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Tentative Topics 
Introduction, examples and general techniques. 

 

Sublinear-time algorithms for 

• graphs 

• strings 

• basic properties of functions 

• algebraic properties and codes 

• metric spaces 

• distributions 
Tools: probability, Fourier analysis, combinatorics, codes, … 

 

Sublinear-space algorithms: streaming 
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Tentative Plan 
Introduction, examples and general techniques. 

 

Lecture 1. Background. Testing properties of images and 
lists. 

 

Lecture 2. Properties of functions and graphs. Sublinear 
approximation. 

 

Lecture 3-5. Background in probability. Techniques for 
proving hardness. Other models for sublinear 
computation. 
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Motivation for Sublinear-Time Algorithms 

Massive datasets 

• world-wide web 

• online social networks 

• genome project 

• sales logs 

• census data 

• high-resolution images 

• scientific measurements 

Long access time 

• communication bottleneck (dial-up connection) 

• implicit data (an experiment per data point) 
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What Can We Hope For? 

• What can an algorithm compute if it 

– reads only a sublinear portion of the data? 

– runs in sublinear time? 

 

• Some problems have exact deterministic solutions 

 

• For most interesting problems algorithms must be 

– approximate 

– randomized 

 

5 



A Sublinear-Time Algorithm 
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B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A 

approximate answer 

 

sublinear-time algorithm 

Quality of 

approximation 
vs. 

Resources 
 number of samples 

 running time 

? L ? B ? L ? A 



Types of Approximation 

Classical approximation 

• need to compute a value 
 output is close to the desired value 

 examples: average, median values 

• need to compute the best structure 
 output is a structure with “cost” close to optimal 

 examples: furthest pair of points, minimum spanning tree 

Property testing 

• need to answer YES or NO 
 output is a correct answer for a given input, 

    or at least some input close to it 
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Classical Approximation 
  

A Simple Example 



Approximate Diameter of a Point Set [Indyk] 

 

Input:  𝑚 points, described by a distance matrix 𝐷  

– 𝐷𝑖𝑗   is the distance between points 𝑖 and 𝑗   

– 𝐷 satisfies triangle inequality and symmetry 

(Note:  input size is 𝑛 =  𝑚2) 

Let 𝑖, 𝑗  be indices that maximize 𝐷𝑖𝑗 . 

Maximum 𝐷𝑖𝑗  
is the diameter. 

• Output: (𝑘, ℓ) such that 𝐷𝑘ℓ   
 𝐷𝑖𝑗 

/2   

 

 



Algorithm and Analysis 

 
1. Pick 𝑘 arbitrarily 

2. Pick ℓ to maximize 𝐷𝑘ℓ 

3. Output (𝑘, ℓ) 

• Approximation guarantee 
𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗  (triangle inequality) 

      ≤ 𝐷𝑘ℓ + 𝐷𝑘ℓ (choice of ℓ + symmetry of 𝐷) 

      ≤ 2𝐷𝑘ℓ  

• Running time:  𝑂(𝑚)  =  𝑂(𝑚 = 𝑛) 
 

𝑖 

𝑗 

𝑘 

ℓ 

A rare example of a deterministic  

sublinear-time algorithm 

 Algorithm (𝑚, 𝐷) 



Property Testing 
  



Property Testing: YES/NO Questions 

Does the input satisfy some property? (YES/NO) 
 

“in the ballpark” vs. “out of the ballpark” 

 

 

 

Does the input satisfy the property  
or is it far from satisfying it? 

