Sublinear Algorithms
Lecture 3

Sofya Raskhodnikova
Penn State University

Graph Properties

Testing if a Graph i1s Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices v Y’

e in adjacency lists representation \
(a list of neighbors for each vertex) \

e maximum degree d, i.e., adjacency lists of length d with some empty entries

Query (v,1), where v € V and i € [d]: entry i of adjacency list of vertex v
Exact Answer: QQ(dn) time

e Approximate version:
Is the graph connected or e-far from connected?

of entires in adjacency lists on which G, and G, dif fer

diSt(Gl, Gz) — an

1
Time: O (—d) today

> No dependence on n!
£

+ improvement on HW

Testing Connectedness: Algorithm

ﬂ:on nectedness Tester(G, d, €) \
1. Repeat s=16/¢cd times:
2. pick a random vertex u
3. determine if connected component of u is small:

perform BFS from u, stopping after at most 8/ed new nodes
K4. Reject if a small connected component was found, otherwise accept. /

Run time: O(d/e2d?)=0(1/2d)

Analysis:
e Connected graphs are always accepted.

e Remains to show:

wIiN

If a graph is e-far from connected, it is rejected with probability >

Testing Connectedness: Analysis

(Claim 1

y

Llf G is e-far from connected, It has > gflT" connected componentsJ

Claim 2

~

A\

. : ed
If G is e-far from connected, it has > Tn connected components

of size at most 8/¢<d.)

. gdn .
e If Claim 2 holds, at least —~ nodes are in small connected components.

: : : 2-8 16
e By Witness lemma, it suffices to sample = — nodes to detect one

gdn/n &d

from a small connected component.

Testing Connectedness: Proof of Claim 1

(Claim 1 W
Llf G is e-far from connected, It has > aszn connected componentsJ

We prove the contrapositive:

If G has < % connected components, one can make G connected by
modifying < € fraction of its representation, i.e., < edn entries.
e If there are no degree restrictions, k components can be connected by
adding k-1 edges, each affecting 2 nodes. Here, k < % ,50 2k-2 < edn .

e What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

Freeing up an Adjacency List Entry

(Claim 1 W
Llf G is e-far from connected, It has > gflT" connected componentsJ

What if adjacency lists of all vertices in a component are full,
i.e., all vertex degrees are d?

e Consider an MST of this component.

e Let v be aleaf of the MST.

e Disconnect v from a node other than its parent in the MST.

e Two entries are changed while keeping the same number of components.

e Thus, k components can be connected by adding 2k-1 edges, each affecting
2 nodes. Here, k < % , S0 4k-2 <edn .

Testing Connectedness: Proof of Claim 2
(Claim 1 \

Llf G is e-far from connected, It has > % connected componentsJ

Claim 2 N

. : ed
If G is e-far from connected, it has > ?n connected components

S of size at most 8/¢d.)

e If Claim 1 holds, there are at least gszn connected components.
4
gdn/4 “en
e By an averaging argument (or Markov inequality), at least half of the
components are of size at most twice the average.

e Their average size <

Testing if a Graph Is Connected [Goldreich Ron]

Input: a graph ¢ = (V, E) on n vertices

e in adjacency lists representation v Y’
(a list of neighbors for each vertex) .\. .\.

e maximum degree d

Connected or
e-far from connected?

0 (L) time ¥/

(no dependence on n)

Randomized Approximation
in sublinear time

Simple Examples

Randomized Approximation: a Toy Example

Input: a stringw € {0,1}" 0(0j{0j1|../10|1 (0|0
Goal: Estimate the fraction of 1’s in w (like in polls)

It suffices to sample s = 1 / £ positions and output the average
to get the fraction of 1’s +¢ (i.e., additive error &) with probability > 2/3

/Hoeffding Bound 3
Let Yy, ..., Ys be independently distributed random variables in [0,1] and
S
letY = Y Y; (sample sum). Then Pr[|]Y — E[Y]]| = §] < 2e~28%/s,
A i=1 /
S
Y; = value of sample i. Then E[Y] =) E[Y;] = s - (fraction of 1’s in w)

i=1
Pr[|(sample average) — (fraction of 1'sin w)| = €] = Pr[|Y — E[Y]| = &s]

< 2e729%/s = 2¢72 < 1/3
1 1

Apply Hoeffding Bound with § = ¢s substitute s = 1 / &2

11

Approximating # of Connected Components

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices v

e in adjacency lists representation v
(a list of neighbors for each vertex) .\.

e maximum degree d \

Exact Answer: QQ(dn) time

Additive approximation: # of CC zen
with probability > 2/3

Time:
d 1 d
e Known: O (e—zlog E)’ Q(S—Z)
- o 0(3)
: "

12

Approximating # of CCs: Main ldea

e Let C = number of components

e For every vertex u, define
n, = number of nodes in u’s component

Breaks C up into
contributions
of different nodes

— for each component A: Y ,c4 — =1

ny

e Estimate this sum by estimating 1,’s for a few random nodes
— If u’s component is small, its size can be computed by BFS.

