Sublinear Algorithms
| ectures 1 and 2

Sofya Raskhodnikova
Penn State University

Tentative Topics

Introduction, examples and general techniques.

Sublinear-time algorithms for

e graphs

e strings

» basic properties of functions
 algebraic properties and codes
* metric spaces

 distributions
Tools: probability, Fourier analysis, combinatorics, codes, ...

Sublinear-space algorithms: streaming

Tentative Plan

Introduction, examples and general techniques.

Lecture 1. Background. Testing properties of images and
lists.

Lecture 2. Properties of functions and graphs. Sublinear
approximation.

Lecture 3-5. Background in probability. Techniques for
proving hardness. Other models for sublinear
computation.

Motivation for Sublinear-Time Algorithms

Massive datasets

Long access time

world-wide web
online social networks
genome project

sales logs

census data
high-resolution images
scientific measurements

communication bottleneck (dial-up connection)
implicit data (an experiment per data point)

What Can We Hope For?

e What can an algorithm compute if it
— reads only a sublinear portion of the data?
— runs in sublinear time?

e Some problems have exact deterministic solutions

e For most interesting problems algorithms must be
— approximate
— randomized

A Sublinear-Time Algorithm

BILIA-|BILIA-|BLIA-|BJLIA-|B/LIA-|{BLA-|BLA-

>
=

\
1

Y \ Y

sublinear-time algorithm

Y

approximate answer

Resources
VS. » number of samples
» running time

Quality of
approximation

Types of Approximation

Classical approximation
* need to compute a value

» output is close to the desired value
» examples: average, median values

* need to compute the best structure
» output is a structure with “cost” close to optimal
» examples: furthest pair of points, minimum spanning tree

Property testing
* need to answer YES or NO

» outputis a correct answer for a given input,
or at least some input close to it

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: m points, described by a distance matrix D
- D;; is the distance between points i and j
— D satisfies triangle inequality and symmetry
(Note: input sizeisn = m?)

Let i,j be indices that maximize D;;

Maximum D,; is the diameter.

e Output: (k,¥) such thatD,, 2D,; /2

Algorithm and Analysis

(Algorithm (m, D) R] .
1. Pick k arbitrarily

2. Pick £ to maximize D,,

\3. Output (k,?) 4
e Approximation guarantee
D, < Dy + Dy, (triangle inequality)
< D, + D,, (choice of £ + symmetry of D) k
< 2Dk,
e Running time: O(m) = 0(m =+n) i
A rare example of a deterministic

> sublinear-time algorithm <

V\/\N

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

"'.ié'tr«-,_sr‘ R AN ;"‘?"T-""TJ-H ‘3’(‘ -

-+ “< —

Does the input satisfy the property
or is it far from satisfying it?
e sometimes it is the right question (probabilistically checkable proofs (PCPs))
e as good when the data is constantly changing (WWW)
e fast sanity check to rule out inappropriate inputs (airport security questioning)

12

Property Tester Definition

Probabilistic Algorithm

A

YES

Accept with

probability > 2/3

Reject with

NO :
probability >2/3

Property Tester

A

YES

£ | m)
Far from |:>
YES

Accept with
probability > 2/3

Don’t care

Reject with
probability >2/3

e-far = differs in many places (= ¢ fraction of places)

13

Randomized Sublinear
Algorithms

Toy Examples

Property Testing: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1|../10|1 (0|0
Question: Is w = 00...0?
Requires reading entire input.

Approximate version: Isw=00..0o0r
does it have = en 1’s (“errors”)?

(Test (n, w) w

1. Sample s = 2/¢ positions uniformly and independently at randomJ

2. If 1is found, reject; otherwise, accept

Used: 1 —x < e™™*

{

If wis e-far, Pr[error] = Pr[no I’sinthe sample]< (1 — &) < e & =e 2 < g
N

Analysis: If w = 00 ... 0, it is always accepted.

