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▪ In MEMOS-2 we got to know which regions of memory are usable and how big they are

▪ This information is important if you are building something that requires a lot of code and/or data

▪ But before doing anything in the kernel we need to setup the GDT
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▪ GRUB sets up a default GDT, but we cannot rely on that, so we set up our own

▪ GDT defines specific segments of memory for specific purposes 

▪ In operating systems, this is used to establish user-kernel separation

▪ For now, only the kernel segments are sufficient
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▪ Base: A 32-bit value indicating the linear address where the segment begins

▪ Limit: A 20-bit value indicating size of the segment with a granularity specified by the flags

▪ Flags: Granularity (Bit 55), CodeSize (Bit 54) and Reserved (Bits 52 to 53)
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▪ Has at least 3 entries: NULL descriptor, kernel code segment, and kernel data segment

▪ Defining GDT can be done in C or ASM; but you will need ASM to load it (LGDT)

▪ After setting up the GDT, you need to reload all the segment registers to point to the GDT entry 

▪ Neither POP nor MOV can place a value in the code-segment register CS; only the far control transfer (JMP) 

instructions can change CS
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▪ In MEMOS-2 we got to know which regions of memory are usable and how big they are

▪ This information is important if you are building something that requires a lot of code and/or data

▪ But before doing anything in the kernel we need to setup the GDT

▪ Detect memory to see which regions are free (already done in MEMOS-2)

▪ Finally, assign work to the threads and call the scheduler to run the first task
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Task Control Block

▪ A thread is a function with a private stack, characterized by the TCB

▪ TCB stores

▪ State: New, Ready, Active, Dead, etc. 

▪ Next Instruction to run: EIP 

▪ Stack top: ESP

▪ Machine State (minimally the following): General registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP (pushl/popl, 

pushal/popal) and Flags: EFLAGS (pushf/popf)
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Scheduler Functionality

▪ Thread creation: we have a predefined pool of threads, so the only thing to do is assign work to a free thread

▪ Note that the functions assigned to thread can be as simple as an empty while loop running for a predetermined number of iterations

▪ Thus, the stack size need not be very big

▪ Delete threads when they complete assigned work: this only involves changing state of the thread to free as 

we do not want to delete threads

▪ Support task switches
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Non-Preemptive Context Switch

▪ A context switch happens when the current running task either finishes execution or explicitly yields

▪ Control passes to the scheduler which 

▪ Chooses the next task (FIFO ordering)

▪ Pushes the machine state on the stack

▪ Updates the TCB of the current task (ESP, EIP, State)

▪ Switches to the stack of the next thread (mov next->esp, %esp)

▪ Pops the machine state from the new stack

▪ Returns to the new current task
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Example (T1 to T2 and back to T1)
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