— If u’s component is big, then 1/n is small, so it does not
contribute much to the sum

— Can stop BFS after a few steps

Similar to property tester for connectedness [Goldreich Ron]
13

Approximating # of CCs: Algorithm

Estimating n,, = the number of nodes in u’s component:

: N : 2
e letestimate 71, = min {nu,z}

— When u’s component has < 2/e nodes, ,, = ny,

— Else n,, = 2/g, andsoO<———<—=§

ny ny ny

: : : 1 : :
. Correspondlng estimate for Cis C = Y,,cy/ . It is a good estimate:

‘Zuev ZueV — - n_l«,,L = %
/APPROX_# CCs (G, d, €) I
1. Repeat s=0(1/¢?) times:
2. pick a random vertex u
3. compute 7, via BFS from u, stopping after at most 2/¢ new nodes
\4. Return C = (average of the values 1/71,,) - n)

Run time: O(d /&%)

14

Approximating # of CCs: Analysis

Want to show: Pr“C C| <§ /
. I
Hoeffdmg Bound
Let Yy, ..., Y be independently distributed random variables in [0,1] and
S
letY = Y Y; (sample sum). Then Pr[|]Y — E[Y]]| = §] < 2e~28%/s,
i=1 J

Let Y; = 1/7,for the it" vertex u in the sample

=&

S sC S 1 1
° Y= 2Yi=7and E[Y] = Y E[Yi]=s -E[Yi] =5 ~2yey > =
1= = v

g2

Ly —2E[Y] > 2] = Pr(ly - EIY]| > Z] <2e 77

€7s

Pr[|C~'—CA’|>% = Pr
1

e Needs =0 (5_12) samples to get probability < »

15

Approximating # of CCs: Analysis

)
S

So far: C-C S;
Pr||C - ¢| > <3
2 3
e With probability 2% J
C—c|<|C—C|+ <—+—<en

Summary:
The number of connected components in n-vetex graphs of

d
degree at most d can be estimated within +¢n in time O (33)

16

Minimum spanning tree (MST)

e What is the cheapest way to connect all the dots?
Input: a weighted graph
with n vertices and m edges 3 o

e Exact computation:
— Deterministic O(m - inverse-Ackermann(m)) time [Chazelle]
— Randomized O(m) time [Karger Klein Tarjan]

17

Approximating MST Weight in Sublinear Time

[Chazelle Rubinfeld Trevisan]

Input: a graph ¢ = (V, E) on n vertices

* in adjacency lists representation

e maximum degree d and maximum allowed weight w
e weightsin{1,2,...,w}

Output: (1+ €)-approximation to MST weight, w;,¢r

Time: —
No dependence on n!
 Known: O (d—vgvlogd—w), Q(d—vzv) P
& & &
3
e Today: O (dw if;gw)

18

Idea Behind Algorithm

e Characterize MST weight in terms of number of connected
components in certain subgraphs of G

e Already know that number of connected components can be
estimated quickly

19

MST and Connected Components: Warm-up

e Recall Kruskal’s algorithm for computing MST exactly. .

Suppose all weights are 1 or 2. Then MST weight
= (# weight-1 edges in MST) + 2 - (# weight-2 edges in MST)
= n-1 4+ (# of weight-2 edges in MST) MST has n — 1 edges
= n- 1 + (# of CCsinduced by weight-1 edges) —1 By Kruskal

N

weight 1
g connected components MST

weight 2 induced by weight-1 edges

C:/Users/Sofya/Documents/Slides/Sublinear Algorithms IAS/kruskal-demonstration.ppt

MST and Connected Components

In general: Let G; = subgraph of G containing all edges of weight < i
C; = number of connected components in G;

Then MST has C; — 1 edges of weight > .

" Claim A J
w-1
wyst(G) =n—w + z C;
- =1 J
e Let 3; be the number of edges of weight > i in MST
e Each MST edge contributes 1 to wy,sr, each MST edge of weight >1

contributes 1 more, each MST edge of weight >2 contributes one more, ...

w

w-1 -1 w-1 w—-1
Wyst(G) = zﬁi = z(Ci—l) =—w+ z Ci=n—w+ 2 Ci
i=0 0 i=0 i=1

=

Algorithm for Approximating wy ¢t

(APPROX_MSTweight (G, w, d, €)) [Claim. wysr(G) =n—w + Y¥31¢;]
1. Fori=1tow —1do:
2. C; <APPROX_#CCs(G; , d, e/w)

(3. Return Wyst =n—w+Yv31C Y
Analysis:

A,
&l

Suppose all estimates of C;’s are good: |C —C: | < i
Then |WMST WMSTl_lz (C C)|< Z C~ Cil<w-

Prlall w — 1 estimates are good]=> (2/3)" !

&
—NnN=&en
w

Not good enough! Need error probability < $ for each iteration

Then, by Union Bound, Pr[error]< w - $ = %

Can amplify success probability of any algorithm by repeating it and taking
the median answer.

Can take more samples in APPROX_#CCs. What’s the resulting run time?

22

Multiplicative Approximation for wygr

For MIST cost, additive approximation = multiplicative approximation
Wyst=n—1 = wygr=n/2forn=>2

* ¢n-additive approximation:

WysTt — EN < Wygr < Wyor + EN

(1 4+ 2&)-multiplicative approximation:
Wyst (1 —28) S wygr — en < Wygr < Wysr + en < wyer(1 + 2¢)

23