• sometimes it is the right question (probabilistically checkable proofs (PCPs)) 

• as good when the data is constantly changing (WWW) 

• fast sanity check to rule out inappropriate inputs (airport security questioning) 
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Property Tester 

Close to YES 

Far from 

 YES 

YES 

Reject with 
probability      2/3  

Don’t care  

  

Accept with 
probability ≥ 𝟐/𝟑  



Property Tester Definition 

Probabilistic Algorithm 

YES Accept with 
probability ≥ 𝟐/𝟑 

Reject with 
probability     2/3  

NO 



         far = differs in many places    𝜀-                                               (≥ 𝜀 fraction of places) 

    𝜀 



Randomized Sublinear 
Algorithms  

  
Toy Examples 



 Test (𝑛, 𝑤) 

Property Testing: a Toy Example 

Input: a string 𝑤 ∈ 0,1 𝑛 

Question: Is  𝑤 = 00 … 0? 

 Requires reading entire input. 

Approximate version:  Is 𝑤 = 00 … 0 or 

    does it have ≥ 𝜀𝑛 1’s (“errors”)? 

 

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random 

2. If 1 is found, reject; otherwise, accept 

Analysis: If 𝑤 = 00 … 0, it is always accepted.  

If 𝑤 is 𝜀-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3
 

 

If a test catches a witness with probability ≥ 𝑝,  

then s =
2

𝑝
 iterations of the test catch a witness  with probability ≥ 2/3.  
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Used: 1 − 𝑥 ≤ 𝑒−𝑥 

Witness Lemma 

0 0 0 1 … 0 1 0 0 



Randomized Approximation: a Toy Example 

Input: a string 𝑤 ∈ 0,1 𝑛 

Goal: Estimate the fraction of 1’s in 𝑤 (like in polls) 

It suffices to sample 𝑠 = 1 ⁄ 𝜀2 positions and output the average                         
to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3 

 

 

 

 

Yi = value of sample 𝑖. Then E[Y] = ∑
𝑠

𝑖=1
E[Yi] = 𝑠 ⋅ (fraction of 1’s in 𝑤) 

Pr (sample average) − fraction of 1′s in 𝑤 ≥ 𝜀 = Pr Y − E Y ≥ 𝜀𝑠  

≤ 2e−2𝛿2/𝑠 = 2𝑒−2 < 1/3 
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Let Y1, … , Ys be independently distributed random variables in [0,1] and  

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿2/𝑠. 

0 0 0 1 … 0 1 0 0 

Hoeffding Bound 

Apply Hoeffding Bound with 𝛿 = 𝜀𝑠  substitute 𝑠 = 1 ⁄ 𝜀2 



Property Testing 
  

Simple Examples 



Testing Properties of Images 
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Pixel Model 
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Query: point (𝑖1, 𝑖2) 

Answer: color of (𝑖1, 𝑖2) 

Input: 𝑛 × 𝑛 matrix of pixels 

(0/1 values for black-and-white pictures) 



Testing if an Image is a Half-plane [R03]  

 

 

 

A half-plane or  

𝜀-far from a half-plane? 

 

  O(1/𝜀) time 
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Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Half-plane Instances 
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A half-plane 1

4
-far from a half-plane 



Strategy 

 

“Testing by implicit learning” paradigm 

 

• Learn the outline of the image by querying a few pixels. 

• Test if the image conforms to the outline by random sampling, 
and reject if something is wrong. 
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Half-plane Test 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    

Algorithm 
1. Query the corners. 

? ? 

? ? 



Half-plane Test: 4 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    Analysis 

• If it is 4, the image cannot be a half-plane. 

Algorithm 
1. Query the corners. 
2. If the number of sides with different corners is 4, reject. 



Half-plane Test: 0 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    Analysis 

• If all corners have the same color, the image is a 
half-plane if and only if it is unicolored. 
 

Algorithm 
1. Query the corners. 
2. If all corners have the same color 𝑐, test if all pixels have color 𝑐  
        (as in Toy Example 1). 

? 

? 

? 
? 

? 

? 



Half-plane Test: 2 Bi-colored Sides 
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Claim. The number of sides with different 
corners is  0, 2, or 4. 

