Sublinear Algorithms Lecture 5

Sofya Raskhodnikova Penn State University

Thanks to Madhav Jha (Penn State) for help with creating these slides.

Lecture 5. Limitations of sublinear algorithms. Yao's Minimax Principle.

Query Complexity

- Query complexity of an algorithm is the maximum number of queries the algorithm makes.
 - Usually expressed as a function of input length (and other parameters)
 - Example: the test for sortedness (from Lecture 2) had query complexity
 O(log n) for constant ε.
 - running time \geq query complexity
- Query complexity of a problem P, denoted q(P), is the query complexity of the best algorithm for the problem.
 - What is q(testing sortedness)? How do we know that there is no better algorithm?

Today: Techniques for proving lower bounds on q(P).

Yao's Principle

A Method for Proving Lower Bounds

Yao's Minimax Principle

The following statements are equivalent.

Statement 1

For any **probabilistic** algorithm A of complexity q there exists an input x s.t. $\Pr_{coin\ tosses\ of\ A}[A(x)\ is\ wrong] > 1/3.$

Statement 2	
There is a distribution D on the inputs,	
s.t. for every deterministic algorithm of complexi	ty q,
$\Pr_{x \leftarrow D}[A(x) \text{ is wrong}] > 1/3.$	
$x \leftarrow D$	

Need for lower bounds

Yao's Minimax Principle (easy direction): Statement 2 \Rightarrow Statement 1. Prove it.

Yao's Minimax Principle as a game

Players: Evil algorithms designer Al and poor lower bound prover Lola.

Game1

Move 1. Al selects a q-query randomized algorithm A for the problem.

Move 2. Lola selects an input on which A errs with largest probability.

Game2

Move 1. Lola selects a distribution on inputs.

<u>Move 2.</u> Al selects a q-query **deterministic** algorithm with as large probability of success on Lola's distribution as possible.

A Lower Bound for Testing 1*

Input: string of *n* bits

Question: Is the string contains only 1's or is it ε -far form the all-1 string?

Claim. Any algorithm needs $\Omega(1/\varepsilon)$ queries to answer this question w.p. $\geq 2/3$. Proof: By Yao's Minimax Principle, enough to prove Statement 2. Distribution on n-bit strings:

- Divide the input string into $1/\varepsilon$ blocks of size εn .
- Let y_i be the string where the ith block is 0's and remaining bits are 1.
- Distribution D gives the all-1 string w.p. 1/2 and y_i with w.p. 1/2, where *i* is chosen uniformly at random from 1, ..., 1/ε.

A Lower Bound for Testing 1*

Claim. Any ε -test for 1* needs $\Omega(1/\varepsilon)$ queries.

Proof (continued): Now fix a deterministic tester A making $q < 1/3\varepsilon$ queries.

- 1. A must accept if all answers are 1. Otherwise, it would be wrong on all-1 string, that is, with probability 1/2 with respect to D.
- 2. Let i_1, \ldots, i_q be the positions A queries when it sees only 1s. The test can choose its queries based on previous answers. However, since all these answers are 1 and since A is deterministic, the query positions are fixed.
- At least $1/\epsilon q > 2/3\epsilon$ of the blocks do not hold any queried indices.
- Therefore, A accepts > 2/3 of the inputs y_i . Thus, it is wrong with probability > $2/3\varepsilon \cdot \frac{\varepsilon}{2} = 1/3$

Context: [Alon Krivelevich Newman Szegedy 99]

Every regular language can be tested in $O(1/\epsilon \text{ polylog } 1/\epsilon)$ time

A Lower Bound for Testing Sortedness

Input: a list of *n* numbers $x_1, x_2, ..., x_n$ Question: Is the list sorted or ε -far from sorted?

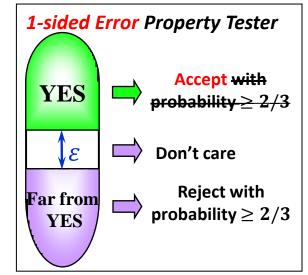
Already saw: two different $O((\log n)/\epsilon)$ time testers.

Known [Ergün Kannan Kumar Rubinfeld Viswanathan 98, Fischer 01]:

 $\Omega(\log n)$ queries are required for all constant $\varepsilon \leq 1/2$

- Today: $\Omega(\log n)$ queries are required for all constant $\varepsilon \le 1/2$ for every 1-sided error nonadaptive test.
 - A test has 1-sided error if it always accepts all YES instances.
- A test is nonadaptive if its queries do not

depend on answers to previous queries.



