Finding Circuits for Simple XOR
Extensions in Polynomial Time

Tim Jackman
Joint work with Marco Carmosino (IBM) and Ngu (Nathan) Dang

Special Thanks to Rahul llango (MIT)



4
N

Background & Motivation

Or, What Does The Title Mean?



Circuits

e Used for studying the complexity of Boolean functions f: {0,1}" -> {0,1}

e Circuits are Directed Acyclic Graphs (DAGs) with:
o 1 sink -the output
o nsources/leaves - the inputs

e The inputs are labeled X1 Xy p ooy X

e Interior nodes, called gates, are labeled by Boolean functions from a Basis set
o Example:{A, V, -}, {¢, A}
e DeMorgan Basis: {A, V, =}
o A, V have fanin 2, - has fanin 1
o Unbounded fanout on all gates
e Normalization:
o No double negations, all gates feed into at most one - gate




An Example Circuit

Computes XOR,




An Example Circuit
1

Computes XOR,




An Example Circuit
e Computes XOR,

e Complexity Measure:
o Depth
o Size
m Number of A, V gates
m ' gates are free

e This circuit has size 3

e CC(f) is the size of the smallest circuit
computing f




The (in)famous Minimum Circuit Size Problem (MCSP)

Input: f: {0,1}" — {0,1} as a truth table (2" bitstring) & s € I
Output: Whether CC(f) < s

In NP and...
..NP-completeness is open...
..few variants are known to be NP-complete [Mas 79, HOS 18, ILO 20, lla 20]
Resolving the question would imply major breakthroughs

o |f MCSP is NP Complete then EXP # ZPP [MW15]

o If MCSP € P then there are no one way functions [KC00]

o And many many many more...




What do we even
know about circuit
complexity?



Taking a Step Back

e Most Boolean functions require large (Q(2"/n)) circuits [Sha 49]

e Known DeMorgan Circuit Lower Bounds (for Functions in NP)
o CC(XOR ) = 3(n-1) [Schnorr 1973]
o CC(MOD,) = 4(n-7) [Zwick 1991]
o CC("k-mixed”) = 4.5n - o(n) [Lachish and Raz, 2010]
o CC(WSUMP) = 5n - o(n) [Amano and Tarui 2011]
e 5n upper bound for the best lower bounds [AT11]

e Can we do better with more resources (non-determinism, randomness)?
o MAEXP does not have polynomial size circuits [BFT 98]
o ZPEXPMCSP does not have polynomial size circuits [IKV 18]
o MA/1 is not in SIZE[nX] for any k [Santhanam 19]




Relative Circuit Complexity

e Proving circuit lower bounds seems to require a lot of work
e How do these lower bounds lift to extensions?
o ¢g:{0,1}"*™ — {0,1} is an extension of f: {0,1}" — {0,1} if

3 k € {0,1}" VvV x € {0,1}": g(x,k) = f(x)

e If gis an extension of f then CC(g) = CC(f)
o Substitute in k in any g circuit to get an f circuit
e (is anon-degenerate extension of f
o Vi€ |[ntm] 3 x € {0,1}"™: g(x) # g(x*)
o Extension variables must be read in g circuits
o CC(g)=CC(f)+m




The (&7~ Simple Extension Problem

Let & ={f } ., be asequence of non-degenerate Boolean functions on n variables

Input: g:{0,1}"™ — {0,1} represented as a truth table, n € N

Output: Whether g is a non-degenerate extension of f and CC(g) = CC(f ) + m

e Example:
o OR, is a simple extension of OR,

e Non Examples:
o XOR, is not a simple extension of XOR,




The (&7~ Simple Extension Problem

Let & ={f } ., be asequence of non-degenerate Boolean functions on n variables

Input: g:{0,1}"™ — {0,1} represented as a truth table, n € N

Output: Whether g is a non-degenerate extension of f_and CC(g) = CC(f ) + m

e Like MCSP thisisin NP
e Checking that g is a non-degenerate extension of f_is “easy”

e Checking CC(g) = CC(f ) + m reduces to MCSP

e Hardness of (*~<SEP implies hardness for MCSP




Partial Function MCSP (MCSP*) Is ETH Hard

e MCSP*is MCSP but with partial truth-tables:
o Is there any completion of the truth-table whose CC is at most k?

e MCSP*is hard assuming the Exponential Time Hypothesis (ETH) [lla 20]
o ETH : SAT cannot be solved in subexponential time
o Proved via a reduction from Partial OR-Simple Extension

An ETH-hard
Problem OR-SEP* MCSP*
[LMS18]

IA
IA

to ETH hardness of full MCSP?

