6 &® @

v ¥ ¥ ¥

If i falls into bucket j, then f; < ¢;.

/Point Query Algorithm (initial version)

~

1

2
3.
\d.

Sample a hash function h : [n] — [b] from a 2-wise independent family
Initialize counters ¢4, ..., ¢, t0 0

For each element a, increment cp(4) by 1.

To answer a point query i, return cy(;). Never underestimate

/

4

Initial Solution to Point Queries: Analysis

/Point Query Algorithm (initial version) Y

1. Sample a hash function h : [n] — [b] from a 2-wise independent family
2. Initialize counters ¢4, ...,cp t0 0
3

For each element a, increment ¢, by 1.

\4. To answer a point query i, return c;(;). Never underestimate 4
e Fixi* € [n]
e LletZ = ¢y — fi* be the overestimation error. by 2-wise independence

1 if h(i) = h(i")

e Foralli #i% letX; = {0 Stherwise E[X;] = Pr[h(i) = h(i*)] = 7

Z = ZX fi E[Z] = ZE[Xi Zfl <= by linearity of

expectation

[#i* [#i*
e By MarkoV’s inequality, if b = 2 /¢ then
]E[Z] 1 1
Pr|Z = em] < < 3 = E

Count-Min Sketch [Cormode Muthukrishnan 05]

ﬁoint Query Algorithm
Sett =log,1/6and b = 2/¢
Sample t hash functions h;: [n] — [b] from a 2-wise independent family

Initialize tb counters ¢j ; to 0

For each element a and each j € [t], increment ¢; () by 1.

To answer a point query i, return f; = Hel%{} Cjn(i)- Never underestimate /
J

@%WNH

e Correctness: Pr[fi <fi<fi+ em]
= 1 — Pr]all t hash functions overestimate by more than em]

t
1
> 1 — <§> =1-4 since hash functions are chosen independently

e Space: O(t (logn + log b)) for the hash functions +
O(tblogm) for the counters

Total: O ((logn + i log m) log%)

Review: Is Count-Min a linear sketch?

Recall a linear sketch
e s given by a (maybe randomly chosen) k X n matrix S,

e stores Sf (a vector with k entries) where f is the frequency vector of the
stream

True or false? Count-Min is linear.

Is randomization necessary for streaming?

e Count-Min relies heavily on hash functions being random

— Space O ((logn + ilog m) log%) dominated by hash functions if n is big

e (Can we get away without randomness?
— Not possible for many tasks (e.g.. distinct elements)

— What about point queries?

e What do we need from the hash functions?

In some bucket, i* should collide with “few” other stream elements

But we actually bounded the average over hash functions we use of the number
of collisions
Suffices for each i # i* to collide for €/2 fraction of the hash functions

CR-Precis: Deterministic Count-Min [Ganguly Majumder 07]

Use deterministic hash functions:
hij(a) = amod p;, where p; is the j-th prime, for j € [t]
Analysis: Fix i* € [n]. Define z4, ..., z; such that Cjn(i*) = fir + 2j, thatiis,
Zj = z fl
iii*:hj(l')=hj(i*)
e LetB;={: hi()=hi(")}
e Claim: Foreachi # i*, we have |B; | < logn. by Chinese Remainder Theorem
o Thus,Xjer % = Zizj:h.(i)=h.(i*)ﬁ = Yi2jep, fi < Xifilogn =mlogn
mlogn
t

- N = — <
fir = M Gy = gnm(fl +2z;) = fi» +minz; fir +

. Wesett=Ttogetfi <fi<fi+tem

_ 2
e Requires keeping at mostt - p, = 0 (log n) counters since p; = O(tlogt)

2
by number theory
magic

Exercise: Improve this construction using error-correcting codes.

Today’s Lecture

Techniques
e Randomized Count-Min sketch
e Deterministic Count-Min sketch

e Binary trees for range and efficient heavy-hitters

e Count-Sketch = Count-Min + AMS
Takeaways

e We can do cool stuff in polylog space
e Good algorithms are versatile

e Can get better analyses using
more than stream length

11

Multipurpose Sketches: Problems

Input: a stream (a4, a,, ..., a,,) € [n]™

e The frequency vector of the streamiis f = (f1, ..., fn),
where f; is the number of times i appears in the stream

Goal: to maintain data structures that can answer the following queries

e Point Query: For i € [n], estimate f;

* Range Query: Fori,j € [n], estimate f; + fiy1+...+ f; Denote by fi; ji
* Quantile Query: For ¢ €[0, 1], find j with f; + ...+ f; = ¢m

e Heavy Hitters Query: For ¢ € [0, 1], find all i with f; > pm.

Desired accuracy: +em with error probability 6

12

Range Queries

* We could estimate f[; 1 byfi + fis1t... +f;~
But errors add up: need too much space to keep accurate enough estimates
ldea: We could estimate counts for some intervals directly by grouping i, ..., j

v

How many intervals do we need so that
each interval is a sum of O(logn) original intervals?

13

Dyadic Intervals

/ " \

13
/BN
18 B
/N

7\

/N
1| |2

B+1,n]
/ N\
[2+1— 3%1+1,n]
/N /N
/...\
n—1 n

lgn+1
levels

e Exercise: Each interval [i, j] is a sum of at most 2 g n dyadic intervals.

e Such a representation of an interval is its dyadic decomposition.

