
Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-1

Timothy Borunov

Ph.D. Student, Computer Engineering

With materials from slides by Dr. Sasan Golchin



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-1

▪ In MEMOS-2 we got to know which regions of memory are usable and how big they are

▪ This information is important if you are building something that requires a lot of code and/or data

▪ But before doing anything in the kernel we need to setup the GDT

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Global Descriptor Table

10/27/2025

▪ GRUB sets up a default GDT, but we cannot rely on that, so we set up our own

▪ GDT defines specific segments of memory for specific purposes 

▪ In operating systems, this is used to establish user-kernel separation

▪ For now, only the kernel segments are sufficient



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Global Descriptor Table

10/27/2025

▪ Base: A 32-bit value indicating the linear address where the segment begins

▪ Limit: A 20-bit value indicating size of the segment with a granularity specified by the flags

▪ Flags: Granularity (Bit 55), CodeSize (Bit 54) and Reserved (Bits 52 to 53)



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Global Descriptor Table

10/27/2025

▪ Has at least 3 entries: NULL descriptor, kernel code segment, and kernel data segment

▪ Defining GDT can be done in C or ASM; but you will need ASM to load it (LGDT)

▪ After setting up the GDT, you need to reload all the segment registers to point to the GDT entry 

▪ Neither POP nor MOV can place a value in the code-segment register CS; only the far control transfer (JMP) 

instructions can change CS



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

MICROS-1

▪ In MEMOS-2 we got to know which regions of memory are usable and how big they are

▪ This information is important if you are building something that requires a lot of code and/or data

▪ But before doing anything in the kernel we need to setup the GDT

▪ Detect memory to see which regions are free (already done in MEMOS-2)

▪ Finally, assign work to the threads and call the scheduler to run the first task

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Task Control Block

▪ A thread is a function with a private stack, characterized by the TCB

▪ TCB stores

▪ State: New, Ready, Active, Dead, etc. 

▪ Next Instruction to run: EIP 

▪ Stack top: ESP

▪ Machine State (minimally the following): General registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP (pushl/popl, 

pushal/popal) and Flags: EFLAGS (pushf/popf)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Scheduler Functionality

▪ Thread creation: we have a predefined pool of threads, so the only thing to do is assign work to a free thread

▪ Note that the functions assigned to thread can be as simple as an empty while loop running for a predetermined number of iterations

▪ Thus, the stack size need not be very big

▪ Delete threads when they complete assigned work: this only involves changing state of the thread to free as 

we do not want to delete threads

▪ Support task switches

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Non-Preemptive Context Switch

▪ A context switch happens when the current running task either finishes execution or explicitly yields

▪ Control passes to the scheduler which 

▪ Chooses the next task (FIFO ordering)

▪ Pushes the machine state on the stack

▪ Updates the TCB of the current task (ESP, EIP, State)

▪ Switches to the stack of the next thread (mov next->esp, %esp)

▪ Pops the machine state from the new stack

▪ Returns to the new current task

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

Example (T1 to T2 and back to T1)

10/27/2025



Boston University Department of Computer Science

CS 552
Introduction to Operating Systems

References

1. GDT - Overview, Tutorial, Packed structs

2. Inline Assembly - OSDev, gcc

3. Felix Cloutier - LGDT/LIDT, PUSHA

10/27/2025

https://wiki.osdev.org/Global_Descriptor_Table
https://wiki.osdev.org/GDT_Tutorial
https://riptutorial.com/c/example/31059/packing-structures
https://riptutorial.com/c/example/31059/packing-structures
https://wiki.osdev.org/Inline_Assembly
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://www.felixcloutier.com/x86/lgdt:lidt
https://www.felixcloutier.com/x86/pusha:pushad

	Init
	Slide 1: MICROS-1

	Global Descriptor Table
	Slide 2: MICROS-1
	Slide 3: Global Descriptor Table
	Slide 4: Global Descriptor Table
	Slide 5: Global Descriptor Table

	Task Management
	Slide 6: MICROS-1
	Slide 7: Task Control Block
	Slide 8: Scheduler Functionality
	Slide 9: Non-Preemptive Context Switch
	Slide 10: Example (T1 to T2 and back to T1)
	Slide 11: Example (T1 to T2 and back to T1)
	Slide 12: Example (T1 to T2 and back to T1)
	Slide 13: Example (T1 to T2 and back to T1)
	Slide 14: Example (T1 to T2 and back to T1)
	Slide 15: Example (T1 to T2 and back to T1)
	Slide 16: Example (T1 to T2 and back to T1)
	Slide 17: Example (T1 to T2 and back to T1)
	Slide 18: Example (T1 to T2 and back to T1)
	Slide 19: Example (T1 to T2 and back to T1)

	Conclusion
	Slide 20: References