1-Sided Error Tests Must Catch "Mistakes"

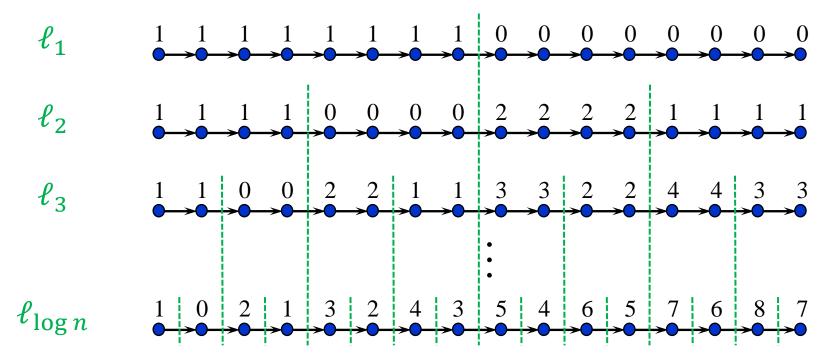
• A pair (x_i, x_j) is **violated** if $x_i < x_j$

Claim. A 1-sided error test can reject only if it finds a violated pair.

Proof: Every sorted partial list can be extended to a sorted list.

1	?	?	4		7	?	?	9
---	---	---	---	--	---	---	---	---

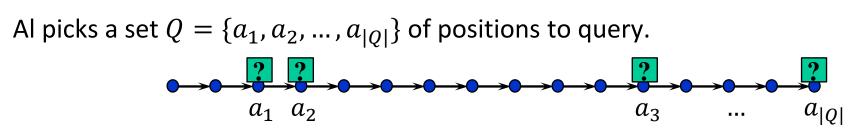
Lola's distribution is uniform over the following $\log n$ lists:



Claim 1. All lists above are 1/2-far from sorted.

Claim 2. Every pair (x_i, x_j) is violated in exactly one list above.

Yao's Principle Game: Al's Move



- His test must be correct, i.e., must find a violated pair with probability $\geq 2/3$ when input is picked according to Lola's distribution.
- Q contains a violated pair \Leftrightarrow (a_i, a_{i+1}) is violated for some i

 $\Pr_{\ell \leftarrow \text{Lola's distribution}} \left[(a_i, a_{i+1}) \text{ for some } i \text{ is vilolated in list } \ell \right] \leq \frac{|Q| - 1}{\log n}$

• If $|Q| \le \frac{2}{3} \log n$ then this probability is $< \frac{2}{3}$

By the Union Bound

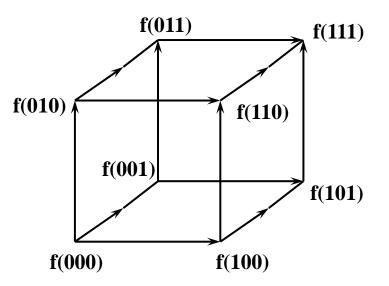
- So, $|Q| = \Omega(\log n)$
- By Yao's Minimax Principle, every randomized 1-sided error nonadaptive test for sortedness must make Ω(log n) queries.

Testing Monotonicity of functions on Hypercube

Non-adaptive 1-sided error Lower Bound

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$

Graph representation: *n*-dimensional hypercube

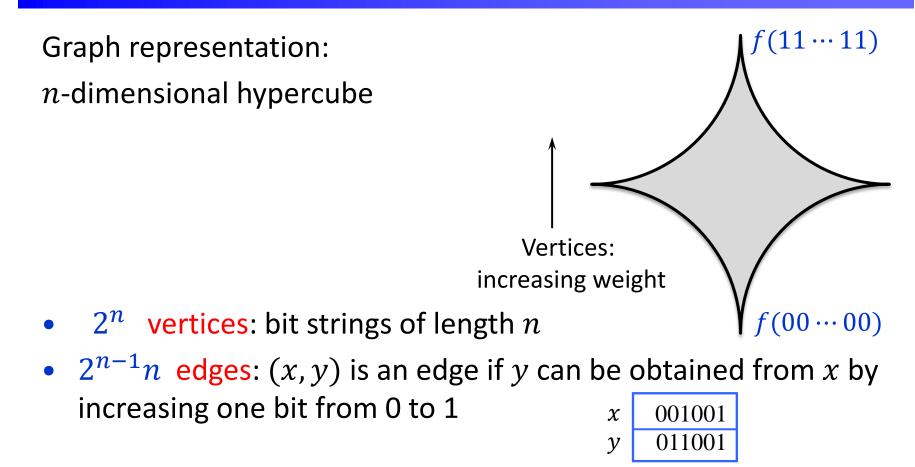


011001

y

- vertices: bit strings of length *n*
- edges: (x, y) is an edge if y can be obtained from x by increasing one bit from 0 to 1 x 001001
- each vertex x is labeled with f(x)