14

Count-Min Strikes Back

ﬁange Query Algorithm \
1. Constructlgn + 1 Count-Min sketches, onejor each level, such that
for all intervals I at that level, our estimate f; for f; satisfies
Prlfi<fi<fi+em|]<1-6
2. Toanswer arange query [i,], let I3, ..., I be its dyadic decomposition
k Return f[i,j] = f}l S oo +f,k /
e Correctness: Pr[f[l-,j] < f < flij) tem(21g n)] >1—-6(21gn)

e Space:
Multiply the old space complexity by log n and divide € and § by log n:

1. logn
0 <log2 n (logn + logm) — log g)

~ Ppm

m
emand f[qj—1] < — tem

e Quantile Query: For ¢ € [0, 1] find j with f1 1 =
m
2
We can approximate median via binary search of range queries.

Approximate Median: Find j such that f; j; =

15

Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For ¢ € (g,1 — €), find a set S that
— includes all i with f; = (¢ + &)m
— excludes all j with f; < (¢ — &)m

First attempt:
e Use CM sketch to evaluate f; foreveryi € [n], return S = {i: f; >

¢pm}
— If all n estimates are accurate +em,
then S is correct.

— Space usage?
— Why is this unsatisfactory?

16

Count-Min Strikes Back (Part 2)

Heavy Hitters Query: For ¢ € (g,1 — €), find a set S that
— includes all i with f; = (¢ + &)m
— excludes all j with f; < (¢ — &)m
ﬁ-leavy Hitters Algorithm N
1. Constructlgn + 1 Count-Min sketches for levels of dyadic tree, as before

2. Toanswer query ¢, mark the root. Going level-by-level from the root,
mark children I of marked nodesif f; = ¢m

\3. Return all marked leaves /

Correctness: If f; = ¢m, then for all ancestors I of the leaf i,
fi = fiz¢m
e If we ensure that Pr[point query overestimates by > em]< 6 /n,
then, by union bound, all point queries are correct w.p.=>1— 6

e There are at most 1/¢ indices i with f; = ¢m
Thus, 0(¢~1logn) time suffices for post-processing

17

Today’s Lecture

Techniques

e Randomized Count-Min sketch

e Deterministic Count-Min sketch

e Binary trees for range and efficient heavy-hitters

e Count-Sketch = Count-Min + AMS

Takeaways
e We can do cool stuff in polylog space
e Good algorithms are versatile

e Can get better analyses using
more than stream length

18

Count-Sketch: Count-Min+AMS combined

/Cou nt-Sketch

~

1. Inaddition to h;: [n] — [b], use hash functions r;: [n] — {—1,1}

2. Maintain tb counters Cik = Zi:hj(i)zk T‘j(i)fi

Q. To answer a point query i, return f; =median(r1(i)c1,h1(i), ...,rt(i)ct,ht(i))/

v

Claim. E [r OLTY (1)] f; and Var [r (Dcjp, (l)] < ?2 Vj € [t]
e By Chebyshev, forb = 2/¢7,

|

e By Chernoff, fort = 0(log1/4)

fi

— 7}(0 ,h (i)

1

S ZbF 3

Pr(|fi — fil z e/F2] < 6

Recall that \/F, < F; = m, so this is a better

error guarantee than just “tem”
(but b now grows as 1/&2)

19

Count-Sketch: Proof of Claim
[Count-Sketch: f; =median(r1(i)c1,h1(i), ...,rt(i)ct’ht(i))J @

: : : F. .
Claim. [E [Tj(l)Cj,hj(i)] = f; and Var[rt(l)ct,ht(i)] < f Vj € [t]
Proof: Fixi = i" and j € [b]. We omit subscripts j.

1 if h(i) = h(i*)
0 otherwise by 2-wise independence

!

e Foralli #i"letX; = {

e Expectation: E[r(i") cheny] = E|f7 + z rr@)Xifi| =fi
=1t
] .
e \/ariance: Var[r(i*) Ch(i*)] <EE <z T(l)T(l*)lel>
| \i=T _
2 £2 2 FZ
=E z XCfio + Zr(l)r(k)Xikaifk =5
= iZk

20

Today’s Lecture

Techniques

e Randomized Count-Min sketch

e Deterministic Count-Min sketch

e Binary trees for range and efficient heavy-hitters
e Count-Sketch = Count-Min + AMS

Takeaways

e We can do cool stuff in polylog space

e Good algorithms are versatile

e Can get better analyses using
more than stream length

21

	Slide 1: Sublinear Algorithms
	Slide 2: Multipurpose Sketches: Problems
	Slide 3: Today’s Lecture
	Slide 4: Initial Solution to Point Queries
	Slide 5: Initial Solution to Point Queries: Analysis
	Slide 6: Count-Min Sketch [Cormode Muthukrishnan 05]
	Slide 7: Review: Is Count-Min a linear sketch?
	Slide 9: Is randomization necessary for streaming?
	Slide 10: CR-Precis: Deterministic Count-Min [Ganguly Majumder 07]
	Slide 11: Today’s Lecture
	Slide 12: Multipurpose Sketches: Problems
	Slide 13: Range Queries
	Slide 14: Dyadic Intervals
	Slide 15: Count-Min Strikes Back
	Slide 16: Count-Min Strikes Back (Part 2)
	Slide 17: Count-Min Strikes Back (Part 2)
	Slide 18: Today’s Lecture
	Slide 19: Count-Sketch: Count-Min+AMS combined
	Slide 20: Count-Sketch: Proof of Claim
	Slide 21: Today’s Lecture