2
Witnhess Lemma
If a test catches a witness with probability = p,

2 : : : .
then s = > iterations of the test catch a witness with probability = 2/3.
o

15

Randomized Approximation: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1|../10|1 (0|0
Goal: Estimate the fraction of 1’s in w (like in polls)

It suffices to sample s = 1 / £ positions and output the average
to get the fraction of 1’s +¢ (i.e., additive error &) with probability > 2/3

/Hoeffding Bound 3
Let Yy, ..., Ys be independently distributed random variables in [0,1] and
S
letY = Y Y; (sample sum). Then Pr[|]Y — E[Y]]| = §] < 2e~28%/s,
A i=1 /
S
Y; = value of sample i. Then E[Y] =) E[Y;] = s - (fraction of 1’s in w)

i=1
Pr[|(sample average) — (fraction of 1'sin w)| = €] = Pr[|Y — E[Y]| = &s]

< 2e729%/s = 2¢72 < 1/3
1 1

Apply Hoeffding Bound with § = ¢s substitute s = 1 / &2

16

Property Testing

Simple Examples

Testing Properties of Images

18

Pixel Model

Input: n X n matrix of pixels
(0/1 values for black-and-white pictures)

ONONONORONOCNORONONORONG)
ONONON N N N NONONORONG)
CC0000000O0O0OO0
ONON N NONON N NONORONG
ONONONORONON N NONORONG)
ONONONORON N NONONORONG)
ONONONON N NONONONORONG)
ONONON RONOCHORONONORONG)
ONON N N NONCHRONONORONG)
ONON N N N N N NONORONGO
ONONONORONOCNORONONORONG)
ONONONORONOCNORONONORONG)

Query: point (iy, i,)
Answer: color of (iy,i,)

Testing If an Image Is a Half-plane [rR03]

A half-plane or

e-far from a half-plane?

O(1/¢) time

20

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

21

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

%—far from a half-plane

22

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNORONONONG
ONORONONONG®
ONORONONONG®
ONORONONONG®
CNORONONONG
ONORONONONG
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)
ONONONORONG)

i—far from a half-plane

23

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

ONONONORON N N N N N /
ORSNONONONON N N N N N J
ONORCNONONON N N N N N J
ONONORCNONON N N N N N J
CNONONORONON N N N N N J
CNONONONORON N N N N N J
LN NN N N EVNONONORONG)
0000000 0CO0OO0O
00000000 _OOO
00000000000
000000000 OQ[O
00000000000

%—far from a half-plane

24

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
ONONONONONON N N N N N J
CNONONONONON N N N N N J
CNONONONONON N N N N N J

LN N N N N NONONONORONG)
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

i—far from a half-plane

25

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

CNONONONONON N N N N
CNONONONONON N N N N & J
CNONONONONON N N N & N J
oNONONONONON N N & N N J
CNONONONONON N & N N N J
oNONONONONON & N N N N J
0000O0HOOOOOO
0000BHOOOOOOO
L N NN N N NONONONORONG)
LN N N N N NONONONORONG)
060000000 O0OO0O
00000000 OOO0O

%—far from a half-plane

26

Half-plane Instances

CNONONCHONONONONOL N N
CNONONCNONONONON N N N
CNONONONONONONO/L N N N
CNONONONONONON N N N N
ONONONONONONO/{ N N N N
ONONONONONON N N N N N
oNoNONONONO/{ N N N N N
oNoNONOoNON N N N N N N
O0OCO0OO0C0C/e000000
oNONONON N N N N N N N
O0CO0CO0/0e0000000
ONONON N N N N N N N N

A half-plane

cNoNONoNONON N N N N N J
oNoNONONON-N N N N N N J
oNONONON NON N N N N N J
CNONON-NONON N N N N N J
ONOSNONONON N N N N N J
oy NCNCNONON N N N N N J
00000000 OOO0O
00000000 OOOO
00000000 OOOO
00000000 OOOO
LN N N N N NONONONORONG)
LN N N N N NONONONORONG)

%—far from a half-plane

27

Strategy

“Testing by implicit learning” paradigm

e Learn the outline of the image by querying a few pixels.

e Testif the image conforms to the outline by random sampling,
and reject if something is wrong.

28

Half-plane Test

{Claim. The number of sides with different J
cornersis 0, 2, or 4. -:::::::::::_.
Bl - D]
/Algorithm N
1. Query the corners.
\ A

29

Half-plane Test: 4 Bi-colored Sides

[Claim. The number of sides with different

cornersis 0,2, or4.

ﬂmalysis

N

« [Ifitis 4, the image cannot be a half-plane.

_

%

/” Algorithm

1. Query the corners.

.