Boolean Functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$



• each vertex x is labeled with f(x)

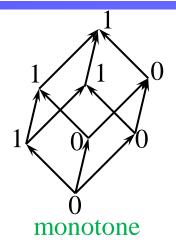
Monotonicity of Functions

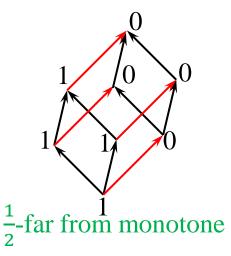
[Goldreich Goldwasser Lehman Ron Samorodnitsky, Dodis Goldreich Lehman Raskhodnikova Ron Samorodnitsky]

- A function f : {0,1}ⁿ → {0,1} is monotone
 if increasing a bit of x does not decrease f(x).
- Is f monotone or ε -far from monotone?
 - Edge $x \rightarrow y$ is violated by f if f(x) > f(y).

Time:

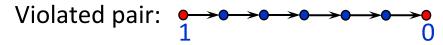
- $O(n/\varepsilon)$, logarithmic in the size of the input, 2^n
- $\Omega(\sqrt{n}/\varepsilon)$ for restricted class of tests





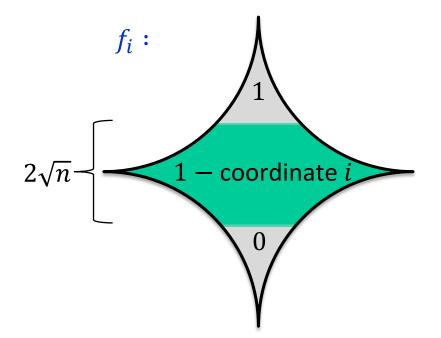
Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] Every 1-sided error non-adaptive test for monotonicity of functions $f: \{0,1\}^n \rightarrow \{0,1\}$ requires $\Omega(\sqrt{n})$ queries.

• 1-sided error test must accept if no violated pair is uncovered.



- Only a distribution on far from monotone values suffices.

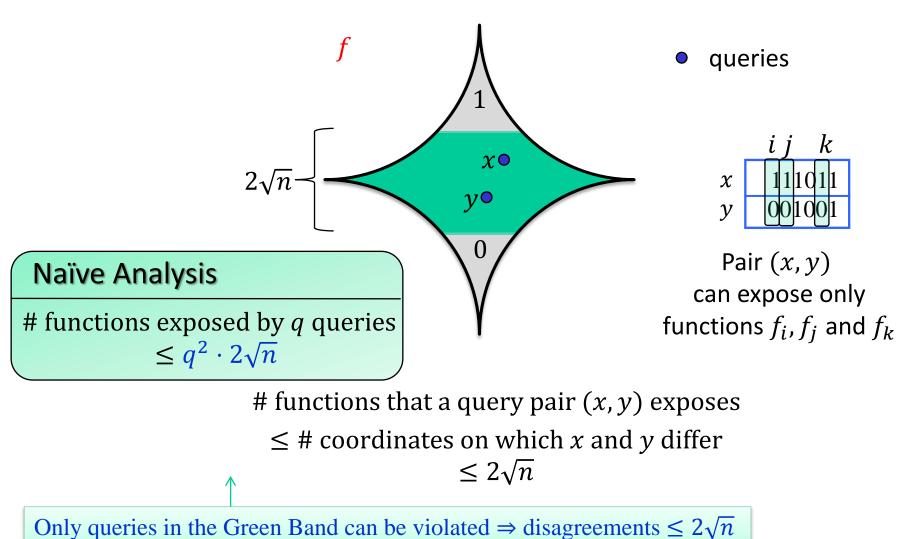
• Hard distribution: pick coordinate i at random and output f_i .



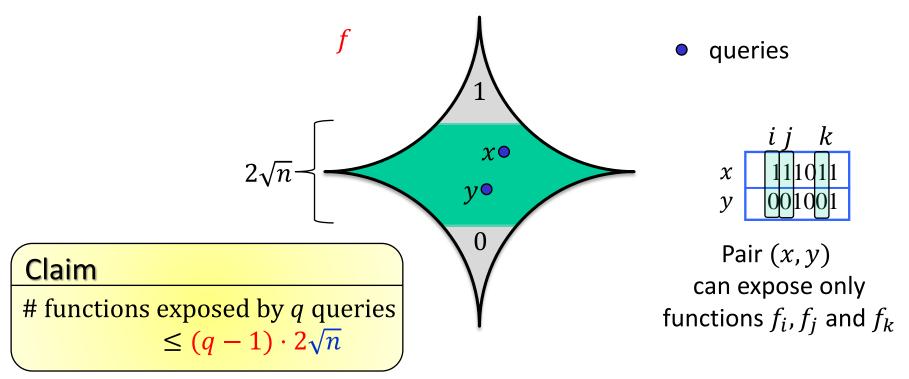
Analysis

- Edges from (x₁,..., x_{i-1}, 0, x_{i+1},..., x_n) to (x₁,..., x_{i-1}, 1, x_{i+1},..., x_n) are violated if both endpoints are in the middle.
- The middle contains a constant fraction of vertices.
- All *n* functions are ε -far from monotone for some constant ε .