    

Algorithm 
1. Query the corners. 
2. If # of sides with different corners is 2, on both sides find 2 different 

pixels within distance 𝜀𝑛/2 by binary search. 
3. Query 4/𝜀 pixels from 𝑊 ∪ 𝐵 
4. Accept iff all 𝑊pixels are white and all 𝐵 pixels are black. 

Analysis 

• The area outside of 𝑊 ∪ 𝐵  has ≤ 𝜀𝑛2/2 pixels.  

• If the image is a half-plane, W contains only 

white pixels and B contains only black pixels. 

• If the image is 𝜀-far from half-planes, it has  

≥ 𝜀𝑛2/2 wrong pixels in 𝑊 ∪ 𝐵. 
• By Witness Lemma, 4/𝜀 samples suffice to 

catch a wrong pixel. 

? ? 
𝜀𝑛/2 

? ? 
𝜀𝑛/2 

𝑊 

𝐵 



Testing if an Image is a Half-plane [R03]  

 

 

 

A half-plane or  

𝜀-far from a half-plane? 

 

  O(1/𝜀) time 
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Other Results on Properties of Images 

• Pixel Model 
Convexity [R03] 

Convex or 𝜀-far from convex? 

  O(1/𝜀2) time 

 

Connectedness [R03] 

Connected or 𝜀-far from connected? 

  O(1/𝜀4) time 

 

Partitioning [Kleiner Keren Newman 10] 

Can be partitioned according to a template  

or is 𝜀-far? 

  time independent of image size 

• Properties of sparse images [Ron Tsur 10] 

 

 

34 



Testing if a List is Sorted 

Input: a list of n numbers  x1 , x2 ,...,  xn 

•  Question: Is the list sorted? 

 Requires reading entire list: (n) time  

• Approximate version: Is the list sorted or ²-far from sorted? 

      (An ² fraction of xi ’s have to be changed to make it sorted.) 

      [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/²) time  

                                                                                               (log n) queries 

• Attempts: 

      1. Test:  Pick a random i and reject if  xi > xi+1 . 

          Fails on:  1 1 1 1 1 1 1 0 0 0 0 0 0 0               Ã 1/2-far from sorted 

 

      2. Test:  Pick random i < j and reject if xi > xj. 

          Fails on:  1 0 2 1 3 2 4 3 5 4 6 5 7 6             Ã 1/2-far from sorted 
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Is a list sorted or ²-far from sorted? 

Idea:  Associate positions in the list with vertices of the directed line. 

 

          
 

 

Construct a graph (2-spanner) 

• by  adding a few “shortcut” edges (i, j) for i < j 

• where each pair of vertices is connected by a path of length at most 2 
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… … 

≤ n log n edges 

 1   2    3            …                                                    n-1  n 



Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

• If xi  is an endpoint of a violated edge, call it bad. Otherwise, call it good. 

 

Proof: Consider any two good numbers, xi and xj.  

            They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj). 

              )  xi ≤ xk  and xk ≤ xj 

                      ) xi ≤ xj 
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Claim 1. All good numbers xi  are sorted. 
    

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 



Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 

Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

• If xi  is an endpoint of a bad edge, call it bad. Otherwise, call it good. 

 

 

 

Proof: If a list is ²-far from sorted, it has  ¸ ² n bad numbers.  (Claim 1) 

• Each violated edge contributes 2 bad numbers.   

• 2-spanner has  ¸ ² n/2 violated edges out of · n log n. 
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Claim 1. All good numbers xi  are sorted. 
    
Claim 2. An ²-far list violates  ¸ ² /(2 log n) fraction of edges in 2-spanner. 
    



Is a list sorted or ²-far from sorted? 

  

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.  

 

  

                         1             2            5            4            3            6             7 
Analysis: 

• Call an edge (xi ,xj) violated if xi > xj , and good  otherwise. 

 

By Witness Lemma, it suffices to sample (4 log n )/² edges from 2-spanner. 

 

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.  

Guarantee: All sorted lists are accepted. 