2. If the number of sides with different corners is 4, reject.

30

Half-plane Test: 0 Bi-colored Sides

{CIaim. The number of sides with different J
°

cornersis 0, 2, or4. p-rrmrrnn i nt @
ﬂmalysis \ T L
* If all corners have the same color, the image is a S :.': o
half-plane if and only if it is unicolored. | - -« o o v o e [2]-
ZZZZZZ-ZZZZZZ

L

@ - - - - - ®

\ /
/Algorithm N

1. Query the corners.

2. Ifall corners have the same color c, test if all pixels have color ¢
(as in Toy Example 1).

. J

31

Half-plane Test: 2 Bi-colored Sides

[Claim. The number of sides with different J

cornersis 0,2, or4.

ﬂmalysm \

The area outside of W U B has < en?/2 pixels.
« If the image is a half-plane, W contains only

white pixels and B contains only black pixels.
 |f the image is e-far from half-planes, it has

> en? /2 wrong pixels in W U B.

By Witness Lemma, 4 /¢ samples suffice to

K catch a wrong pixel. /

/Algorlthm

1. Query the corners.

2. If # of sides with different corners is 2, on both sides find 2 different
pixels within distance en/2 by binary search.

3. Query4/¢e pixels fromW U B

\4. Accept iff all Wpixels are white and all B pixels are black.

32

Testing If an Image Is a Half-plane [rR03]

A half-plane or

e-far from a half-plane?

O(1/¢) time ~/

Other Results on Properties of Images

e Pixel Model

Convexity [RO3]

Convex or e-far from convex?

0(1/£?) time

Connectedness [RO3]

Connected or e-far from connected?

O(1/£*) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is e-far?

time independent of image size

e Properties of sparse images [Ron Tsur 10]

34

Testing if a List Is Sorted

Input: a list of n numbers x,, x,,..., X,
e (Question: Is the list sorted?
Requires reading entire list: (2(n) time
e Approximate version: Is the list sorted or e-far from sorted?
(An € fraction of x;’s have to be changed to make it sorted.)
[Erglin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/¢) time ~.a;//
Q(log n) queries
e Attempts:
1. Test: Pick a random jand rejectif x;>x,,; .

Failson: 11111110000000 < 1/2-far from sorted

2. Test: Pick random i <j and reject if x; > x..

Failson: 10213243546576 < 1/2-far from sorted

35

Is a list sorted or e-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner) <nlog n edges

by adding a few “shortcut” edges (i, j) fori<j
where each pair of vertices is connected by a path of length at most 2

v

36

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e Ifx; is an endpoint of a violated edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]
Proof: Consider any two good numbers, x; and x..

They are connected by a path of (at most) two good edges (x;,x,), (x,,X;).
= X; <X, and x, < x;

= X;< X;

37

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.
e |Ifx; is an endpoint of a bad edge, call it bad. Otherwise, call it good.

[Claim 1. All good numbers x; are sorted.]

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

Proof: If a list is e-far from sorted, it has > ¢ n bad numbers. (Claim 1)
e Each violated edge contributes 2 bad numbers.
e 2-spanner has > ¢ n/2 violated edges out of < n log n.

38

Is a list sorted or e-far from sorted?

(Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

— |

LPick a random edge (x;,x;) from the 2-spanner and reject if x; > x..

Analysis:
* Callan edge (x;,x) violated if x; > x;, and good otherwise.

[Claim 2. An e-far list violates > ¢ /(2 log n) fraction of edges in 2-spanner.]

By Witness Lemma, it suffices to sample (4 log n)/e edges from 2-spanner.

(Algorithm
LSampIe (4 log n)/ € edges (x;,x;) from the i7anner and reject if x; > x..

— 1

Guarantee: All sorted lists are accepted.
All lists that are e-far from sorted are rejected with probability >2/3.

Time: O((log n)/¢)
39

Generalization

Observation: Q;//

The same test/analysis apply to any edge-transitive property of a list of
numbers that allows extension.

e A property is edge-transitive if

1) it can be expressed in terms conditions on ordered pairs of numbers

o————9
X

2) itis transitive: whenever (x, y) and (y, z) satisfy (1), so does (x, z)

O . Y

X y Z

e A property allows extension if

3) any function that satisfies (1) on a subset of the numbers can be
extended to a function with the property

40

Lipschitz Continuous Functions

A function f : D — R has Lipschitz constant c
if for all x,y in D,

distanceg(f(x).f(y)) < c - distancep(x,y).