[ Awesome! Why don't we just lift this proof }




The Catch

e Identifying simple extensions of total functions whose optimal circuits are
read-once formulas (ROF) is easy.
o Read-once formula = fanout of every node is 1
o fis computed by a ROF = CC(f) =n-1
o @is asimple extension of f = g's optimal circuits are ROFs
o Deciding if functions can be computed by ROFs is in P [AHK93, GMR06]
e |lango’'s proof used structural knowledge of OR

“... the missing component in extending our results to
MCSP is finding some function f whose optimal circuits we
can characterize but are also sufficiently complex.”

Rahul llango, SIAM J. of Computing, 2022




XOR : The Next Natural Candidate

e Not computed by ROFs
e DeMorgan Basis Circuit Complexity is exactly known

o 3(n-1) Lower Bound from Schnorr

o 3(n- 1) Upper Bound by Composing XOR,, subcircuits
e We've fully characterized the set of optimal XOR_ circuits:

All optimal XOR _ circuits are binary trees of (-)XOR, subcircuits




XOR : The Next Natural Candidate

Theorem: All optimal XOR_ circuits are binary trees of (-)XOR,, subcircuits

Optimal
XOR, Circuit




Awesome, Let's Try to
Prove MCSP Is ETH

Hard Using XOR
Simple Extension



Bad News




Bad-News Good News?

BN



Bad-News Geed-News? News

Main Theorem: XOR -Simple Extension is in P

e We design a “generic” algorithm for f-Simple Extension
o Running time depends on “shape” parameters of optimal circuits
m Is not polynomial time in general
o For XOR, it is polynomial

m Probably also polynomial for the other explicit functions with lower
bounds




Naive Brute Force

Input: tt(g) (2™™ bit string)
Output: Whether g is a non-degenerate extension of f with CC(g) = CC(f) + m

e Brute-force checking for a key & non-degeneracy is “efficient”
e Suffices to find a circuit of size CC(f) + m
e Just check all circuits of the appropriate size:
o Encoding argument: a circuit of size s can be encoded in O(s log s) bits
m = 2061099 circuits
o CC(f) is Q(n) - there's 2%(mlog(n+m) circuits to check
m Quasipolynomial time

[ WEe'll just need to be clever then...




But | Really Really REALLY like Brute Forcing Things

e Fine, but we need to come up with something better to brute force over.

Characterize
. Reduce Our
Optimal SE
L Search Space
Circuits




4
N

Building Up Our Toolbox

How can we design an algorithm if we don't know anything?



Notation & Basic Tools

e For a simple extension g, we separate its’ inputs into:

o “Original” variables: Xy Xy ooy X

o “Extension” variables: Yar Yor o Yo
e We refer to restrictions k € {0,1}™ such that g(x, k) = f(x) as keys
e We refer to AND and OR gates as costly gates

e Main Tool: Substitution with keys in circuits and performing gate elimination




Gate Elimination

e Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

“Fixing” Rules:

Removed gates ‘
become “fixed”
constants

Fixing rules are hard to analyze since more
simplifications must occur




Gate Elimination

e Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

“Passing” Rules:
Removed gates
“pass” wires to

their other input

Passing rules are easier to analyze since
they remove constants




Gate Elimination

e Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

—)

Arguments using gate elimination are a
case analysis nightmare




An Example of a Simple Extension Circuit

e This is an optimal circuit for a simple
extension of XOR, with 7 extension variables
e |f we restrict with k =1001001 we get...




An Example of a Simple Extension Circuit

e This is an optimal circuit for a simple
extension of XOR, with 7 extension variables
e |f we restrict with k =1001001 we get...

