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BIOS

▪ Basic Input/Output System

▪ Part of firmware (comes with the processor)

▪ Initializes the system during bootup and provides runtime services

▪ Usually, performs power on self test (POST) and then loads the bootloader which then loads the kernel
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Tells how the disc's sectors (aka "blocks") 
are divided into partitions, each partition 

notionally containing a file system and 
contains the bootloader
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BIOS Functions

▪ Several functions are available [4]:

▪ Video display access

▪ Mass storage access

▪ Keyboard functions

▪ Usually accessed by setting register A (AH, AX, or EAX) and calling an interrupt
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# set video mode 
 movw $0x0003, %ax
 int $0x10
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Real Mode

▪ First x86 mode design: operates on 16-bits

▪ Can access 32-bit registers by including the "Operand Size Override Prefix" (0x66) to the instruction [done by 

the assembler]

▪ Still the first mode for compatibility

▪ Has several cons:

▪ No hardware memory protection (GDT)

▪ Restricted addressing and operand length - only 1 MB is accessible
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Protected Mode

▪ Main operating mode of x86 processors 

▪ Before switching to Protected Mode:

▪ Disable interrupts, including NMI (as suggested by Intel Developers Manual)

▪ Enable the A20 Line

▪ Load the Global Descriptor Table with segment descriptors suitable for code, data, and stack

▪ Cannot access BIOS functions
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MEMOS-1

▪ No disk.img needed for this part

▪ An assembly file that basically runs on “bare metal” in QEMU - vga16.s in assignment page

▪ Modern compilers only generate protected mode executables from C; that is why we need assembly

▪ This file:

▪ first, detects memory: using BIOS functions (INT 0x15 - there’s a whole page on osdev for this, link in assignment)

▪ then, prints the detected memory regions (INT 0x10, Wikipedia gives a list of commands, also vga16.s)
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https://en.wikipedia.org/wiki/INT_10H
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Real Mode Programming

▪ Control flow statements (if-else, while) are different: conditions are baked into the instruction, or the control 

variable is a predetermined register (JNE, LOOP)

▪ Segment registers: CS, DS, ES, FS, GS, and SS

▪ Physical address = (Segment * 16) + Offset; e.g.: %es:(%di)

▪ Stack must be initialized (convention for various reasons to first write to an intermediate register, here AX)
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_start:
 movw $0x9000, %ax
 movw %ax, %ss
 xorw %sp, %sp
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Executable and Linkable Format

▪ Standard format for executables in Unix-like systems

▪ Defines different sections of the executable such as .text for code, .data for global tables and variables

▪ These segment definitions help the loader place them in the appropriate regions of memory

▪ Linker script collects object files and compiles into exec/linkable files
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OUTPUT_FORMAT("elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)
SECTIONS
{
  .foo : { *(.*) }
}
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Debugging in Qemu

▪ You can start Qemu with it set to wait for you to attach a debugger 

▪ The above command uses -S to stop QEMU from running until you remote control it from within GDB. The -s 

option is equivalent to -gdb tcp::1234. You can then start GDB:

▪ If you compile source file with –g, you will be able to list source code and set breakpoints by symbols (This is 

possible for memos-2, but for memos-1, you will need a workaround or just set breakpoints via addresses)
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$qemu-system-i386 –S –s –had memos-1 &

$gdb memos-1
(gdb) target remote localhost:1234
(gdb) ...enter debugging commands here, or type 'continue' to resume execution 
of your debugged system...
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