A fundamental notion in

» mathematical analysis

» theory of differential equations
Example uses of a Lipschitz constant c of a given function f

» probability theory: in tail bounds via McDiarmid’s inequality
» program analysis: as a measure of robustness to noise

» data privacy: to scale noise added to preserve differential privacy

41

Computing a Lipschitz Constant?

e |nfeasible

e Undecidable to even verify if f Worefs s

o —

computed by a TM has Lipschitz constant ¢

e NP-hard to verify if f computed by

a circuit has Lipschitz constant ¢

— even for finite domains Do

Question: Can we test if a function has
Lipschitz constant c or is e-far from any such function?

42

Testing if a Function is Lipschitz [Jha R]

A function f : D — R is Lipschitz if it has Lipschitz constant c:
that is, if for all x,y in D,
distancex(f(x),f(y)) < distance,(x,y).

e canrescale by 1/c to get a Lipschitz function from a function with Lipschitz

constant ¢

1 2 2 3 3 4 5
Consider f: {1,...,n} —> R: *—>0—>0>0>0—>0—>0

nodes = points in the domain; edges = points at distance 1

, _ _ - node labels =values of the function
The Lipschitz property is edge-transitive:

1. apair (xy) is good if |fly)-f(x)] < |y-x]

2. (x,y)and(y,z) are good = (x,z) is good
Q;// It also allows extension for the range R.

Testing if a function f: {1,...,n} — R is Lipschitz takes O((log n)/¢) time.
J/ Does the spanner-based test apply if the range is R? with Euclidean

distances? Z? with Euclidean distances?
43

Properties of a List of n Numbers

e Sorted or e-far from sorted?

e Lipschitz (does not change too drastically)
or e-far from satisfying the Lipschitz property?

O(log n/¢) time ~/

Open: can it be improved?

44

Basic Properties of
Functions

Boolean Functions f : {0,1}" — {0,1}

Graph representation: fo11) ,, f(111)

A

n-dimensional hypercube

>

£(010) | ~f f(110)

f(001)

Y

f(101)

f(000) >f(100)
o vertices: bit strings of length n

° edges: (x,y) is an edge if y can be obtained from x by

increasing one bit from0Oto 1 x | 001001
y [011001

e each vertex x is labeled with f (x)

46

Monotonicity of Functions

[Goldreich Goldwasser Lehman Ron Samorodnitsky,
Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky]

e Afunction f : {0,1}" — {0,1} is monotone
if increasing a bit of x does not decrease f (x).

monotone
e |s f monotone or e-far from monotone
(f has to change on many points to become monontone)? 1
— Edge x—yisviolated by f if f (x) > f (y).
Time:
- 0(n/¢), logarithmic in the size of the input, 2" —-far froi monotone

- Q(y/n/¢) for restricted class of tests

47

Monotonicity Test [GGLRS, DGLRRS]

Idea: Show that functions that are far from monotone violate many edges.

ﬁEdgeTest (f, €) \
Ll. Pick 2n /¢ edges (x, y) uniformly at random from the hypercube. J

2. Rejectif some (x,y) is violated (i.e. f(x) > f(y)). Otherwise, accept.

Analysis

e If f is monotone, EdgeTest always accepts.
e If fis e-far from monotone, by Witness Lemma, it suffices to show that
> ¢/n fraction of edges (i.e., % 20 In = 271 edges) are violated by f.
— Let V(f) denote the number of edges violated by f.

Contrapositive: If V(f) < e2™1,
f can be made monotone by changing < ¢ 2" values.

(Repair Lemma
Lf can be made monotone by changing < 2 - V(f) values.

—1

48

Repair Lemma: Proof Idea

(Repair Lemma
| f can be made monotone by changing < 2 - V(f) values.

—1

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

pediypsabypsalypad

49

Repairing Violated Edges in One Dimension

Swap violated edges 1—0 in one dimension to 0—1.

j o 0 o 0
A \ A A
5L ~ 0/ A ~ L7 ”
| lL——4—— Swapping horizontal 0 &—————
dimension
) N N PRy m— :

1 0 0 1

Let I/; = # of violated edges in dimension j

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

Enough to prove the claim for squares

50

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

't

e A . . e A
Swapping horizontal
dimension
| >
—————— > ————— >

e If no horizontal edges are violated, no action is taken.

o1

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
[N 1 0 0 ______ .1
| \ ! Swapping horizontal '
dimension
| >
1-———== -0 0-————~— -1

e |f both horizontal edges are violated, both are swapped, so the
number of vertical violated edges does not change.

