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Today

Lecture 5. Limitations of sublinear algorithms. Yao's
Minimax Principle.




Query Complexity

e Query complexity of an algorithm is the maximum number of queries
the algorithm makes.

— Usually expressed as a function of input length (and other parameters)

— Example: the test for sortedness (from Lecture 2) had query complexity
O(log n) for constant &.

— running time = query complexity

e Query complexity of a problem P, denoted q(P), is the query
complexity of the best algorithm for the problem.

— Whatis g(testing sortedness)? How do we know that there is no
better algorithm?

Today: Techniques for proving lower bounds on g(P).



Yao's Principle

A Method for Proving Lower Bounds



Yao’s Minimax Principle

The following statements are equivalent.

( Statement 1 \
LFor any probabilistic algorithm A of complexity g there exists an input x s.t. J

Pr [A(X) 1s wrong] > 1/3.

coin tosses of A

4 Statement 2 B

There is a distribution D on the inputs,

s.t. for every deterministic algorithm of complexity q,
Pr}) [A(X) 1s wrong] > 1/3.
- i /

e Need for lower bounds

Yao’s Minimax Principle (easy direction): Statement 2 = Statement 1.

J/ Prove it.



Yao’s Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

( Gamel \
Move 1. Al selects a g-query randomized algorithm A for the problem.
Move 2. Lola selects an input on which A errs with largest probability.

‘- Game2 E
Move 1. Lola selects a distribution on inputs.

Move 2. Al selects a g-query deterministic algorithm with as large
Qorobability of success on Lola’s distribution as possible. by




A Lower Bound for Testing 1*

Input: string of n bits

Question: Is the string contains only 1’s or is it e-far form the all-1 string?

Claim. Any algorithm needs €2(1/€) queries to answer this question w.p. = 2/3.
Proof: By Yao’s Minimax Principle, enough to prove Statement 2.
Distribution on n-bit strings:

e Divide the input string into 1/ blocks of size en.

e Lety, be the string where the ith block is 0’s and remaining bits are 1.

e Distribution D gives the all-1 string w.p. 1/2 and y. with w.p. 1/2, where i is
chosen uniformly at random from 1, ..., 1/¢.



A Lower Bound for Testing 1*

Claim. Any ¢ -test for 1* needs Q)(1/¢) queries.
Proof (continued): Now fix a deterministic tester A making g < 1/3& queries.

1. A must acceptif all answers are 1. Otherwise, it would be wrong on all-1
string, that is, with probability 1/2 with respect to D.

2. Lletiy, ..., I, bethe positions A queries when it sees only 1s. The test can
choose its queries based on previous answers. However, since all these
answers are 1 and since A is deterministic, the query positions are fixed.

e Atleast 1/ - q> 2/3¢ of the blocks do not hold any queried indices.

e Therefore, A accepts > 2/3 of the inputs y.. Thus, it is wrong with probability
>2/3¢ - § =1/3

Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in O(1/¢ polylog 1/¢) time



A Lower Bound for Testing Sortedness

Input: a list of n numbers x,, x,,..., X,
Question: Is the list sorted or s-far from sorted?

Already saw: two different O((log n)/¢) time testers.
Known [Ergiin Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

()(log n) queries are required for all constant ¢ < 1/2
Today: Q(log n) queries are required for all constant ¢ < 1/2

for every 1-sided error nonadaptive test.
1-sided Error Property Tester

/- A test has 1-sided error if it always accepts all \
YES instances.

YES :> Acce.rft W_I-t-h

/
£ |:> Don’t care

e Atestis nonadaptive if its queries do not ar from Reject with
_ , VES =) probability > 2/3
\_ depend on answers to previous queries. y




1-Sided Error Tests Must Catch “Mistakes”

* Apair (x;x;) is violated if x; < x;

[ Claim. A 1-sided error test can reject only if it finds a violated pair. ]

Proof: Every sorted partial list can be extended to a sorted list.

1?2 (214 |..|7|?]|?|9
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le Game [Jha]
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Yao’s Pr

Lola’s distribution is uniform over the following log n lists:
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[ Claim 1. All lists above are 1/2-far from sorted.

[ Claim 2. Every pair (Xx;, x;) is violated in exactly one list above.
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Yao’s Principle Game: Al’s Move

Al picks a set Q@ = {a4, ay, ..., aq|} of positions to query.