An optimal XOR, circuit!

IRV




An Example of a Simple Extension Circuit

e Let’s highlight this embedded circuit...




An Example of a Simple Extension Circuit

e Let’s highlight this embedded circuit...




An Example of a Simple Extension Circuit

e Let’s highlight this embedded circuit...

..and focus in on what's added on to it




An Example of a Simple Extension Circuit

An added gate that
combines the tree with the
rest of the circuit

P ..and focus in on what's added on to it
\
Full Tree which only reads y
> variables. Furthermore, it's
a formula
_J

e Let’s highlight this embedded circuit...

We call these structures
Y-trees and combiners




Structural Claims

e These structures are not unique to our example
e Embedding Lemma: Every optimal circuit for a SE has an embedded optimal
circuit for the base function
o Substituting m non-degenerate variables & simplifying reduces circuit
size by at least m

e Structural Theorem: All optimal SE circuits can be decomposed into:

o The embedded base circuit

o Non-intersecting Y-trees & their respective “combiners”
Completely generic - nothing to do with XOR




Proof Sketch of Structural Theorem

e Relies on the following lemmas:
o Intermediate SE Lemma: Restricting G with a partial key produces an
optimal circuit for an intermediate simple extension lying between f & g
m Restricting s < m extension variables may eliminate > s costly gates
due to fixing rules
o Good Keys Lemma: For any s extension variables, there's some partial
key restriction of those variables that eliminates exactly s costly gates.
m Good key substitution for the variables in a Y tree eliminates just the
Y-tree + the combiner
e We will prove this via induction on m




Proof Sketch Continued

e Take any optimal g circuit G

e Thereis an f circuit F embedded in G
e Identify a Y-tree & combiner

e Eliminate it using a good key

e Resulting G’ is optimal for
intermediate SE by lemma

e Apply Inductive Hypothesis

Lift decomposition back to G



4
N

Our “Efficient” Algorithm

Step Aside Brat Summer It's Brute-Force Fall



Our Strategy

Every optimal SE circuit is an embedded optimal base circuit + Y-trees
Take optimal base circuits & build extension ckts by adding Y-trees
Check if what we built computes g

Reject once we've exhausted all optimal base circuits

4 I
We'll need to make sure our search

space is sufficiently small so thus
brute force is “efficient”

- /




200 +m) is Efficient? | mean...

e Inputis a truth table of a Boolean function on n+m variables:
o 2™ bits long = poly(2™™) = 20(+m)
e What's Allowed:
o Going over the truth table a lot ; 20("m) x 20(n+m) = 90(n+m)
o Computing truth tables for size s circuits: O(s * 2™™)
e What's Not:
o 20(n log n)
o n!- PERMUTATIONS ARE OFF THE TABLE
m Rahul's partial hardness relies on searching over n! being unavoidable
e What's kind of allowed?
o Dependence on other parameters that are small for XOR
m Circuit size -> O(n)
m  Maximum fanout -> O(1)




To Fix Later:
e # of Base Circuits

Counting is Fun!

e Sanity Check - Is It Feasible For XOR ?
o XOR_circuits are binary trees of (-)XOR, subcircuits:
m # of unlabeled binary trees on n inputs:
e (n-1)™" Catalan Number C__
é C,_,=0(4"") =200
| 8\ ngtheinputs
Dptions




To Fix Later:
COun'[ing IS Fun e # of Base Circuits

e We canimagine “splicing” in combiners & Y-trees “one-by-one”
e How many Y-trees are there? How many ways to splice in Y-trees?




To Fix Later:
e # of Base Circuits

Counting is Fun

e How many Y-trees are there? How many W in Y-trees?

e # of extension variables in a Y-tree ranges from 1 to m
o d extension variables

e Y-trees are Boolean formulas = Weighted Binary Trees
o Interior nodes labeled AND/OR
o Negations correspond to edges with weight 1

o # of unweighted BT w/ d leaves = C = 2°(

o #of edges =2(d-1) + 1 =>2°9 options for weights

e Labeling inputs => d!




