
1

Sublinear Algorithms
Lectures 1 and 2

Sofya Raskhodnikova
Penn State University

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.: A

Tentative Topics
Introduction, examples and general techniques.

Sublinear-time algorithms for

• graphs

• strings

• basic properties of functions

• algebraic properties and codes

• metric spaces

• distributions
Tools: probability, Fourier analysis, combinatorics, codes, …

Sublinear-space algorithms: streaming

2

Tentative Plan
Introduction, examples and general techniques.

Lecture 1. Background. Testing properties of images and
lists.

Lecture 2. Properties of functions and graphs. Sublinear
approximation.

Lecture 3-5. Background in probability. Techniques for
proving hardness. Other models for sublinear
computation.

3

Motivation for Sublinear-Time Algorithms

Massive datasets

• world-wide web

• online social networks

• genome project

• sales logs

• census data

• high-resolution images

• scientific measurements

Long access time

• communication bottleneck (dial-up connection)

• implicit data (an experiment per data point)

4

What Can We Hope For?

• What can an algorithm compute if it

– reads only a sublinear portion of the data?

– runs in sublinear time?

• Some problems have exact deterministic solutions

• For most interesting problems algorithms must be

– approximate

– randomized

5

A Sublinear-Time Algorithm

6

B L A - B L A - B L A - B L A - B L A - B L A - B L A - B L A

approximate answer

sublinear-time algorithm

Quality of

approximation
vs.

Resources
 number of samples

 running time

? L ? B ? L ? A

Types of Approximation

Classical approximation

• need to compute a value
 output is close to the desired value

 examples: average, median values

• need to compute the best structure
 output is a structure with “cost” close to optimal

 examples: furthest pair of points, minimum spanning tree

Property testing

• need to answer YES or NO
 output is a correct answer for a given input,

 or at least some input close to it

7

Classical Approximation

A Simple Example

Approximate Diameter of a Point Set [Indyk]

Input: 𝑚 points, described by a distance matrix 𝐷

– 𝐷𝑖𝑗 is the distance between points 𝑖 and 𝑗

– 𝐷 satisfies triangle inequality and symmetry

(Note: input size is 𝑛 = 𝑚2)

Let 𝑖, 𝑗 be indices that maximize 𝐷𝑖𝑗 .

Maximum 𝐷𝑖𝑗
is the diameter.

• Output: (𝑘, ℓ) such that 𝐷𝑘ℓ
 𝐷𝑖𝑗

/2

Algorithm and Analysis

1. Pick 𝑘 arbitrarily

2. Pick ℓ to maximize 𝐷𝑘ℓ

3. Output (𝑘, ℓ)

• Approximation guarantee
𝐷𝑖𝑗 ≤ 𝐷𝑖𝑘 + 𝐷𝑘𝑗 (triangle inequality)

 ≤ 𝐷𝑘ℓ + 𝐷𝑘ℓ (choice of ℓ + symmetry of 𝐷)

 ≤ 2𝐷𝑘ℓ

• Running time: 𝑂(𝑚) = 𝑂(𝑚 = 𝑛)

𝑖

𝑗

𝑘

ℓ

A rare example of a deterministic

sublinear-time algorithm

 Algorithm (𝑚, 𝐷)

Property Testing

Property Testing: YES/NO Questions

Does the input satisfy some property? (YES/NO)

“in the ballpark” vs. “out of the ballpark”

Does the input satisfy the property
or is it far from satisfying it?

• sometimes it is the right question (probabilistically checkable proofs (PCPs))

• as good when the data is constantly changing (WWW)

• fast sanity check to rule out inappropriate inputs (airport security questioning)

12

13

Property Tester

Close to YES

Far from

 YES

YES

Reject with
probability 2/3

Don’t care

Accept with
probability ≥ 𝟐/𝟑



Property Tester Definition

Probabilistic Algorithm

YES Accept with
probability ≥ 𝟐/𝟑

Reject with
probability 2/3

NO



 far = differs in many places 𝜀- (≥ 𝜀 fraction of places)

 𝜀

Randomized Sublinear
Algorithms

Toy Examples

 Test (𝑛, 𝑤)

Property Testing: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Question: Is 𝑤 = 00 … 0?

 Requires reading entire input.

Approximate version: Is 𝑤 = 00 … 0 or

 does it have ≥ 𝜀𝑛 1’s (“errors”)?

1. Sample 𝑠 = 2/𝜀 positions uniformly and independently at random

2. If 1 is found, reject; otherwise, accept

Analysis: If 𝑤 = 00 … 0, it is always accepted.