All lists that are ²-far from sorted are rejected with probability ¸2/3. 

Time: O((log n)/²)                
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1
2

1
2

5            4            3 
xi                                                                                               xj xk 

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99] 

Algorithm 

Claim 2. An ²-far list violates  ¸ ² /(2 log n) fraction of edges in 2-spanner. 
    



Generalization 

Observation:  
The same test/analysis apply to any edge-transitive property of a list of 

numbers that allows extension. 

• A property is edge-transitive if 

1) it can be expressed in terms conditions on ordered pairs of numbers 

 

2) it is transitive: whenever (𝑥, 𝑦) and (𝑦, 𝑧) satisfy (1), so does 𝑥, 𝑧  

 

 

• A property allows extension if 

3) any function that satisfies (1) on a subset of the numbers can be 
extended to a function with the property 

40 

1
2

x y z 

1
2

x y 



Lipschitz Continuous Functions 

 

 

 

 

A fundamental notion in 

 mathematical analysis 

 theory of differential equations 

Example uses of a Lipschitz constant c of a given function f 

 probability theory: in tail bounds via McDiarmid’s inequality 

 program analysis: as a measure of robustness to noise  

 data privacy: to scale noise added to preserve differential privacy 

 

 

 

 

 

 

 

   

A function f : D  R has Lipschitz constant c 
if for all x,y in D,        

distanceR(f(x),f(y)) ≤ c ∙ distanceD(x,y). 
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Computing a Lipschitz Constant?   

• Infeasible 

 

• Undecidable  to even verify if f  

    computed by a TM has Lipschitz constant c 

• NP-hard to verify if f computed by  

    a circuit has Lipschitz constant c 

– even  for finite domains 

 

Question: Can we test if a function has 

Lipschitz constant c or is 𝜀-far from any such function? 

42 Image sources: http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/coretechnologies.htm  

                          http://www.augustana.ab.ca/~mohrj/courses/2004.fall/csc110/assignments/lab2.html 



Testing if a Function is Lipschitz [Jha R] 

A function f : D  R is Lipschitz if it  has Lipschitz constant c: 
that is, if for all x,y in D,        

distanceR(f(x),f(y)) ≤ distanceD(x,y). 
• can rescale by 1 𝑐 ⁄ to get a Lipschitz function from a function with Lipschitz 

constant 𝑐 

Consider f : {1,…,n}  R: 

 

The Lipschitz property is edge-transitive: 

1. a pair (x,y) is good if |f(y)-f(x)| ≤ |y-x| 
2. (x,y) and (y,z) are good  ) (x,z) is good 

        It also allows extension for  the range R. 

Testing if a function f : {1,…,n}  R is Lipschitz takes O((log n )/²) time. 

     Does the spanner-based test apply if the range is R2 with Euclidean 

distances?  Z2 with Euclidean distances? 
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nodes = points in the domain; edges = points  at distance 1 

node labels  = values  of the function 

2 3 3 5 4 2 1 



Properties of a List of n Numbers 
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• Sorted or 𝜀-far from sorted? 

 

• Lipschitz (does not change too drastically)  

     or 𝜀-far from satisfying the Lipschitz property? 

 

               O(log n/𝜀) time 

                                        Open: can it be improved? 
 



Basic Properties of 
Functions 
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f(000) 

f(111)  f(011) 

f(100) 

f(101) 

f(110) f(010) 

f(001) 

  Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}   

Graph representation: 

𝑛-dimensional hypercube 

 

 

 

 

•   2𝑛   vertices: bit strings of length 𝑛 

• 2𝑛−1𝑛  edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1 

 

• each vertex 𝑥 is labeled with 𝑓(𝑥) 

 

001001 

011001          

𝑥 

𝑦 



Monotonicity of Functions 
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[Goldreich Goldwasser Lehman Ron Samorodnitsky,  

 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky] 

 

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone  

     if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).  

