
Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MEMOS-1

Timothy Borunov (Most slides by Shriram Raja)

Ph.D. Student, Computer Science

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

BIOS

▪ Basic Input/Output System

▪ Part of firmware (comes with the processor)

▪ Initializes the system during bootup and provides runtime services

▪ Usually, performs power on self test (POST) and then loads the bootloader which then loads the kernel

10/1/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

BIOS

10/1/2025

Tells how the disc's sectors (aka "blocks")
are divided into partitions, each partition

notionally containing a file system and
contains the bootloader

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

BIOS Functions

▪ Several functions are available [4]:

▪ Video display access

▪ Mass storage access

▪ Keyboard functions

▪ Usually accessed by setting register A (AH, AX, or EAX) and calling an interrupt

10/1/2025

set video mode
 movw $0x0003, %ax
 int $0x10

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Real Mode

▪ First x86 mode design: operates on 16-bits

▪ Can access 32-bit registers by including the "Operand Size Override Prefix" (0x66) to the instruction [done by

the assembler]

▪ Still the first mode for compatibility

▪ Has several cons:

▪ No hardware memory protection (GDT)

▪ Restricted addressing and operand length - only 1 MB is accessible

10/1/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Protected Mode

▪ Main operating mode of x86 processors

▪ Before switching to Protected Mode:

▪ Disable interrupts, including NMI (as suggested by Intel Developers Manual)

▪ Enable the A20 Line

▪ Load the Global Descriptor Table with segment descriptors suitable for code, data, and stack

▪ Cannot access BIOS functions

10/1/2025

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MEMOS-1

▪ No disk.img needed for this part

▪ An assembly file that basically runs on “bare metal” in QEMU - vga16.s in assignment page

▪ Modern compilers only generate protected mode executables from C; that is why we need assembly

▪ This file:

▪ first, detects memory: using BIOS functions (INT 0x15 - there’s a whole page on osdev for this, link in assignment)

▪ then, prints the detected memory regions (INT 0x10, Wikipedia gives a list of commands, also vga16.s)

10/1/2025

https://en.wikipedia.org/wiki/INT_10H

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Real Mode Programming

▪ Control flow statements (if-else, while) are different: conditions are baked into the instruction, or the control

variable is a predetermined register (JNE, LOOP)

▪ Segment registers: CS, DS, ES, FS, GS, and SS

▪ Physical address = (Segment * 16) + Offset; e.g.: %es:(%di)

▪ Stack must be initialized (convention for various reasons to first write to an intermediate register, here AX)

10/1/2025

_start:
 movw $0x9000, %ax
 movw %ax, %ss
 xorw %sp, %sp

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Executable and Linkable Format

▪ Standard format for executables in Unix-like systems

▪ Defines different sections of the executable such as .text for code, .data for global tables and variables

▪ These segment definitions help the loader place them in the appropriate regions of memory

▪ Linker script collects object files and compiles into exec/linkable files

10/1/2025

OUTPUT_FORMAT("elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)
SECTIONS
{
 .foo : { *(.*) }
}

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Debugging in Qemu

▪ You can start Qemu with it set to wait for you to attach a debugger

▪ The above command uses -S to stop QEMU from running until you remote control it from within GDB. The -s

option is equivalent to -gdb tcp::1234. You can then start GDB:

▪ If you compile source file with –g, you will be able to list source code and set breakpoints by symbols (This is

possible for memos-2, but for memos-1, you will need a workaround or just set breakpoints via addresses)

10/1/2025

$qemu-system-i386 –S –s –had memos-1 &

$gdb memos-1
(gdb) target remote localhost:1234
(gdb) ...enter debugging commands here, or type 'continue' to resume execution
of your debugged system...

Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

References

1. Real Mode

2. Master Boot Record

3. BIOS - Wiki, osdev

4. Ralf Brown's Interrupt List

5. ELF

6. Felix Cloutier x86 Reference

10/1/2025

https://wiki.osdev.org/Real_Mode
https://wiki.osdev.org/Real_Mode
https://wiki.osdev.org/Real_Mode
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/BIOS
https://wiki.osdev.org/BIOS
https://www.cs.cmu.edu/~ralf/files.html
https://www.cs.cmu.edu/~ralf/files.html
https://www.cs.cmu.edu/~ralf/files.html
https://www.cs.cmu.edu/~ralf/files.html
https://www.cs.cmu.edu/~ralf/files.html
https://wiki.osdev.org/ELF
https://wiki.osdev.org/ELF
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/
https://www.felixcloutier.com/x86/

	Init
	Slide 1: MEMOS-1

	BIOS
	Slide 2: BIOS
	Slide 3: BIOS
	Slide 4: BIOS Functions

	Real & Protected Mode
	Slide 5: Real Mode
	Slide 6: Protected Mode

	MEMOS-1
	Slide 7: MEMOS-1
	Slide 8: Real Mode Programming
	Slide 9: Executable and Linkable Format
	Slide 10: Debugging in Qemu

	Conclusion
	Slide 11: References

