
Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-2

Timothy Borunov (Most slides by Shriram Raja)

Ph.D. Student, Computer Science

With materials from slides by Dr. Sasan Golchin

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-1

▪ Setup GDT

▪ Detect memory to see which regions are free (already done in MEMOS-2)

▪ Finally, assign work to the threads and call the scheduler to run the first task

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-2

▪ Setup GDT

▪ Detect memory to see which regions are free (already done in MEMOS-2)

▪ Finally, assign work to the threads and call the scheduler to run the first task

▪ Enable support for preemption of threads by the scheduler to support more complex scheduling policies

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Enable Preemption by Scheduler

11/5/2025

Control should switch to the scheduler after a predetermined amount of time elapses irrespective of the

running task

▪ System should have the capability to interrupt the running task - Interrupts

▪ System should have a notion of time - Programmable Interrupt Timer (PIT)

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Interrupt Support

▪ Software Interrupts: Exceptions (non-maskable) and User-defined interrupts called by INT (maskable)

▪ Hardware Interrupts:

▪ generated by devices external to the processor

▪ E.g., timer (IRQ0), keyboard (IRQ1)

▪ Maskable

▪ Each core has only one interrupt line; hence we need multiplexing hardware - PIC

▪ Interrupts are disabled/enabled by cli and sti instructions that affect EFLAGS.IF

11/5/2025

https://wiki.osdev.org/Exceptions

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Interrupt Descriptor Table

11/5/2025

▪ Offset: address of the Interrupt Service Routine

▪ Segment Selector: pointer to valid section in the GDT

▪ Gate Type: Task, Interrupt or Trap Gate

▪ DPL: Privilege Level

▪ P: Present Bit; should be 1 for a valid IDT entry

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Interrupt Service Routine

11/5/2025

▪ Depending on the type of interrupt, there may or may not be an error code

▪ ISR returns using iret instead of ret

▪ This pops everything from the stack except the error code. So, if your interrupt has an error code, that

should be popped manually.

my_isr0:
 # retrieve the error code (if any)
 # pass some parameters to C if needed
 # call the handler code in C
 call my_handler_in_c
 # return from the ISR
 iret

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Testing IDT

▪ Cause an exception: E.g., Divide-By-Zero

▪ After initializing IDT, perform a division by zero and see if the ISR kicks in

▪ INT instruction:

▪ Using inline assembly, issue an INT instruction in your code after IDT is setup

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Debugging with gdb

▪ Execution does not continue until the continue command is given from gdb

▪ Some salient features:

▪ Single step through the code

▪ Set breakpoints in the code, and watchpoints, which are triggered when an address/variable changes

▪ Print variable and register values

11/5/2025

$ qemu-system-i386 -S -s -kernel fifos.elf -vnc :1
$ gdb fifos.elf
…
(gdb) target remote localhost:1234

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Programmable Interrupt Controller

11/5/2025

8259
Secondary

8259
Primary

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Programmable Interrupt Timer

▪ A peripheral device that can be programmed using I/O ports

▪ Base frequency of ~1.19MHz that can be decreased by a single prescaler (a circuit that performs integer division on a

clock frequency)

▪ It is an interval timer with 3 channels

▪ While the prescaler affects all channels, each channel has its own frequency divider. So, they can run with different

speeds.

▪ Channel 0 is usually used as the system timer and generates the “IRQ-0” upon some event that depends on the

mode it’s set up to operate in (e.g., when its counter reaches zero in mode 2 – rate generator)

▪ Channel 1 and 2 are not really used anymore.

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Points to Remember

▪ Disable interrupts before PIC/PIT setup

▪ Map IRQs to interrupt numbers beyond 31, i.e., the interrupt number that CPU uses to look up IDT = IRQ

number + Offset

▪ Why? Remember the first 32 interrupt numbers are reserved for CPU exceptions

▪ Send EOI signal to the right PIC depending on the interrupt number

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

11/5/2025

Setup a dummy stack
when creating a thread to
make context switch easy

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Notes on Clarifying Implementation of Rate
Monotonic Scheduling

▪ Use a timeslice of 1000 microseconds.

▪ Assume no system/interrupt overhead for the timing

▪ You do not need to check for overload/admission control test (We
might add this as extra credit if you do)

▪ For now, create your own set of threads with budgets and periods
that fit into an RMS scheme and test it.

▪ Whenever interrupt is triggered, print out budget+period of current
thread and if you are switching to new thread. As long as the
information is clear and readable to see that RMS works, format is up
to you.

11/5/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

References

1. IDT - Overview, Tutorial, Packed structs

2. Interrupt Service Routines

3. Programmable Interrupt Timer

4. Programmable Interrupt Controller

5. gdb - with QEMU, documentation

6. Inline Assembly - OSDev, gcc

7. Felix Cloutier - LGDT/LIDT, PUSHA, CLI, STI

11/5/2025

https://wiki.osdev.org/Interrupt_Descriptor_Table
https://wiki.osdev.org/Interrupts_Tutorial
https://riptutorial.com/c/example/31059/packing-structures
https://riptutorial.com/c/example/31059/packing-structures
https://wiki.osdev.org/Interrupt_Service_Routines
https://wiki.osdev.org/Interrupt_Service_Routines
https://wiki.osdev.org/Interrupt_Service_Routines
https://wiki.osdev.org/Interrupt_Service_Routines
https://wiki.osdev.org/Programmable_Interval_Timer
https://wiki.osdev.org/Programmable_Interval_Timer
https://wiki.osdev.org/Programmable_Interval_Timer
https://wiki.osdev.org/Programmable_Interval_Timer
https://wiki.osdev.org/8259_PIC
https://wiki.osdev.org/8259_PIC
https://wiki.osdev.org/8259_PIC
https://wiki.osdev.org/8259_PIC
https://qemu-project.gitlab.io/qemu/system/gdb
https://qemu-project.gitlab.io/qemu/system/gdb
https://sourceware.org/gdb/current/onlinedocs/gdb.html/Breakpoints.html#Breakpoints
https://wiki.osdev.org/Inline_Assembly
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://www.felixcloutier.com/x86/lgdt:lidt
https://www.felixcloutier.com/x86/pusha:pushad
https://www.felixcloutier.com/x86/cli
https://www.felixcloutier.com/x86/sti

	Init
	Slide 1: MICROS-2

	Interrupts
	Slide 2: MICROS-1
	Slide 3: MICROS-2
	Slide 4: Enable Preemption by Scheduler
	Slide 5: Interrupt Support

	IDT & ISR
	Slide 6: Interrupt Descriptor Table
	Slide 7: Interrupt Service Routine
	Slide 8: Testing IDT
	Slide 9: Debugging with gdb

	Timer
	Slide 10: Programmable Interrupt Controller
	Slide 11: Programmable Interrupt Timer
	Slide 12: Points to Remember
	Slide 13: Example (T1 to T2 and back to T1)
	Slide 14: Notes on Clarifying Implementation of Rate Monotonic Scheduling

	Conclusion
	Slide 15: References

