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Today 

Lecture 5. Limitations of sublinear algorithms. Yao’s 
Minimax Principle. 



Query Complexity 

• Query complexity of an algorithm is the maximum number of queries 
the algorithm makes. 

– Usually expressed as a function of input length (and other parameters) 

– Example: the test for sortedness (from Lecture 2) had query complexity 
O(log n) for constant 𝜀. 

– running time ≥ query complexity 

• Query complexity of a problem 𝑃, denoted  𝑞 𝑃 , is the query 
complexity of the best algorithm for the problem. 
– What is 𝑞(testing sortednes𝑠)? How do we know that there is no 

better algorithm? 

 

Today: Techniques for proving lower bounds on 𝑞 𝑃 . 
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Yao’s Principle 

  
A Method for Proving Lower Bounds 



Yao’s Minimax Principle 
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The following statements are equivalent. 

 

 

 

 

 

 

 

 

• Need for lower bounds 

Yao’s Minimax Principle (easy direction): Statement 2   ⇒   Statement 1. 

       Prove it. 

 

 

 

Statement 1 

For any probabilistic algorithm A of complexity q there exists an input x s.t. 

 Pr
𝑐𝑜𝑖𝑛 𝑡𝑜𝑠𝑠𝑒𝑠 𝑜𝑓 𝐴

[A(x) is wrong] > 1/3. 

Statement 2 

There is a distribution D on the inputs,  
s.t. for every deterministic algorithm of complexity q, 

 Pr
𝑥←𝐷

[A(x) is wrong] > 1/3. 



Yao’s Minimax Principle as a game 
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Players: Evil algorithms designer Al and poor lower bound prover Lola. 

 

 

 

 

 

 

 

 

 

 

 

Game1 

Move 1. Al selects a q-query randomized algorithm A for the problem. 

Move 2. Lola selects an input on which A errs with largest probability. 

Game2 

Move 1. Lola selects a distribution on inputs. 

Move 2. Al selects a q-query deterministic algorithm with as large 
probability of success on Lola’s distribution  as possible. 



A Lower Bound for Testing 1* 

Input: string of n bits 

Question: Is the string contains only 1’s or is it 𝜀-far form the all-1 string?  

 

Claim. Any algorithm needs (1/𝜀) queries to answer this question w.p. ≥ 𝟐/𝟑. 

Proof: By Yao’s Minimax Principle, enough to prove Statement 2. 

Distribution on n-bit strings: 

• Divide the input string into 1/𝜀 blocks of size 𝜀n.  

• Let yi be the string  where the ith block is 0’s and remaining bits are 1. 

• Distribution D gives the all-1 string w.p. 1/2 and yi  with w.p. 1/2, where 𝑖 is 
chosen uniformly at random from 1, …, 1/𝜀. 
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A Lower Bound for Testing 1* 

Claim. Any 𝜀 -test for 1* needs (1/𝜀) queries. 

Proof (continued): Now fix a deterministic tester A making q < 1/3𝜀  queries. 

1. A must accept if all answers are 1. Otherwise, it would be wrong on all-1 
string, that is, with probability  1/2 with respect to D. 

2. Let i1, . . . , iq be the positions A queries when it sees only 1s. The test can 
choose its queries based on previous answers.  However, since all these 
answers are 1 and since A is deterministic, the query positions are fixed. 

•  At least 1/𝜀 − q > 2/3𝜀 of the blocks do not hold any queried indices. 

• Therefore, A accepts > 2/3 of the inputs yi. Thus, it is wrong with probability 

> 2/3𝜀 ⋅
𝜀

2
= 1/3 

 

 

Context: [Alon Krivelevich Newman Szegedy 99]  

Every regular language can be tested in O(1/𝜀 polylog 1/𝜀) time 
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A Lower Bound for Testing Sortedness 

Input: a list of n numbers  x1 , x2 ,...,  xn 

Question: Is the list sorted or 𝜀-far from sorted?  

 

Already saw: two different O((log n)/𝜀) time testers.  

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]: 

               (log n) queries are required for all constant  𝜀 ≤ 1/2 

Today:   (log n) queries are required for all constant  𝜀 ≤ 1/2  

               for every 1-sided error nonadaptive test. 

 

• A test has 1-sided error if it always accepts all 

      YES instances. 

