
1

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Sofya Raskhodnikova

Theory of Computation

LECTURE 1
Theory of Computation

• Course information

• Overview of the area

• Finite Automata

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Course information

1. Instructor

2. Course website

3. Prerequisites

4. Lectures

5. Textbook

6. Syllabus

7. Homework

8. Grading policy

9. Collaboration policy

10. Exams and grading

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

What is Theory of Computation?

• You’ve learned about computers and

programming

• Much of this knowledge is specific to particular

computing environment

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

What is Theory of Computation?

• Theory

– General ideas that apply to many systems

– Expressed simply, abstractly, precisely

• Abstraction suppresses inessential details

• Precision enables rigorous analysis

– Correctness proofs for algorithms and system designs

– Formal analysis of complexity

• Proof that there is no algorithm to solve some problem in

some setting (with certain cost)

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

This course

• Theory basics

– Models for machines

– Models for the problems machines can be used to solve

– Theorems about what kinds of machines can solve what kinds

of problems, and at what cost

– Theory needed for sequential single-processor computing

• Not covered:

– Parallel machines

– Distributed systems

– Quantum computation

– Real-time systems

– Mobile computing

– Embedded systems

– … 1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Machine models

• Finite Automata (FAs): machines with fixed amount

of unstructured memory.

– useful for modeling chips, communication protocols,

adventure games, some control systems, …

• Pushdown Automata (PDAs): FAs with unbounded

structured memory in the form of a pushdown stack

– useful for modeling parsing, compilers, some calculations

• Turing Machines (TMs): FAs with unbounded tape

– Model for general sequential computation (real computer).

– Equivalent to RAMs, various programming languages models

– Suggests general notion of computability.

2

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Machine models

• Resource-bounded TMs (time and space bounded):

– “not that different” on different models: “within a polynomial

factor”

• Probabilistic TMs: extension of TMs that allows

random choices

Most of these models have nondeterministic variants:

can make nondeterministic “guesses”

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Problems solved by machines

1. What is a problem?

2. What does it mean for a machine to “solve”

a problem?

In this course, problem is a language.

A language is a set of strings over some “alphabet”

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Examples of languages

• L1= {binary representations of natural numbers divisible by 2}

• L2= {binary representations of primes}

• L3= {sequences of decimal numbers, separated by commas, that

can be divided into 2 groups with the same sum}

– (5,3,1,3) L3, (15,7,5,9,1) L3.

• L4= {C programs that loop forever when run}

• L5= {representations of graphs containing a Hamiltonian cycle}

– {(1,2,3,4,5); (1,2),(1,3),(2,3),…}

1

2

3

45

alphabet = {0,1}

alphabet = {0,1,…,9,comma}

visits each node exactly once

vertices edges

alphabet = all symbols: digits, commas, parens

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Theorems about classes of languages

We will define classes of languages and prove

theorems about them:

• inclusion: Every language recognizable (i.e., solvable)

by a FA is also recognizable by a TM.

• non-inclusion: Not every language recognizable by a

TM is also recognizable by a FA.

• completeness: “Hardest” language in a class

• robustness: alternative characterizations of classes

– e.g., FA-recognizable languages by regular expressions

(UNIX)

1/14/2008
Sofya Raskhodnikova; based on lecture notes by Nancy Lynch

Why study theory of computation?

• a language for talking about program behavior

• feasibility (what can and cannot be done)

– halting problem, NP-completeness

• analyzing correctness and resource usage

• computationally hard problems are essential for

cryptography

• computation is fundamental to understanding the world

– cells, brains, social networks, physical systems all can be

viewed as computational devices

• IT IS FUN!!!