To Fix Later:
e # of Base Circuits

Counting is Fun

e # of Y-trees

e How many Y-trees are there? How many W in Y-trees?

e # of extension variables in a Y-tree ranges from 1 to m
o d extension variables

e Y-trees are Boolean formulas = Weighted Binary Trees
o Interior nodes labeled AND/OR
o Negations correspond to edges with weight 1

o # of unweighted BT w/ d leaves = C = 2°(

o #of edges =2(d-1) + 1 =>2°9 options for weights

e Labeling inputs => d!




To Fix Later:
e # of Base Circuits

Counting is “Fun”

e # of Y-trees

e How many Y-trees are there? How many W in Y-trees?

e When there are multiple Y-trees we need to divy up the extension variables
o We are partitioning the set{y.,y,, .., y_} into t subsets

o Yy (# of ways to partition an m-set into t subsets)

T=t=sm

m Equals the m™ Bell Number B_
m B_=>(m/2)m?




To Fix Later:
e # of Base Circuits

Counting is “Fun”

e #of Y-trees
e Partitioning y's

Ir T treveoeuu.

e How many Y-trees are there? How many W

e When there are multiple Y-trees we need to divy up the extension variables
o We are partitioning the set{y.,y,, .., y_} into t subsets

o Yy (# of ways to partition an m-set into t subsets)

T=t=sm

m Equals the m™ Bell Number B_
m B_=>(m/2)m?




To Fix Later:
Coun'[ing is “Fun” e # of Base Circuits

e #of Y-trees
e Partitioning y's

e How many ways to splice in Y-trees are there?

e Where can we put combiners?
e Observation: When a combiner is eliminated via “good” keys, it's out wires are

“passed” down to it's other input




Counting is “Fun”

e How many ways to splice in Y-trees are there?
e Where can we put combiners?

To Fix Later:
e # of Base Circuits

e #of Y-trees
e Partitioning y's

e Observation: When a combiner is eliminated via “good” keys, it's out wires are

“passed” down to it's other input

e During splicing we can think of “stealing” some out edges from some

“original” node in the original base circuit
e Label each combiner with what it “steals”
o 0(s) choices for the “origin” where s = CC(f)
o 20(maxfanout(F)) chojces for what to steal

[ What if two or more combiners have the same label? }




To Fix Later:

COun'[ing is “uR- e # of Base Circuits
? e #of Y-trees
S e Partitioning y's

e How many ways to splice in Y-trees are there?
e What if two or more combiners have the same label?

o We have to decide how to order them with respect to one another
o |If we have k Y-trees with the same label...
m k! ways to arrange them in a stack




Counting is ++daA-

e How many ways to splice in Y-trees are there?
e What if two or more combiners have the same label?

To Fix Later:
e # of Base Circuits

e #of Y-trees
e Partitioning y's
e Ordering Y-Trees

o We have to decide how to order them with respect to one another

o If we have k Y-trees with the same label...
m k! ways to arrange them in a stack

You are over counting!
AH!' AH! AH!




To Fix Later:
Coun'[ing is “uR- e # of Base Circuits

e # of Y-trees
e Partitioning y's

e How many ways to splice in Y-trees are there? e Ordering Y-Trees

e What if two or more combiners have the same label?
o We have to decide how to order them with respect to one another
o |If we have k Y-trees with the same label...
m k! ways to arrange them in a stack

Y1 Y2
[teration i
Y, above Y,
lteration | : A Y, above Y1> h




To Fix Later:
e # of Base Circuits

Counting is ++daA-
e #of Y-trees
e Partitioning y's

e Ordering Y-Trees

e How many ways to splice in Y-trees are tf
e What if two or more combiners have the same label?

o We have to decide how to order them with respect to one another
o If we have k Y-trees with the same label...

m k! ways to arrange them in a stack

m We canjust arbitrarily label the added trees Y, Y., ...

m IfY and YJ. have the same label &i>jthen Y, appears above Yj




To Fix Later:
e # of Base Circuits

e #of Y-trees
e Partitioning y's

e Ordering-Y-Trees

Counting is ++daA-

e How many ways to splice in Y-trees are t
e What if two or more combiners have the same label?