 

• A test is nonadaptive if its queries do not 

      depend on answers to previous queries. 
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1-sided Error Property Tester 

Far from 

 YES 

YES 

Reject with 
probability ≥ 𝟐/𝟑  

Don’t care  

Accept with 
probability ≥ 𝟐/𝟑  

    𝜀 



1-Sided Error Tests Must Catch “Mistakes” 

• A pair (𝑥𝑖 , 𝑥𝑗) is  violated if 𝑥𝑖 < 𝑥𝑗 

 

 

 

Proof: Every sorted partial list can be extended to a sorted list. 
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Claim. A 1-sided error test can reject only if it finds a violated pair. 

1 ? ? 4 … 7 ? ? 9 



Yao’s Principle Game [Jha]  

Lola’s distribution is uniform over the following log 𝑛 lists: 
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Claim 2. Every pair (𝑥𝑖 , 𝑥𝑗) is violated in exactly one list above. 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 ℓ1 

ℓ2 1 1 1 1 0 0 0 0 2 2 2 2 1 1 1 1 

1 1 0 0 2 2 1 1 3 2 3 2 4 4 3 3 ℓ3 

1 0 2 1 3 2 4 3 5 6 4 5 7 6 8 7 ℓlog 𝑛 

. . . 

Claim 1. All lists above are 1/2-far from sorted. 



Yao’s Principle Game: Al’s Move 

Al picks a set 𝑄 = {𝑎1, 𝑎2, … , 𝑎|𝑄|} of positions to query. 

 

 

• His test must be correct, i.e., must find a violated pair with probability 
≥ 2/3 when input is picked according to Lola’s distribution. 

• 𝑄 contains a violated pair   ⇔  (𝑎𝑖 , 𝑎𝑖+1) is violated for some 𝑖 

Pr
ℓ←Lola′s distribution

[ 𝑎𝑖 , 𝑎𝑖+1  for some 𝑖 is vilolated in list ℓ] ≤
𝑄 − 1

log 𝑛
 

• If 𝑄 ≤
2

3
log 𝑛 then this probability is  <

2

3
 

• So, 𝑄 = Ω(log 𝑛) 

• By Yao’s Minimax Principle, every randomized 1-sided error 
nonadaptive test for sortedness must make Ω(log 𝑛) queries. 
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? ? ? ? 

𝑎1 𝑎2 𝑎3 𝑎|𝑄| … 

By the Union Bound 



Testing Monotonicity of 
functions on Hypercube 

  Non-adaptive 1-sided error  
Lower Bound 
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f(000) 

f(111)  f(011) 

f(100) 

f(101) 

f(110) f(010) 

f(001) 

  Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}   

Graph representation: 

𝑛-dimensional hypercube 

 

 

 

 

•   2𝑛   vertices: bit strings of length 𝑛 

• 2𝑛−1𝑛  edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1 

 

• each vertex 𝑥 is labeled with 𝑓(𝑥) 

 

001001 

011001          

𝑥 

𝑦 
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  Boolean Functions 𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}   

Graph representation: 

𝑛-dimensional hypercube 

 

 

 

 

•   2𝑛   vertices: bit strings of length 𝑛 

• 2𝑛−1𝑛  edges: (𝑥, 𝑦) is an edge if 𝑦 can be obtained from 𝑥 by 
increasing one bit from 0 to 1 

 

• each vertex 𝑥 is labeled with 𝑓(𝑥) 

 

001001 

011001          

𝑥 

𝑦 

𝑓(00 ⋯ 00) 

𝑓(11 ⋯ 11) 

Vertices:  
increasing weight 



Monotonicity of Functions 
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[Goldreich Goldwasser Lehman Ron Samorodnitsky,  

 Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky] 

 

• A function 𝑓 ∶ 0,1 𝑛 → {0,1} is monotone  

     if increasing a bit of 𝑥 does not decrease 𝑓(𝑥).  

 

• Is 𝑓 monotone or 𝜀-far from monotone? 

– Edge 𝑥𝑦 is violated by  𝑓  if  𝑓 (𝑥)  >  𝑓 (𝑦). 

 

Time:  

– 𝑂(𝑛/𝜀), logarithmic in the size of the input, 2𝑛 

– Ω( 𝑛/𝜀) for restricted class of tests 

0 

0 0 

0 1 

1 

1 

1 

1 

1 0 

0 0 

0 

1 

1 

monotone 

1

2
-far from monotone 



Hypercube 1-sided Error Lower Bound 
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• 1-sided error test must accept if no violated pair is uncovered. 