If 𝑤 is 𝜀-far, Pr[error] = Pr[no 1’s in the sample]≤ 1 − 𝜀 𝑠 ≤ 𝑒−𝜀𝑠 = 𝑒−2 <
1

3

If a test catches a witness with probability ≥ 𝑝,

then s =
2

𝑝
 iterations of the test catch a witness with probability ≥ 2/3.

15

Used: 1 − 𝑥 ≤ 𝑒−𝑥

Witness Lemma

0 0 0 1 … 0 1 0 0

Randomized Approximation: a Toy Example

Input: a string 𝑤 ∈ 0,1 𝑛

Goal: Estimate the fraction of 1’s in 𝑤 (like in polls)

It suffices to sample 𝑠 = 1 ⁄ 𝜀2 positions and output the average
to get the fraction of 1’s ±𝜀 (i.e., additive error 𝜀) with probability ¸ 2/3

Yi = value of sample 𝑖. Then E[Y] = ∑
𝑠

𝑖=1
E[Yi] = 𝑠 ⋅ (fraction of 1’s in 𝑤)

Pr (sample average) − fraction of 1′s in 𝑤 ≥ 𝜀 = Pr Y − E Y ≥ 𝜀𝑠

≤ 2e−2𝛿2/𝑠 = 2𝑒−2 < 1/3

16

Let Y1, … , Ys be independently distributed random variables in [0,1] and

let Y = ∑
𝑠

𝑖=1
Yi (sample sum). Then Pr Y − E Y ≥ δ ≤ 2e−2𝛿2/𝑠.

0 0 0 1 … 0 1 0 0

Hoeffding Bound

Apply Hoeffding Bound with 𝛿 = 𝜀𝑠 substitute 𝑠 = 1 ⁄ 𝜀2

Property Testing

Simple Examples

Testing Properties of Images

18

Pixel Model

19

Query: point (𝑖1, 𝑖2)

Answer: color of (𝑖1, 𝑖2)

Input: 𝑛 × 𝑛 matrix of pixels

(0/1 values for black-and-white pictures)

Testing if an Image is a Half-plane [R03]

A half-plane or

𝜀-far from a half-plane?

 O(1/𝜀) time

20

Half-plane Instances

21

A half-plane 1

4
-far from a half-plane

Half-plane Instances

22

A half-plane 1

4
-far from a half-plane

Half-plane Instances

23

A half-plane 1

4
-far from a half-plane

Half-plane Instances

24

A half-plane 1

4
-far from a half-plane

Half-plane Instances

25

A half-plane 1

4
-far from a half-plane

Half-plane Instances

26

A half-plane 1

4
-far from a half-plane

Half-plane Instances

27

A half-plane 1

4
-far from a half-plane

Strategy

“Testing by implicit learning” paradigm

• Learn the outline of the image by querying a few pixels.

• Test if the image conforms to the outline by random sampling,
and reject if something is wrong.

28

Half-plane Test

29

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.

? ?

? ?

Half-plane Test: 4 Bi-colored Sides

30

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis

• If it is 4, the image cannot be a half-plane.

Algorithm
1. Query the corners.
2. If the number of sides with different corners is 4, reject.

Half-plane Test: 0 Bi-colored Sides

31

Claim. The number of sides with different
corners is 0, 2, or 4.

 Analysis

• If all corners have the same color, the image is a
half-plane if and only if it is unicolored.

Algorithm
1. Query the corners.
2. If all corners have the same color 𝑐, test if all pixels have color 𝑐
 (as in Toy Example 1).

?

?

?
?

?

?

Half-plane Test: 2 Bi-colored Sides

32

Claim. The number of sides with different
corners is 0, 2, or 4.

Algorithm
1. Query the corners.
2. If # of sides with different corners is 2, on both sides find 2 different

pixels within distance 𝜀𝑛/2 by binary search.
3. Query 4/𝜀 pixels from 𝑊 ∪ 𝐵
4. Accept iff all 𝑊pixels are white and all 𝐵 pixels are black.

Analysis

• The area outside of 𝑊 ∪ 𝐵 has ≤ 𝜀𝑛2/2 pixels.

• If the image is a half-plane, W contains only

white pixels and B contains only black pixels.

• If the image is 𝜀-far from half-planes, it has

≥ 𝜀𝑛2/2 wrong pixels in 𝑊 ∪ 𝐵.
• By Witness Lemma, 4/𝜀 samples suffice to

catch a wrong pixel.

? ?
𝜀𝑛/2

? ?
𝜀𝑛/2

𝑊

𝐵

Testing if an Image is a Half-plane [R03]

A half-plane or

𝜀-far from a half-plane?

