

Contrastive Pretraining for Vision-Language Foundation models (such as CLIP) I. Contrastive pre-training

2. Create dataset classifier from label text

Superior Zero-Shot performance

ImageNet-R (Rendition) Robustness to domain shifts Siberian Husky (76.0%) Ranked 1 out of 200 labels

Heavy Data Consumption and Data Privacy

- <u>400M</u> pretraining <u>image-text pairs</u>
- private to OpenAl
- Expensive Training:
 - batch-size = <u>32,768</u>
 - largest ResNet model, RN50x64, took <u>18</u> days to train on 592 V100 GPUs
 - largest Vision Transformer took <u>12 days</u> on 256 V100 GPUs

DIME-FM : Distilling Multimodal and Efficient Foundation Models PARIS Ximeng Sun¹, Pengchuan Zhang², Peizhao Zhang², Hardik Shah², Kate Saenko^{1,2}, Xide Xia² ¹Boston University, ²Meta Al

How to efficiently train a customizable CLIP-like model?

Our Remarkable Performance

	ZS on IN-1K	ZS on ELEVATER	LP on ELEVATER	Robustness
OpenAI CLIP-VIT-B/32	63.4%	57.2%	78.2%	48.6%
Distill-VIT-B/32 (Constructed NLP Corpus)	66.5%	56.4%	79.2%	50.2%
Distill-VIT-B/32 * (Caption Corpus))	64.8%	55.0%	78.6%	49.4%
Distill-VIT-B/32 * (Task-Aware + Captions))	66.1%	57.7%	79.4%	50.4%

Question: What logits should we distill in the open-vocabulary image recognition task? $2 \times 2 \times 2$ We find out the choice of text corpus is critical.

Key Contribution 1: Three Distillation Losses

Detect	Mathad	Zero-Sł	Linear Probing	
Dataset	wieulou	ELEVATER IN-		ELEVATER
IN-21K	UniCL	27.2%	28.5%	74.8%
	UniCL*	40.9%	51.4%	75.3%
	Distill-UniCL*	45.6%	59.5%	76.2%
IN-21K + YFCC-14M	UniCL	37.1%	40.5%	77.1%
	UniCL*	44.6%	58.7%	75.4%
	Distill-UniCL*	47.6%	60.0%	76.6%

for $u \in \mathcal{U}_{left}$:

Unknown Downstream Tasks

10.100	GUAN Enants	GEW.Dat.	Callmont-LOA	inaplies of	magnitud A	magnitude d	image/set its	4.875
4	-	5	Sec.	Sec.		0-1	No.	
-	018	Reflactions!	Aurold T.	mar	1000	(Resided	Galacie and Red	Rescal VEE
ě,		10	· He	8	<u>_</u>			-
No.	Rainface	Fickr	Planets 202	PROCESSION (181	ware a	8473	97-08	NUMBER
A		X	3		5			
7588	Gard4	Imagefort 34.1	mageNet Statut	2,942	Raffed Cell	10167-01.0	WINDAM'S.	William
	1		10	12	£14	1	4	R. La

Key Contribution 2: Construct the visually-grounded Text Corpus

```
Algorithm 1: Constructing text corpus T
   Input: image embeddings \mathcal{U} as defined in Eq.15. A
                  large text corpus \mathcal{T}_{large}.
   Output: Selected text corpus \mathcal{T}, and |\mathcal{T}| \approx |\mathcal{U}|
1 \mathcal{U}_{left} \leftarrow \mathcal{U}, \ \mathcal{T}_{avail} \leftarrow \mathcal{T}_{large}, \ \mathcal{T} \leftarrow \emptyset, U_p = \infty
2 while \mathcal{U}_{left} \neq \emptyset and |\mathcal{U}_{left}|/U_p < 0.95 do
         U_p = |\mathcal{U}_{left}|, Matched = dict()
                /* find the best text that
                       matches the image
                                                                                       */
               \boldsymbol{t}(\boldsymbol{u}) = rg\max s(\boldsymbol{u}, \mathbf{B} \cdot g_{\boldsymbol{\phi}}(\boldsymbol{t}))
                                                                            11
                            t \in T_{avail}
                Matched[\boldsymbol{u}] = \boldsymbol{t}(\boldsymbol{u})
          for u, t \in Matched.items():
                /* For all images matching to the
                      same text, pick the first
                       match
                                                                                       */
                if t \in \mathcal{T}_{avail}:
                      \mathcal{U}_{left} \leftarrow \mathcal{U} \setminus \{ u \}
                     \mathcal{T}_{avail} \leftarrow \mathcal{T}_{avail} \setminus \{t\}, \ \mathcal{T}.add(t)
```

