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MEMOS-2

Same as MEMOS-1; print the total memory and the different ranges of memory

Instead of writing a Master Boot Record, we now write the actual kernel

GRUB detects memory for you and puts you in Protected Mode:
= can access up to 4 GB of memory

= segmentation for rings of separation

= 32-bitRing0

For now, no need to worry about segmentation; upcoming assignments will focus on that
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GNU GRUB

= GRand Unified Bootloader (a play on Grand Unified Theory)
= We will use GRUB Legacy (Version 0)
= Stage 1: cannot do much in 512 B (as you should know now); boots stage 1.5

= Stage 1.5: contains file system drivers, enabling it to directly load stage 2 from

any known location in the filesystem, for example from /boot/grub

= Stage 2: holds the bulk of GRUB functionality
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GRUB Stage 2

= Can execute commands related to loading the OS

. title MEMOS
= Processes menu.lst to get the menu description; kernel should be elf root (hde, o)

kernel /path/to/memos2.elf
= Displays the menu items to the user and gets input from the keyboard

~™ QEMU - TigerVNC

GNU GRUB wersion 0.97 (639K lower - 130040K upper memory)

Use the T and 1 keys to
Press enter to boot th

select which entry is highlighted.
e >ted 0S8, ‘e’ to edit the
commands before booting, or ’'c’

for a command-line.
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GRUB Stage 2

Can execute commands related to loading the OS

Processes menu.lst to get the menu description; kernel should be elf

Displays the menu items to the user and gets input from the keyboard

Loads the kernel at 0x100000 (1 MB), passes information about current state and jumps to 0x100000
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Linker Script (link.Id)

OUTPUT_FORMAT("elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)

SECTIONS {

. = 0x100000;

.ksection : {
*(*);

. = ALIGN(0x1000);
}
}
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= Where should the bootloader write the boot information for the kernel to access?
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Multiboot Specification

Standard interface between bootloader and kernel

Multiboot compliant kernel binary should have the Multiboot header as early as possible in the first page

Bootloader writes the boot info in a struct defined in the multiboot header

The address of this structure to be passed to the kernel is in %ebx
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Kernel asm starter code (stub.S)

.text
.globl _start

jmp real_start

# Multiboot header - Must be in 1st page of memory for GRUB
.align

.long # Multiboot magic number

.long # Align modules to 4KB, req. mem size
# See 'info multiboot' for further info
.long # Checksum

You can pass

argL.Jments by #TODO: Setup a proper stack for C
pushing them to #TODO: Prepare the boot information to pass to kmain
the stack. call kmain
hlt

refer C calling
convention [3]
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Now, you C me!

= Finally, we are in C! But don’t get too happy
= No library functions

= But printing is still easier with familiar programming techniques
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Makefile

as --32 stub.S -o stub.o

gcc -m32 -fno-stack-protector -fno-builtin -nostdinc -c kentry.c -o kentry.o
1d -m elf_i386 -T link.ld stub.o kentry.o -o memos2.elf
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Kernel C starter code (kentry.c)

“memos.h” /* this should include multiboot.h */

void puts (char *text) {
(int i 5 1 < my_strlen ((const char*)text); i++)

/* You kRnow how to implement strlen ;) */
putc (text[i]);
}

/* this 1s a custom struct; you need to decide what makes sense here */
void kmain (boot _info t* binfo) {
puts ("MemOS: Welcome *** Total Free Memory: ");

}
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Printing to the Screen

= Video Memory base address: 0xB8000
= For each print: first byte is the ASCIl code and the second is the attribute

= Thus, in x86, since it uses little endian:

15 8 | 7 0

Attribute ASCII Code

Depends on hardware J
configuration;
Refer Osdev for more info
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/* Base address of the VGA frame buffer */
static unsigned short *videoram = (unsigned short *) 5

static int attrib ; /* black background, white foreground */
static int csr_x , CSr_y ;

COLS

J

void putc (unsigned char c) {

(c ) { /* Tab (move to next multiple of 8) */
csr_x = (csr_x ) ( );

(c '‘\r') { /* Carriage Return */
csr_X R

(c ‘A\n') { /* Line Feed (unix-Llike) */
csr_X 5 CSP_y++;

(c " 'Y { /* Printable characters */

/* Put the character w/attributes */

(videoram + (csr_y * COLS + csr_x)) = ¢ (attrib
CSP_X++}

(csr_x COLS){ csr_x ; csr_y++;} /* wrap around */
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References

1. GRUB Legacy - Wiki, Working, Features

2. Multiboot - Wiki, Specification, header file (older than the current version in the specification)

3. Calling C functions from Assembly

4. Printing to Screen in Protected Mode

5. Linker Commands

6. More info about E820
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