MICROS-1

Timothy Borunov

Ph.D. Student, Computer Engineering

With materials from slides by Dr. Sasan Golchin

Boston University Department of Computer Science BOSTON
UNIVERSITY

MICROS-1

= |n MEMOS-2 we got to know which regions of memory are usable and how big they are
= This information is important if you are building something that requires a lot of code and/or data

= But before doing anything in the kernel we need to setup the GDT

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Global Descriptor Table

GRUB sets up a default GDT, but we cannot rely on that, so we set up our own

GDT defines specific segments of memory for specific purposes

In operating systems, this is used to establish user-kernel separation

For now, only the kernel segments are sufficient

Boston University Department of Computer Science BOSTON
UNIVERSITY

Global Descriptor Table

Segment Descriptor

63 56 55 52 51 48 47 40 39 32
Base Flags | Limit | Access Byte Base

31 24 3 019 16 |7 0|23 16
31 16 15 0
Base Limit

15 0|15 0

= Base: A 32-bit value indicating the linear address where the segment begins
= Limit: A 20-bit value indicating size of the segment with a granularity specified by the flags

= Flags: Granularity (Bit 55), CodeSize (Bit 54) and Reserved (Bits 52 to 53)

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Global Descriptor Table

= Has at least 3 entries: NULL descriptor, kernel code segment, and kernel data segment
= Defining GDT can be done in C or ASM; but you will need ASM to load it (LGDT)
= After setting up the GDT, you need to reload all the segment registers to point to the GDT entry

= Neither POP nor MOV can place a value in the code-segment register CS; only the far control transfer (JMP)

instructions can change CS

Boston University Department of Computer Science BOSTON
UNIVERSITY

MICROS-1

In MEMOS-2 we got to know which regions of memory are usable and how big they are

This information is important if you are building something that requires a lot of code and/or data

But before doing anything in the kernel we need to setup the GDT

Detect memory to see which regions are free (already done in MEMOS-2)

Finally, assign work to the threads and call the scheduler to run the first task

Boston University Department of Computer Science BOSTON
UNIVERSITY

Task Control Block

= A thread is a function with a private stack, characterized by the TCB

= TCB stores
= State: New, Ready, Active, Dead, etc.
= Next Instruction to run: EIP
= Stack top: ESP

= Machine State (minimally the following): General registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP (pushl/popl,
pushal/popal) and Flags: EFLAGS (pushf/popf)

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Scheduler Functionality

= Thread creation: we have a predefined pool of threads, so the only thing to do is assign work to a free thread

= Note that the functions assigned to thread can be as simple as an empty while loop running for a predetermined number of iterations

= Thus, the stack size need not be very big

= Delete threads when they complete assigned work: this only involves changing state of the thread to free as

we do not want to delete threads

= Support task switches

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Non-Preemptive Context Switch

= A context switch happens when the current running task either finishes execution or explicitly yields

= Control passes to the scheduler which
= Chooses the next task (FIFO ordering)
= Pushes the machine state on the stack
= Updates the TCB of the current task (ESP, EIP, State)
= Switches to the stack of the next thread (mov next->esp, %esp)
= Pops the machine state from the new stack

= Returns to the new current task

Boston University Department of Computer Science BOSTON
UNIVERSITY

Example (T1 to T2 and back to T1)

T1 Sche_duler

l ield()
e L Y ————————————————— * B Finds T2
: I Stores T1's state

Switches to T2's stack

: Restores T1's state
*1 & B Returns

B e T e e e e

I Different colors show§ whose stack is active

BOSTON

Boston University Department of Computer Science
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

T1 Scheduler

l yield)_____;

Finds T2
T1's user I Sto(res T1's state
%esp, S oo e
—

Restores [1's state

1 'E rEt B Returns

l o e v - - - -
Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

Sche.duler

@ Finds T2
Fieiieer Stores T1's state
Switches to T2's stack

data
%esp EAddrof=

——(

Restores T1's state
M Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

T1 Sche.duler

I ield
T e y """" (') """""""" * B Finds T2
: l Stores T1's state

_ §vvitches to T2's stack
Addr of *1
%esp | Sched. frame

_—

Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

Sche_duler

Finds T2
Tatean Stores T1's state
Switches to T2's stack

data
Addr of *1

Sched. frame

Machine
Registers

Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

Sche_duler

Finds T2
Stores T1's state

12's running and S\vxtmesto 12's >tad
%eip is pointing to s
somewhere in T2's

stack

until it yields/exits

and we get to

Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

T1 Sche_duler

I ield
R e st (-) --------- ~ @ Finds T2
: I Stores T1's state

T1's user Switches to T2's stack

data
Addr of *1

Sched. frame

Machine
Registers

M Switches to T1's stack
Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

Sche-duler

Finds T2
TS User Stores T1's state
Switches to T2's stack

data Bl R« es T2's state

Addr of *1
%esp | Sched. frame

_

W Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

T1 Sche_d.uler

l --------- y“l"e‘l“d"(") """"""" e Finds T2

TS ear l Stores T1's state
Switches to T2's stack
data B Restores T2's state

%esp Addr of *1

W Restores T1's state

_. Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

Example (T1 to T2 and back to T1)

Sche_duler

yield()

"""""""""""" * B Finds T2
7 Stores T1's state
T1's user

Switches to T2's stack

Restores T1's state
B Returns

Boston University Department of Computer Science BOSTON
UNIVERSITY

10/27/2025

References

1. GDT - Overview, Tutorial, Packed structs

2. Inline Assembly - OSDev, gcc

3. Felix Cloutier - LGDT/LIDT, PUSHA

Boston University Department of Computer Science BOSTON
UNIVERSITY

https://wiki.osdev.org/Global_Descriptor_Table
https://wiki.osdev.org/GDT_Tutorial
https://riptutorial.com/c/example/31059/packing-structures
https://riptutorial.com/c/example/31059/packing-structures
https://wiki.osdev.org/Inline_Assembly
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://www.felixcloutier.com/x86/lgdt:lidt
https://www.felixcloutier.com/x86/pusha:pushad

	Init
	Slide 1: MICROS-1

	Global Descriptor Table
	Slide 2: MICROS-1
	Slide 3: Global Descriptor Table
	Slide 4: Global Descriptor Table
	Slide 5: Global Descriptor Table

	Task Management
	Slide 6: MICROS-1
	Slide 7: Task Control Block
	Slide 8: Scheduler Functionality
	Slide 9: Non-Preemptive Context Switch
	Slide 10: Example (T1 to T2 and back to T1)
	Slide 11: Example (T1 to T2 and back to T1)
	Slide 12: Example (T1 to T2 and back to T1)
	Slide 13: Example (T1 to T2 and back to T1)
	Slide 14: Example (T1 to T2 and back to T1)
	Slide 15: Example (T1 to T2 and back to T1)
	Slide 16: Example (T1 to T2 and back to T1)
	Slide 17: Example (T1 to T2 and back to T1)
	Slide 18: Example (T1 to T2 and back to T1)
	Slide 19: Example (T1 to T2 and back to T1)

	Conclusion
	Slide 20: References