 

• Is 𝑓 monotone or 𝜀-far from monotone 
      (𝑓 has to change on many points to become monontone)? 

– Edge 𝑥𝑦 is violated by  𝑓  if  𝑓 (𝑥)  >  𝑓 (𝑦). 

 

Time:  

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛 

– Ω( 𝑛/𝜀) for restricted class of tests 

0 

0 0 

0 1 

1 

1 

1 

1 

1 0 

0 0 

0 

1 

1 

monotone 

1

2
-far from monotone 



Monotonicity Test [GGLRS, DGLRRS] 
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Idea: Show that functions that are far from monotone violate many edges.  

 

 

 

Analysis 

• If 𝑓 is monotone, EdgeTest always accepts.  

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that 

≥ 𝜀/𝑛 fraction of edges (i.e., 
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓. 

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓. 

     Contrapositive:  If 𝑉(𝑓) < 𝜀 2𝑛−1,               
 𝑓 can be made monotone by changing  < 𝜀 2𝑛 values. 

 

 

 

EdgeTest (𝑓, ε) 

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube. 

2. Reject if some 𝑥, 𝑦  is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise,  accept. 

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  



Repair Lemma: Proof Idea 
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Proof idea: Transform f into a monotone function by 
repairing edges in one dimension at a time. 
 

 

 

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  
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Repairing Violated Edges in One Dimension 

0 0 0 0 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

0 

1 

Swapping horizontal 

dimension 

Swap violated edges 10  in one dimension to  01.  

Let 𝑉𝑗 = # of violated edges in dimension 𝑗 

 

 

Enough to prove the claim for squares 

i 

j 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
    



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• If no horizontal edges are violated, no action is taken.  

51 

Swapping horizontal 

dimension 

i 

j 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• If both horizontal edges are violated, both are swapped, so the 
number of vertical violated edges does not change.  
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Swapping horizontal 

dimension 

i 

j 

0 1 1 0 

1 0 0 1 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• Suppose one (say, top) horizontal edge is violated. 

• If both bottom vertices have the same label, the vertical edges 
get swapped.  
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i 

j 

Swapping horizontal 

dimension 

1 0 0 1 

𝒗 𝒗 𝒗 𝒗 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

 

 

 

 

• Suppose one (say, top) horizontal edge is violated. 

• If both bottom vertices have the same label, the vertical edges 
get swapped.  

• Otherwise, the bottom vertices are labeled 01, and the 
vertical violation is repaired. 
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i 

j 

Swapping horizontal 

dimension 

1 0 0 1 

1 0 1 0 

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        



Proof of The Claim for Squares 

 

 

 

 

 

After we perform swaps in all dimensions: 
• 𝑓 becomes monotone 

• # of values changed:  
      2 ⋅ 𝑉1 +  2 ⋅ (# violated edges in dim 2 after swapping dim 1) 

   + 2 ⋅ (# violated edges in dim 3 after swapping dim 1 and 2) 
                 + … = 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 + ⋯ 2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓  

 

 

•     Improve the bound by a factor of 2. 
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Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗  for all dimensions 𝑗 ≠ 𝑖 

 
        

Repair Lemma 

  𝑓 can be made monotone by changing  ≤ 2 ⋅ 𝑉(𝑓) values.  



Testing if a Functions 𝑓 ∶ 0,1 𝑛 → {0,1} is  monotone 
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Monotone or  

𝜀-far from monotone? 