 O(1/𝜀) time

33

Other Results on Properties of Images

• Pixel Model
Convexity [R03]

Convex or 𝜀-far from convex?

 O(1/𝜀2) time

Connectedness [R03]

Connected or 𝜀-far from connected?

 O(1/𝜀4) time

Partitioning [Kleiner Keren Newman 10]

Can be partitioned according to a template

or is 𝜀-far?

 time independent of image size

• Properties of sparse images [Ron Tsur 10]

34

Testing if a List is Sorted

Input: a list of n numbers x1 , x2 ,..., xn

• Question: Is the list sorted?

 Requires reading entire list: (n) time

• Approximate version: Is the list sorted or ²-far from sorted?

 (An ² fraction of xi ’s have to be changed to make it sorted.)

 [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: O((log n)/²) time

 (log n) queries

• Attempts:

 1. Test: Pick a random i and reject if xi > xi+1 .

 Fails on: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Ã 1/2-far from sorted

 2. Test: Pick random i < j and reject if xi > xj.

 Fails on: 1 0 2 1 3 2 4 3 5 4 6 5 7 6 Ã 1/2-far from sorted

35

1
2

Is a list sorted or ²-far from sorted?

Idea: Associate positions in the list with vertices of the directed line.

Construct a graph (2-spanner)

• by adding a few “shortcut” edges (i, j) for i < j

• where each pair of vertices is connected by a path of length at most 2

36

… …

≤ n log n edges

 1 2 3 … n-1 n

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a violated edge, call it bad. Otherwise, call it good.

Proof: Consider any two good numbers, xi and xj.

 They are connected by a path of (at most) two good edges (xi ,xk), (xk ,xj).

) xi ≤ xk and xk ≤ xj

) xi ≤ xj

37

1
2

1
2

5 4 3
xi xj xk

Claim 1. All good numbers xi are sorted.

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

• If xi is an endpoint of a bad edge, call it bad. Otherwise, call it good.

Proof: If a list is ²-far from sorted, it has ¸ ² n bad numbers. (Claim 1)

• Each violated edge contributes 2 bad numbers.

• 2-spanner has ¸ ² n/2 violated edges out of · n log n.

38

1
2

1
2

5 4 3
xi xj xk

Claim 1. All good numbers xi are sorted.

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Is a list sorted or ²-far from sorted?

Pick a random edge (xi ,xj) from the 2-spanner and reject if xi > xj.

 1 2 5 4 3 6 7
Analysis:

• Call an edge (xi ,xj) violated if xi > xj , and good otherwise.

By Witness Lemma, it suffices to sample (4 log n)/² edges from 2-spanner.

Sample (4 log n)/ ² edges (xi ,xj) from the 2-spanner and reject if xi > xj.

Guarantee: All sorted lists are accepted.

All lists that are ²-far from sorted are rejected with probability ¸2/3.

Time: O((log n)/²)

 39

1
2

1
2

5 4 3
xi xj xk

Test [Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky 99]

Algorithm

Claim 2. An ²-far list violates ¸ ² /(2 log n) fraction of edges in 2-spanner.

Generalization

Observation:
The same test/analysis apply to any edge-transitive property of a list of

numbers that allows extension.

• A property is edge-transitive if

1) it can be expressed in terms conditions on ordered pairs of numbers

2) it is transitive: whenever (𝑥, 𝑦) and (𝑦, 𝑧) satisfy (1), so does 𝑥, 𝑧

• A property allows extension if

3) any function that satisfies (1) on a subset of the numbers can be
extended to a function with the property

40

1
2

x y z

1
2

x y

Lipschitz Continuous Functions

A fundamental notion in

 mathematical analysis

 theory of differential equations

Example uses of a Lipschitz constant c of a given function f

 probability theory: in tail bounds via McDiarmid’s inequality

 program analysis: as a measure of robustness to noise

 data privacy: to scale noise added to preserve differential privacy

A function f : D  R has Lipschitz constant c
if for all x,y in D,

distanceR(f(x),f(y)) ≤ c ∙ distanceD(x,y).

41

Computing a Lipschitz Constant?

• Infeasible

• Undecidable to even verify if f

 computed by a TM has Lipschitz constant c

• NP-hard to verify if f computed by

 a circuit has Lipschitz constant c

– even for finite domains

Question: Can we test if a function has

Lipschitz constant c or is 𝜀-far from any such function?