O—0 ,',',. >O—O0—>0—>0—>0—>0 ,',. >O—0 ,
a, a, as Cl|Q|

e His test must be correct, i.e., must find a violated pair with probability
> 2/3 when input is picked according to Lola’s distribution.

e ( contains a violated pair & (a;, a;;1) is violated for some i

—1
Pr [(a;, a; 1) for some i is vilolated in list £] < ot
¢<Lola’s distribution ) logn
o If|Q| < glogn then this probability is < % By the Union Bound

* So, |Q| = Q(logn)

e By Yao’'s Minimax Principle, every randomized 1-sided error J
nonadaptive test for sortedness must make (2(logn) queries.
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Testing Monotonicity of
functions on Hypercube

Non-adaptive 1-sided error
Lower Bound



Boolean Functions f : {0,1}" — {0,1}

Graph representation: fo11) ,, f(111)

A

n-dimensional hypercube

-

f(010) ~f f(110)

f(001)

Y

f(101)

f(000) >f(100)
o vertices: bit strings of length n

° edges: (x,y) is an edge if y can be obtained from x by

increasing one bit from0Oto 1 x | 001001
y [ 011001

e each vertex x is labeled with f (x)
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Boolean Functions f : {0,1}" — {0,1}

Graph representation:
n-dimensional hypercube

Vertices:
increasing weight

e 2™ vertices: bit strings of length n

F(11--11)

£(00 -+ 00)

o 2™ 1n edges: (x,y) is an edge if y can be obtained from x by

increasing one bit from0Oto 1

e each vertex x is labeled with f (x)

X
y

001001

011001
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Monotonicity of Functions

1
[Goldreich Goldwasser Lehman Ron Samorodnitsky,
Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky] 11 0
e Afunction f : {0,1}" — {0,1} is monotone 1 ’
if increasing a bit of x does not decrease f (x). 0
monotone
e |s f monotone or e-far from monotone? 0
— Edge x—yisviolated by f if f (x) > f (y). 1 0 \0
Time: 1

- 0(n/¢), logarithmic in the size of the input, 2™ . 1
- Q(y/n/é¢) for restricted class of tests E'far from monotone

16



Hypercube 1-sided Error Lower Bound

Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky]

Every 1-sided error non-adaptive test for monotonicity of functions
f :{0,1}" - {0,1} requires Q(y/n) queries.
-

e 1-sided error test must accept if no violated pair is uncovered.

Violated pair: g

— Only a distribution on far from monotone values suffices.
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Hypercube 1-sided Error Lower Bound

Hard distribution: pick coordinate i at random and output f;.

4 Analysis

~

N

Edges from (x4, ..., X;_1,0, X411, ..., Xpp) tO (X1, oo, Xi—1, 1, X341, ) Xy ) QTE
violated if both endpoints are in the middle.

The middle contains a constant fraction of vertices.

All n functions are e-far from monotone for some constant &. )
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Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries

=

[ERY oy
Ol = ~.

H

(@)

Pair (x,y)
can expose only

# functions exposed by g queries functions f;, f; and f;
N = Y,

# functions that a query pair (x, y) exposes

" Naive Analysis

< # coordinates on which x and y differ

] < 2yJn

Only queries in the Green Band can be violated = disagreements < 2/n "



Hypercube 1-sided Error Lower Bound

How many functions does a set of g queries expose?

® queries

=

[HRY oy
Ol = ~.

H

(@)

.
Claim

Pair (x,y)

can expose only

# functions exposed by g queries functions f;, f; and f;

.

<(@-1)-2Vn

# functions that a query pair exposes
< # disagreements between vertices of the pair

< 2/n
I

Only queries in the Green Band can be violated = disagreements < 2/n
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Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries

(s
Claim
# functions exposed by g queries

(x,y) a violation pair
U
\_ = (q ¢_ 1) - 2yn ) Some adjacent pair of vertices in a
| minimum spanning forest on the query set

sufficient to consider adjacent is also violated
vertices in a minimum spanning forest
on the query set
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Hypercube 1-sided Error Lower Bound

e How many functions does a set of g queries expose?

® queries
2/n—

o

Claim

# functions exposed by g queries

<(@-1)-2Vn
NG
U

( Claim 3

Every deterministic test that makes a set Q of g queries (in the middle)
ksucceeds with probability O (\/ﬁ) on our distribution. ) %
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Testing Monotonicity of
functions on Hypercube

Non-adaptive 2-sided error
Lower Bound



Hypercube 2-sided Error Lower Bound

| Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] i

LEvery test for monotonicity of functions f : {0,1}" — {0,1} requires J

Q(logn)queries.

Hard distribution: randomly pick a subset B of coordinates from [n] by

independently choosing each coordinate to lie in B with probability ﬁ :

Uniformly choose goodg or badg.
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