Violated pair: 

 

– Only a distribution on far from monotone values suffices. 

 

 

 

 

 

 

 

 

Lemma 
Every 1-sided error non-adaptive test for monotonicity of functions 
𝑓 ∶ 0,1 𝑛 → {0,1} requires Ω 𝑛  queries. 

0 1 

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] 



Hypercube 1-sided Error Lower Bound 
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• Hard distribution: pick coordinate 𝑖 at random and output 𝑓𝑖. 

 

 

 

 

 

 

 

Analysis 

2 𝑛 1 − coordinate 𝑖 

1 

0 

𝑓𝑖 ∶ 

• Edges from (𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛) to (𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛) are 
violated if both endpoints are in the middle. 

• The middle contains a constant fraction of vertices. 
• All 𝑛 functions are 𝜀-far from monotone for some constant 𝜀. 



Hypercube 1-sided Error Lower Bound 
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• How many functions does a set of 𝑞 queries expose? 

 

 

 

 

 

 

 

 

 

 
# functions that a query pair (𝑥, 𝑦) exposes 

≤ # coordinates on which 𝑥 and 𝑦 differ  
≤ 2 𝑛 

 

 

 

 

 

111011 

001001          

𝑥 

𝑦 

𝑖 𝑗 𝑘 

Pair (𝑥, 𝑦)  
can expose only 

functions 𝑓𝑖 , 𝑓𝑗  and 𝑓𝑘 

queries 

2 𝑛 

1 

0 

𝑓 

𝑥 

𝑦 

Only queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛 

Naïve Analysis 

# functions exposed by 𝑞 queries  
≤ 𝑞2 ⋅ 2 𝑛 



Hypercube 1-sided Error Lower Bound 
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• How many functions does a set of 𝑞 queries expose? 

 

 

 

 

 

 

 

 

 

 
# functions that a query pair exposes 
≤ # disagreements between vertices of the pair 
≤ 2 𝑛 

 

 

 

 

 

111011 

001001          

𝑥 

𝑦 

𝑖 𝑗 𝑘 

Pair (𝑥, 𝑦)  
can expose only 

functions 𝑓𝑖 , 𝑓𝑗  and 𝑓𝑘 

queries 

2 𝑛 

1 

0 

𝑓 

𝑥 

𝑦 

Only queries in the Green Band can be violated ⇒ disagreements ≤ 2 𝑛 

Claim 
# functions exposed by 𝑞 queries  

≤ (𝑞 − 1) ⋅ 2 𝑛 



Hypercube 1-sided Error Lower Bound 
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• How many functions does a set of 𝑞 queries expose? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

queries 

2 𝑛 

1 

0 

𝑓 

𝑥 

𝑦 

Claim 
# functions exposed by 𝑞 queries  

≤ (𝑞 − 1) ⋅ 2 𝑛 

(𝑥, 𝑦) a violation pair 
⇓  

Some adjacent pair of vertices in a  
minimum spanning forest on the query set  

is also violated sufficient to consider adjacent  
vertices in a minimum spanning forest  

on the query set 



Hypercube 1-sided Error Lower Bound 
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• How many functions does a set of 𝑞 queries expose? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

queries 

2 𝑛 

1 

0 

𝑓 

𝑥 

𝑦 

Claim 
# functions exposed by 𝑞 queries  

≤ (𝑞 − 1) ⋅ 2 𝑛 

⇓  

Claim 
Every deterministic test that makes a set 𝑄 of 𝑞 queries (in the middle) 

succeeds with probability 𝑂
𝑞

𝑛
 on our distribution. ⨳ 



Testing Monotonicity of 
functions on Hypercube 

  Non-adaptive 2-sided error  
Lower Bound 



Hypercube 2-sided Error Lower Bound 
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Hard distribution: randomly pick a subset 𝐵 of coordinates from [𝑛] by 

independently choosing each coordinate to lie in 𝐵 with probability 
1

10 𝑛
 . 

Uniformly choose good𝐵 or bad𝐵.  

 

 

 

 

 

 

 

 

𝑛 
majority of  

Coordinates in  𝐵 

1 

0 

good𝐵 ∶ 

𝑛 

1 

0 

bad𝐵 ∶ 

minority of  
Coordinates in  𝐵 

Lemma 
Every test for monotonicity of functions 𝑓 ∶ 0,1 𝑛 → 0,1  requires 
Ω log 𝑛 queries. 

[Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] 