42 Image sources: http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/coretechnologies.htm

 http://www.augustana.ab.ca/~mohrj/courses/2004.fall/csc110/assignments/lab2.html

Testing if a Function is Lipschitz [Jha R]

A function f : D  R is Lipschitz if it has Lipschitz constant c:
that is, if for all x,y in D,

distanceR(f(x),f(y)) ≤ distanceD(x,y).
• can rescale by 1 𝑐 ⁄ to get a Lipschitz function from a function with Lipschitz

constant 𝑐

Consider f : {1,…,n}  R:

The Lipschitz property is edge-transitive:

1. a pair (x,y) is good if |f(y)-f(x)| ≤ |y-x|
2. (x,y) and (y,z) are good) (x,z) is good

 It also allows extension for the range R.

Testing if a function f : {1,…,n}  R is Lipschitz takes O((log n)/²) time.

 Does the spanner-based test apply if the range is R2 with Euclidean

distances? Z2 with Euclidean distances?

43

nodes = points in the domain; edges = points at distance 1

node labels = values of the function

2 3 3 5 4 2 1

Properties of a List of n Numbers

44

• Sorted or 𝜀-far from sorted?

• Lipschitz (does not change too drastically)

 or 𝜀-far from satisfying the Lipschitz property?

 O(log n/𝜀) time

 Open: can it be improved?

Basic Properties of
Functions

46

f(000)

f(111) f(011)

f(100)

f(101)

f(110) f(010)

f(001)

 Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Graph representation:

𝑛-dimensional hypercube

• 2𝑛 vertices: bit strings of length 𝑛

• 2𝑛−1𝑛 edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by
increasing one bit from 0 to 1

• each vertex 𝑥 is labeled with 𝑓(𝑥)

001001

011001

𝑥

𝑦

Monotonicity of Functions

47

[Goldreich Goldwasser Lehman Ron Samorodnitsky,

 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky]

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

 if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).

• Is 𝑓 monotone or 𝜀-far from monotone
 (𝑓 has to change on many points to become monontone)?

– Edge 𝑥𝑦 is violated by 𝑓 if 𝑓 (𝑥) > 𝑓 (𝑦).

Time:

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛

– Ω(𝑛/𝜀) for restricted class of tests

0

0 0

0 1

1

1

1

1

1 0

0 0

0

1

1

monotone

1

2
-far from monotone

Monotonicity Test [GGLRS, DGLRRS]

48

Idea: Show that functions that are far from monotone violate many edges.

Analysis

• If 𝑓 is monotone, EdgeTest always accepts.

• If 𝑓 is 𝜀-far from monotone, by Witness Lemma, it suffices to show that

≥ 𝜀/𝑛 fraction of edges (i.e.,
𝜀

𝑛
⋅ 2𝑛−1𝑛 = 𝜀2𝑛−1 edges) are violated by 𝑓.

– Let 𝑉(𝑓) denote the number of edges violated by 𝑓.

 Contrapositive: If 𝑉(𝑓) < 𝜀 2𝑛−1,
 𝑓 can be made monotone by changing < 𝜀 2𝑛 values.

EdgeTest (𝑓, ε)

1. Pick 2𝑛/𝜀 edges (𝑥, 𝑦) uniformly at random from the hypercube.

2. Reject if some 𝑥, 𝑦 is violated (i.e. 𝑓 𝑥 > 𝑓(𝑦)). Otherwise, accept.

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Repair Lemma: Proof Idea

49

Proof idea: Transform f into a monotone function by
repairing edges in one dimension at a time.

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

50

Repairing Violated Edges in One Dimension

0 0 0 0

1

1

1

0

0

0

0

0

1

1

0

1

Swapping horizontal

dimension

Swap violated edges 10 in one dimension to 01.

Let 𝑉𝑗 = # of violated edges in dimension 𝑗

Enough to prove the claim for squares

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If no horizontal edges are violated, no action is taken.

51

Swapping horizontal

dimension

i

j

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• If both horizontal edges are violated, both are swapped, so the
number of vertical violated edges does not change.

52

Swapping horizontal

dimension

i

j

0 1 1 0

1 0 0 1

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

53

i

j

Swapping horizontal

dimension

1 0 0 1

𝒗 𝒗 𝒗 𝒗

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

• Suppose one (say, top) horizontal edge is violated.

• If both bottom vertices have the same label, the vertical edges
get swapped.

• Otherwise, the bottom vertices are labeled 01, and the
vertical violation is repaired.

