BU LISP : Publications
2022
2021
- P. Colon-Hernandez, Y. Xin, H. Lieberman, C. Havasi, C. Breazeal, and P. Chin (2021). RetroGAN: A Cyclic Post-Specialization System for Improving Out-of-Knowledge and Rare Word Representations. Findings of the Association for Computational Linguistics (ACL-IJCNLP). [pdf]
- Y. Xin, H. Lieberman, P. Chin (2021). PATCHCOMM: Using Commonsense Knowledge to Guide Syntactic Parsers. Principles of Knowledge Representation and Reasoning (KR).
- P. Dai, P. Chin (2021). Training Many-to-Many Recurrent Neural Networks with Target Propagation. International Conference on Artificial Neural Networks (ICANN).
- T. Dang, O. Thakkar, S. Ramaswamy, R. Mathews, P. Chin, F. Beaufays (2021). Revealing and Protecting Labels in Distributed Training. Conference on Neural Information Processing Systems (NeurIPS).
- L. Greige, P. Chin (2021). Deep Reinforcement Learning for FlipIt Security Game. Complex Networks & Their Applications X.
- X. Zhou, S. Qiu, P.S. Joshi, C. Xue, R.J. Killiany, A. Mian, P. Chin, R. Au, V.B. Kolachalama (2021). Enhancing Magnetic Resonance Imaging Driven Alzheimer’s Disease Classification Performance Using Generative Adversarial Learning. Alzheimer’s Research & Therapy.
- X. Zhou, X. Wang, G. Brown, C. Wang, P. Chin (2021). Mixed Spatio-Temporal Neural Networks on Real-time Prediction of Crimes. International Conference on Machine Learning and Applications.
- S. Huang, X. Zhou, P. Chin (2021). Application of Seq2Seq Models on Code Correction. Frontiers in Artifical Intelligence.
2020
- X. Wang, S. Wang, P.Y. Chen, X. Lin, P. Chin (2020). AdvMS: A Multi-source Multi-cost Defense Against Adversarial Attacks. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). [arXiv]
- L. Jensen, J. Harer, P. Chin (2020). NodeDrop: A Method for Finding Sufficient Network Architecture Size. International Joint Conference on Neural Networks (IJCNN). [arXiv]
2019
- X. Wang, S. Wang, P.Y. Chen, Y. Wang, B. Kulis, X. Lin, P. Chin (2019). Protecting neural networks with hierarchical random switching: towards better robustness-accuracy trade-off for stochastic defenses. International Joint Conference on Artificial Intelligence (IJCAI). [pdf]
- L. Jensen, G. Brown, X. Wang, J. Harer, and P. Chin (2019). Deep Learning for Minimal-context Block Trackingthrough Side-channel Analysis. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 3207-211. [pdf]
2018
- S. Wang, X. Wang, S. Ye, P. Zhao, X. Lin (2018). Defending dnn adversarial attacks with pruning and logits augmentation. IEEE Global Conference on Signal and Information Processing (GlobalSIP). [pdf]
- S. Wang, X. Wang, P. Zhao, W. Wen, D. Kaeli, P. Chin, X. Lin (2018). Defensive dropout for hardening deep neural networks under adversarial attacks. International Conference on Computer-Aided Design (ICCAD). [pdf]
- X. Wang, J. Zhang, T. Xiong, T. D. Tran, P. Chin, R. Etienne-Cummings (2018). Using Deep Learning to Extract Scenery Information in Real Time Spatiotemporal Compressed Sensing. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4. [pdf]
- X. Wang, K. Zhou, J. Harer, G. Brown, S. Qiu, Z. Dou, J. Wang, A. Hinton, C. A. Gonzalez, P. Chin (2018). Deep learning-based classification and anomaly detection of side-channel signals. Cyber Sensing. [pdf]
- W. Ma, K. Cao, X. Li, P. Chin (2018). Tree structured multimedia signal modeling. Artificial Intelligence Research Society Conference (FLAIRS). [pdf]
- W. Ma, K. Cao, Z. Ni, P. Chin, X. Li (2018). Sound Signal Processing with Seq2Tree Network. International Conference on Language Resources and Evaluation (LREC).[pdf]
- R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Elingwood, M. McConley (December 2018). Automated Vulnerability Detection in Source Code Using Deep Representation Learning. IEEE International Conference on Machine Learning and Applications (ICMLA).[pdf , arXiv]
- J. Harer, O. Ozdemir, T. Lazovich, C. P. Reale, R. L. Russell, L. Y. Kim, P. Chin (2018). Learning to Repair Software Vulnerabilities with Generative Adversarial Networks. Conference on Neural Information Processing Systems (NeurIPS).[pdf]
2017
- X. Zhou, C. Wang, Y. Xu, X. Wang, P. Chin (2017). Domain Specific Inpainting With Concurrently Pretrained Generative Adversarial Networks. IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1185-1189. [pdf]
- D. Yang, T. Xiong, D. Xu, S. K. Zhou, Z. Xu, M. Chen, J. H. Park, S. Grbic, T. D. Tran, P. Chin, D. Metaxas, D. Comaniciu (2017). Deep Image-to-Image Recurrent Network with Shape Basis Learning for Automatic Vertebra Labeling in Large-Scale 3D CT Volumes. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 498-506. [pdf]
- D. Yang, T. Xiong, D. Xu, Q. Huang, D. Liu, S. K. Zhou, Z. Xu, J. Park, M. Chen, T. D. Tran, P. Chin, D. Metaxas, D. Comaniciu (2017). Automatic Vertebra Labeling in Large-Scale 3D CT Using Deep Image-to-Image Network With Message Passing and Sparsity Regularization. International Conference on Information Processing in Medical Imaging (IPMI). [pdf]
- P. Chin, J. Cohen, A. Albin, M. Hayvanovych, E. Reilly, G. Brown, J. Harer (2017). A Mathematical Analysis of Network Controllability Through Driver Nodes. IEEE Transactions on Computational Social Systems, vol. 4, no. 2, pp. 40-51. [pdf]