• How many functions does a set of q queries expose?



• How many functions does a set of q queries expose?

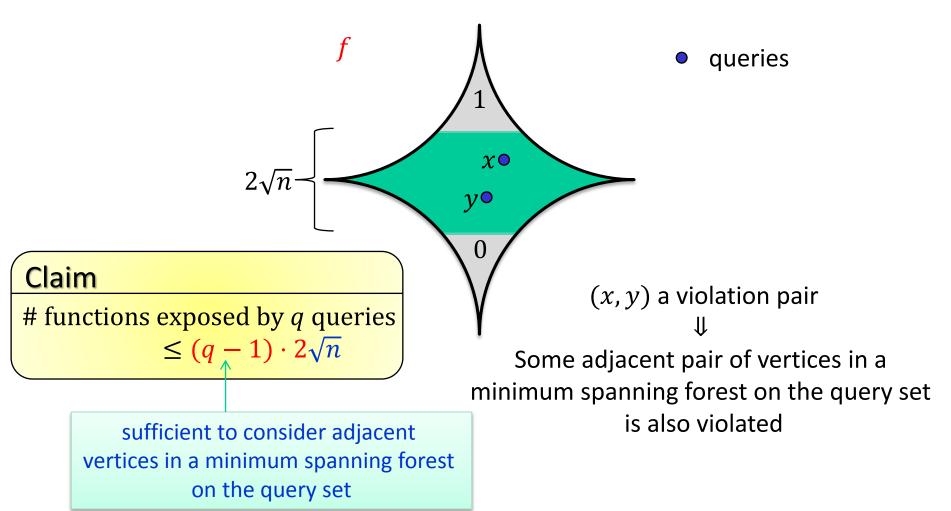


functions that a query pair exposes

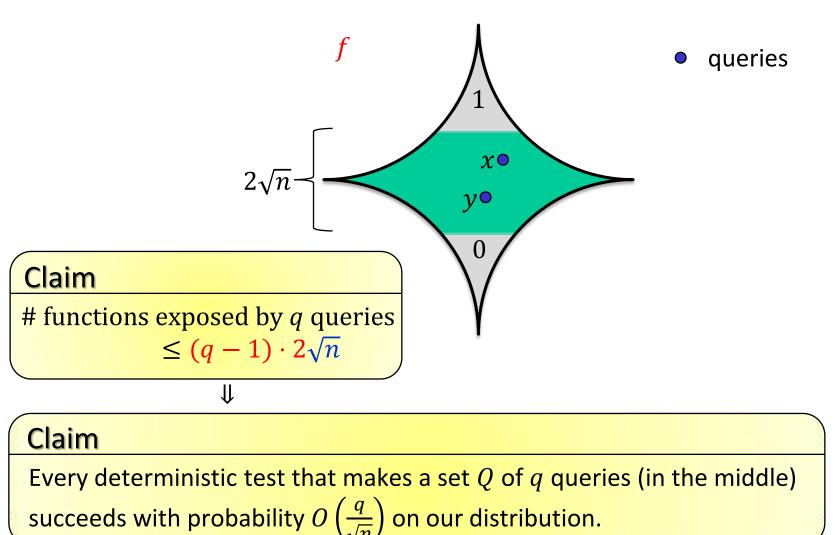
 \leq # disagreements between vertices of the pair $\leq 2\sqrt{n}$

Only queries in the Green Band can be violated \Rightarrow disagreements $\leq 2\sqrt{n}$

• How many functions does a set of q queries expose?



• How many functions does a set of q queries expose?



Testing Monotonicity of functions on Hypercube

Non-adaptive 2-sided error Lower Bound

Lemma [Fischer Lehman Newman Raskhodnikova Rubinfeld Samorodnitsky] Every test for monotonicity of functions $f : \{0,1\}^n \rightarrow \{0,1\}$ requires $\Omega(\log n)$ queries.

Hard distribution: randomly pick a subset *B* of coordinates from [*n*] by independently choosing each coordinate to lie in *B* with probability $\frac{1}{10\sqrt{n}}$. Uniformly choose good_B or bad_B.