54

i

j

Swapping horizontal

dimension

1 0 0 1

1 0 1 0

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Proof of The Claim for Squares

After we perform swaps in all dimensions:
• 𝑓 becomes monotone

• # of values changed:
 2 ⋅ 𝑉1 + 2 ⋅ (# violated edges in dim 2 after swapping dim 1)

 + 2 ⋅ (# violated edges in dim 3 after swapping dim 1 and 2)
 + … = 2 ⋅ 𝑉1 + 2 ⋅ 𝑉2 + ⋯ 2 ⋅ 𝑉𝑛 = 2 ⋅ 𝑉 𝑓

• Improve the bound by a factor of 2.

 55

Claim. Swapping in dimension 𝑖 does not increase 𝑉𝑗 for all dimensions 𝑗 ≠ 𝑖

Repair Lemma

 𝑓 can be made monotone by changing ≤ 2 ⋅ 𝑉(𝑓) values.

Testing if a Functions 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone

56

Monotone or

𝜀-far from monotone?

 O(n/𝜀) time

 (logarithmic in the size

 of the input)

0

0 0

0 1

1

1

1

1

1 0

0 0

0

1

1

monotone

1

2
-far from monotone

Graph Properties

Testing if a Graph is Connected [Goldreich Ron]

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices
• in adjacency lists representation

 (a list of neighbors for each vertex)

• maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (𝑣, 𝑖), where 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑑]: entry 𝑖 of adjacency list of vertex 𝑣

Exact Answer: (dn) time

• Approximate version:

Is the graph connected or ²-far from connected?

dist 𝐺1, 𝐺2 =
𝑜𝑓 𝑒𝑛𝑡𝑖𝑟𝑒𝑠 𝑖𝑛 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑙𝑖𝑠𝑡𝑠 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐺1 𝑎𝑛𝑑 𝐺2 𝑑𝑖𝑓𝑓𝑒𝑟

𝑑𝑛

Time: 𝑂
1

𝜀2𝑑
 today

+ improvement on HW

No dependence on n!

58

Testing Connectedness: Algorithm

1. Repeat s=16/ed times:

2. pick a random vertex 𝑢

3. determine if connected component of 𝑢 is small:

 perform BFS from 𝑢, stopping after at most 8/ed new nodes

4. Reject if a small connected component was found, otherwise accept.

Run time: O(𝑑/e2𝑑2)=O(1/e2𝑑)

Analysis:

• Connected graphs are always accepted.

• Remains to show:

If a graph is ²-far from connected, it is rejected with probability ≥
2

3

59

 Connectedness Tester(G, d, ε)

Testing Connectedness: Analysis

• If Claim 2 holds, at least
e𝑑𝑛

8
 nodes are in small connected components.

• By Witness lemma, it suffices to sample
2⋅8

e𝑑𝑛/𝑛
 =

16

e𝑑
 nodes to detect one

from a small connected component.

60

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛

4
 connected components.

Claim 2

 If G is e-far from connected, it has ≥
e𝑑𝑛

8
 connected components

of size at most 8/ed.

Testing Connectedness: Proof of Claim 1

Proof: We prove the contrapositive:

If G has <
e𝑑𝑛

4
 connected components, one can make G connected by

modifying < e fraction of its representation, i.e., < e𝑑𝑛 entries.

• If there are no degree restrictions, k components can be connected by

adding k-1 edges, each affecting 2 nodes. Here, k <
e𝑑𝑛

4
 , so 2k-2 < e𝑑𝑛 .

• What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

61

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛

4
 connected components.

Freeing up an Adjacency List Entry

Proof:

What if adjacency lists of all vertices in a component are full,

i.e., all vertex degrees are d?

• Consider an MST of this component.

• Let 𝑣 be a leaf of the MST.

• Disconnect 𝑣 from a node other than its parent in the MST.

• Two entries are changed while keeping the same number of components.

• Thus, k components can be connected by adding 2k-1 edges, each affecting

2 nodes. Here, k <
e𝑑𝑛

4
 , so 4k-2 < e𝑑𝑛 .

62

𝑣

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛

4
 connected components.

Testing Connectedness: Proof of Claim 2

Proof of Claim 2:

• If Claim 1 holds, there are at least
e𝑑𝑛

4
 connected components.

• Their average size ≤
𝑛

e𝑑𝑛/4
 =

4

e𝑛
.

• By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

63

Claim 1

 If G is e-far from connected, it has ≥
e𝑑𝑛

4
 connected components.

Claim 2

 If G is e-far from connected, it has ≥
e𝑑𝑛

8
 connected components

of size at most 8/ed.

Testing if a Graph is Connected [Goldreich Ron]

64

Input: a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices

• in adjacency lists representation

 (a list of neighbors for each vertex)

• maximum degree d

Connected or

𝜀-far from connected?

 𝑂
1

𝜀2𝑑
 time

 (no dependence on 𝑛)