o We have to decide how to order them with respect to one another
o If we have k Y-trees with the same label...

m k! ways to arrange them in a stack

m We canjust arbitrarily label the added trees Y, Y., ...

m IfY and Yj have the same label &i>jthen Y. appears above Yj




No But Seriously... What About The Permutations?

e Permutations pop up in our counting in a few spots:
o The # of base XOR_ circuits
o The # of Y-trees
e We also run into issues partitioning the Y variables amongst the Y-trees

Silver Bullet: Truth Table Isomorphism




Well That Was Easy

e Two Boolean functions f & g are truth table isomorphic if there exists a
permutation 1t [n] — [n] such that g(x) = f(r(x))
o If fand g are tt-iso then CC(f) = CC(qg)
m Take any f circuit and permute its inputs to get a circuit for g

O Checking tt-iso is in P [Luks 99]
e (Can assign variables arbitrarily
o Brute force over “open” (i.e. unlabeled input) circuits & subcircuits
e Avoid partitioning the set of extension variables
o Decide how many Y-trees & how many vars each has
o # of compositions of m->2M""




Wooo Brute-Force!
On input tt(g), n:

1. Check that g is a non-degenerate extension of f_
2. For each “open” optimal circuit of f:
a. Foreach “open” Y-tree decomposition:
i. Construct G’ := the base circuit w/ the Y-tree decomposition spliced
in where variables are filled arbitrarily

ii. Compute tt(G')

ii. If tt(G’) = tt(G) then accept
3. Reject [

L is the # of open optimal ckts for f_(up to isomorphism)

Running Time: L_- 2°@*m) where
¢ is the maximum fanout in any optimal ckt for f_




It works for XOR

e The algorithm is poly time if #OpenOptCkts(f ) = 2°(", CC(f ) = O(n), and the
maximum fanout in any optimal circuit is constant
e Every optimal XOR_ circuit is a binary tree of (-)XOR, subcircuits
o C_unlabeled binary trees
o Label each internal node with a (-)XOR,, subcircuit
m Some constant number of options, say <28
m (n-1) subcircuits to label
o Total number of “open” XOR  circuits: <2%(n-1)C = 2°"
o Maximum fanout is 2




4
N

Discussion & Future Directions

Okay? What Now?



What Else Is Ruled Out? Bypassing our algorithm will require:
1) Better structural knowledge of circuits

., . o 2) Significantly improved lower bounds
e |f a function’'s optimal circuits are

o of O(n) size,
o with constant maximum fanout,
o and polynomially many (up to permutation of inputs),

then it is not a candidate for hardness of MCSP

e |[f the best known constructions for:
o MOD4
o WSUMP

Are optimal & exhaustive then they are ruled out



Tweaking The Model

e The reduction to MCSP still holds even if we:

o Change the Basis
m B, (all binary Boolean functions)?
o Increase the “gap”
m CC(g) = CC(f) + c - mfor some constant c
e Other models of Boolean computation:
o Formulas -> MFSP is Hard [llango 21]
o Branching Programs




Do We Need Non-Degeneracy?

e Reduction to MCSP still holds without non-degeneracy
o Non-degeneracy yields structure
o Can “pad” the the truth table with degenerate variables increasing gap
e Subtly “easier” than the general relative complexity problem
o Input: Given g an extension of f & a natural numberd
Output: Whether CC(g) = CC(f) +d
o Padding in the truth-table allows our running time to be longer




Thank you!



Appendix

You wanted to hear more?



Our “Actual” Algorithm

e Actual implementation of brute-forcing:
o Encode the sequence of Y-trees splices from F to G
o Design an efficient decoding algorithm
o Brute force over all possible encodings

e Encoding length we get is max-fanout(F)(s + m)
o Check all 2maxfanout(F)(stm) nassible encodings

e Same issues that affected our counting occur in encoding
o Truth-table isomorphism saves us the same bits

e One extra issue - specifying splice locations with names
o Splice Y-trees in increasing topological order
o Specify how many more gates up the next origin is