 

               O(n/𝜀) time 

                                    (logarithmic in the size  

  of the input) 

 
 

0 

0 0 

0 1 

1 

1 

1 

1 

1 0 

0 0 

0 

1 

1 

monotone 

1

2
-far from monotone 



Graph Properties 



Testing if a Graph is Connected [Goldreich Ron]  

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 
• in adjacency lists representation  

      (a list of neighbors for each vertex)  

• maximum degree d, i.e., adjacency lists of length d with some empty entries 

Query (𝑣, 𝑖), where 𝑣 ∈  𝑉 and 𝑖 ∈ [𝑑]: entry 𝑖 of adjacency list of vertex 𝑣 

Exact Answer: (dn) time 

 

• Approximate version:   

Is the graph connected or ²-far from connected? 

dist 𝐺1, 𝐺2 =
# 𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒𝑠 𝑖𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡𝑠 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺1 𝑎𝑛𝑑 𝐺2 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑛
 

Time:  𝑂
1

𝜀2𝑑
 today  

+ improvement on HW 

 

 

 

 

No dependence on n! 
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Testing Connectedness: Algorithm 

 

1. Repeat  s=16/ed times: 

2.      pick a random vertex 𝑢      

3.      determine if connected component of 𝑢 is small: 

              perform BFS from 𝑢, stopping after at most 8/ed new nodes 

4. Reject if a small connected component was found, otherwise accept. 

Run time: O(𝑑/e2𝑑2)=O(1/e2𝑑) 

 

Analysis:  

• Connected graphs are always accepted. 

• Remains to show:   

If a graph is ²-far from connected, it is rejected with probability  ≥
2

3
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  Connectedness Tester(G, d, ε) 



Testing Connectedness: Analysis 

 

 

 

 

 

 

 

 

• If Claim 2 holds, at least 
e𝑑𝑛

8
  nodes are in small connected components. 

• By Witness lemma, it suffices to sample 
2⋅8

e𝑑𝑛/𝑛
  = 

16

e𝑑
 nodes to detect one 

from a small connected component. 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛

4
  connected components.   

Claim 2 

  If G is e-far from connected, it has ≥
e𝑑𝑛

8
  connected components  

of size at most 8/ed.   



Testing Connectedness: Proof of Claim 1 

 

 

 

Proof:  We prove the contrapositive:  

If G has < 
e𝑑𝑛

4
  connected components, one can make G connected by 

modifying < e fraction of its representation, i.e., < e𝑑𝑛 entries. 

• If there are no degree restrictions, k components can be connected by 

adding k-1 edges, each affecting 2 nodes. Here, k <  
e𝑑𝑛

4
 , so 2k-2 < e𝑑𝑛 . 

• What if adjacency lists of all vertices in a component are full,  

i.e., all  vertex degrees are d? 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛

4
  connected components.   



Freeing up an Adjacency List Entry 

 

 

 

Proof: 

What if adjacency lists of all vertices in a component are full,  

i.e., all  vertex degrees are d? 

 

• Consider an  MST of this component. 

• Let 𝑣 be a leaf of the MST. 

• Disconnect 𝑣 from a node other than its parent in the MST. 

• Two entries are changed while keeping the same number of components. 

• Thus, k components can be connected by adding 2k-1 edges, each affecting 

2 nodes. Here, k <  
e𝑑𝑛

4
 , so 4k-2 < e𝑑𝑛 . 
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𝑣 

Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛

4
  connected components.   



Testing Connectedness: Proof of Claim 2 

 

 

 

 

 

 

 

Proof of Claim 2: 

• If Claim 1 holds, there are at least 
e𝑑𝑛

4
  connected components. 

• Their average size ≤
𝑛

e𝑑𝑛/4
 = 

4

e𝑛
. 

•  By an averaging argument (or Markov inequality), at least half of the 
components are of size at most twice the average. 
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Claim 1 

  If G is e-far from connected, it has ≥
e𝑑𝑛

4
  connected components.   

Claim 2 

  If G is e-far from connected, it has ≥
e𝑑𝑛

8
  connected components  

of size at most 8/ed.   



Testing if a Graph is Connected [Goldreich Ron]  
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Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices 

• in adjacency lists representation  

      (a list of neighbors for each vertex)  

• maximum degree d 

 

 

Connected or  

𝜀-far from connected? 

 𝑂
1

𝜀2𝑑
 time 

                                                        (no dependence on 𝑛) 

 
 


