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Sofya Raskhodnikova

Theory of Computation

LECTURE 1
Theory of Computation

• Course information

• Overview of the area

• Finite Automata
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Course information

1. Instructor

2. Course website

3. Prerequisites

4. Lectures

5. Textbook

6. Syllabus 

7. Homework

8. Grading policy

9. Collaboration policy

10. Exams and grading
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What is Theory of Computation?

• You’ve learned about computers and 

programming

• Much of this knowledge is specific to particular 

computing environment
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What is Theory of Computation?

• Theory

– General ideas that apply to many systems

– Expressed simply, abstractly, precisely

• Abstraction suppresses inessential details

• Precision enables rigorous analysis

– Correctness proofs for algorithms and system designs

– Formal analysis of complexity

• Proof that there is no algorithm to solve some problem in 

some setting (with certain cost)
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This course

• Theory basics

– Models for machines

– Models for the problems machines can be used to solve

– Theorems about what kinds of machines can solve what kinds 

of problems, and at what cost

– Theory needed for sequential single-processor computing

• Not covered:

– Parallel machines

– Distributed systems

– Quantum computation

– Real-time systems

– Mobile computing

– Embedded systems
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Machine models

• Finite Automata (FAs): machines with fixed amount 

of unstructured memory.

– useful for modeling chips, communication protocols, 

adventure games, some control systems, … 

• Pushdown Automata (PDAs): FAs with unbounded 

structured memory in the form of a pushdown stack

– useful for modeling parsing, compilers, some calculations 

• Turing Machines (TMs): FAs with unbounded tape 

– Model for general sequential computation (real computer).

– Equivalent to RAMs, various programming languages models

– Suggests general notion of computability.
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Machine models

• Resource-bounded TMs (time and space bounded): 

– “not that different” on different models: “within a polynomial 

factor”

• Probabilistic TMs: extension of TMs that allows 

random choices

Most of these models have nondeterministic variants:

can make nondeterministic “guesses”
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Problems solved by machines

1. What is a problem?

2. What does it mean for a machine to “solve” 

a problem?

In this course, problem is a language. 

A language is a set of strings  over some “alphabet”
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Examples of languages

• L1= {binary representations of natural numbers divisible by 2}

• L2= {binary representations of primes}

• L3= {sequences of decimal numbers, separated by commas, that 

can be divided into 2 groups with the same sum}

– (5,3,1,3)  L3, (15,7,5,9,1) L3.

• L4= {C programs that loop forever when run}

• L5= {representations  of graphs containing a Hamiltonian cycle}

– {(1,2,3,4,5); (1,2),(1,3),(2,3),…}
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alphabet = {0,1}

alphabet = {0,1,…,9,comma}

visits each node exactly once

vertices edges

alphabet = all symbols: digits, commas, parens
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Theorems about classes of languages

We will define classes of languages and prove 

theorems about them:

• inclusion:  Every language recognizable (i.e., solvable) 

by a FA is also recognizable by a TM.

• non-inclusion:  Not every language recognizable by a 

TM is also recognizable by a FA.

• completeness:  “Hardest” language in a class

• robustness:  alternative characterizations of classes

– e.g., FA-recognizable languages by regular expressions 

(UNIX)
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Why study theory of computation?

• a language for talking about program behavior

• feasibility (what can and cannot be done)

– halting problem, NP-completeness

• analyzing correctness and resource usage

• computationally hard problems are essential for 

cryptography 

• computation is fundamental to understanding the world

– cells, brains, social networks, physical systems all can be  

viewed as computational devices

• IT IS FUN!!!