52

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i]

J
/L>_ 1 > O O) —————— > 1
| \ \ Swapping horizontal
dimension
| >
v ~v v o v

e Suppose one (say, top) horizontal edge is violated.

e |f both bottom vertices have the same label, the vertical edges
get swapped.

53

Proof of The Claim for Squares

[Claim. Swapping in dimension i does not increase V; for all dimensions j # i

J
[N 1 0 0 ______ .1
| \ 1 Swapping horizontal '
dimension
| >
0-————~- ~ 1 0-————~— -1

e Suppose one (say, top) horizontal edge is violated.

e |f both bottom vertices have the same label, the vertical edges
get swapped.

e Otherwise, the bottom vertices are labeled 0—1, and the

vertical violation is repaired.
54

Proof of The Claim for Squares

CIa|m Swapping in dimension i does not increase V; for all dimensions j # i

e pe e Pl

After we perform swaps in all dimensions:

* f becomes monotone

e # of values changed:
2-Vy+ 2 - (#violated edges in dim 2 after swappingdim 1)
+ 2 - (# violated edges in dim 3 after swappingdim 1 and 2)
+ ..=2-V1+2-V,+-2-V, =2-V(f)

(Repair Lemma Q(

| f can be made monotone by changing < 2 - V(f) values.)

Q;// Improve the bound by a factor of 2.

55

Testing if a Functions f : {0,1}"* — {0,1} is monotone

Monotone or

e-far from monotone?

O(n/¢) time J 1.7 [0 \0
(logarithmic in the size
of the input)

1 1
E-far from monotone

56

Graph Properties

Testing if a Graph i1s Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y’

e in adjacency lists representation \
(a list of neighbors for each vertex) \

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v,1), where v € V and i € [d]: entry i of adjacency list of vertex v
Exact Answer: QQ(dn) time

e Approximate version:
Is the graph connected or e-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

> No dependence on n!
£

+ improvement on HW s

Testing Connectedness: Algorithm

ﬂ:on nectedness Tester(G, d, €) \
1. Repeat s=16/¢cd times:
2. pick a random vertex u
3. determine if connected component of u is small:

perform BFS from u, stopping after at most 8/ed new nodes
K4. Reject if a small connected component was found, otherwise accept. /

Run time: O(d/e2d?)=0(1/2d)

Analysis:
e Connected graphs are always accepted.

e Remains to show:

If a graph is e-far from connected, it is rejected with probability >

wIiN

Testing Connectedness: Analysis

(Claim 1

y

Llf G is e-far from connected, It has > gflT" connected componentsJ

Claim 2

~

A\

. : ed
If G is e-far from connected, it has > Tn connected components

of size at most 8/¢<d.)

. gdn .
e If Claim 2 holds, at least —~ nodes are in small connected components.

: : : 2-8 16
e By Witness lemma, it suffices to sample = — nodes to detect one

gdn/n &d

from a small connected component.

60

Testing Connectedness: Proof of Claim 1

(Claim 1 W
Llf G is e-far from connected, It has > aszn connected componentsJ

Proof: We prove the contrapositive:

If G has < gflTn connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % ,50 2k-2 < edn .

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

61

Freeing up an Adjacency List Entry

(Claim 1 W
Llf G is e-far from connected, It has > gflT" connected componentsJ

Proof:
What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

e Thus, k components can be connected by adding 2k-1 edges, each affecting
2 nodes. Here, k < % , S0 4k-2 <edn .

62

Testing Connectedness: Proof of Claim 2

(Claim 1 \

Llf G is e-far from connected, It has > % connected componentsJ

" Claim 2 A
If G is e-far from connected, it has > % connected components

S of size at most 8/¢d.
Proof of Claim 2:

)

e If Claim 1 holds, there are at least % connected components.
4
edn/4 Ten
e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

e Their average size <

63

Testing if a Graph Is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices
e in adjacency lists representation

(a list of neighbors for each vertex)
e maximum degree d

Connected or
e-far from connected?

0 (L) time ¥/

2

N2\

(no dependence on n)

64

