
Finding Circuits for Simple XOR
Extensions in Polynomial Time
Tim Jackman

Joint work with Marco Carmosino (IBM) and Ngu (Nathan) Dang

Special Thanks to Rahul Ilango (MIT)

Background & Motivation
Or, What Does The Title Mean?

Circuits

● Used for studying the complexity of Boolean functions f: {0,1}n -> {0,1}
● Circuits are Directed Acyclic Graphs (DAGs) with:

○ 1 sink - the output
○ n sources/leaves - the inputs

● The inputs are labeled x1, x2 , …, xn
● Interior nodes, called gates, are labeled by Boolean functions from a Basis set

○ Example: {∧, ∨, ¬}, {⊕, ∧}
● DeMorgan Basis: {∧, ∨, ¬}

○ ∧, ∨ have fanin 2, ¬ has fanin 1
○ Unbounded fanout on all gates

● Normalization:
○ No double negations, all gates feed into at most one ¬ gate

An Example Circuit

∨

x1 x2

∧ ∧

ㄱ ㄱ

x1 x2 XOR2(x1, x2)

0 0 0

0 1 1

1 0 1

1 1 0

● Computes XOR2

An Example Circuit

∨

x1 x2

∧ ∧

ㄱ ㄱ

x1 x2 XOR2(x1, x2)

0 0 0

0 1 1

1 0 1

1 1 0

0

0

0

1

1

1

1 ● Computes XOR2

An Example Circuit

∨

x1 x2

∧ ∧

ㄱ ㄱ

● Computes XOR2

● Complexity Measure:
○ Depth
○ Size

■ Number of ∧, ∨ gates
■ ㄱ gates are free

● This circuit has size 3

● CC(f) is the size of the smallest circuit
computing f

The (in)famous Minimum Circuit Size Problem (MCSP)

Input: f : {0,1}n → {0,1} as a truth table (2n bitstring) & s ∈ ℕ

Output: Whether CC(f) ≤ s

● In NP and…
● …NP-completeness is open…
● …few variants are known to be NP-complete [Mas 79, HOS 18, ILO 20, Ila 20]
● Resolving the question would imply major breakthroughs

○ If MCSP is NP Complete then EXP ≠ ZPP [MW15]
○ If MCSP ∊ P then there are no one way functions [KC00]
○ And many many many more…

What do we even
know about circuit
complexity?

Taking a Step Back

● Most Boolean functions require large (Ω(2n/n)) circuits [Sha 49]
● Known DeMorgan Circuit Lower Bounds (for Functions in NP)

○ CC(XORn) = 3(n-1) [Schnorr 1973]
○ CC(MOD4) ≥ 4(n-7) [Zwick 1991]
○ CC(“k-mixed”) ≥ 4.5n - o(n) [Lachish and Raz, 2010]
○ CC(WSUMP) ≥ 5n - o(n) [Amano and Tarui 2011]

● 5n upper bound for the best lower bounds [AT11]
● Can we do better with more resources (non-determinism, randomness)?

○ MAEXP does not have polynomial size circuits [BFT 98]
○ ZPEXPMCSP does not have polynomial size circuits [IKV 18]
○ MA/1 is not in SIZE[nk] for any k [Santhanam 19]

Relative Circuit Complexity

● Proving circuit lower bounds seems to require a lot of work
● How do these lower bounds lift to extensions?

○ g : {0,1}n+m → {0,1} is an extension of f : {0,1}n → {0,1} if

∃ k ∈ {0,1}m ∀ x ∈ {0,1}n : g(x,k) = f(x)

● If g is an extension of f then CC(g) ≥ CC(f)
○ Substitute in k in any g circuit to get an f circuit

● g is a non-degenerate extension of f
○ ∀ i ∈ [n+m] ∃ x ∈ {0,1}n+m : g(x) ≠ g(x⊕i)
○ Extension variables must be read in g circuits
○ CC(g) ≥ CC(f) + m

The F - Simple Extension Problem

● Example:
○ OR7 is a simple extension of OR3

● Non Examples:
○ XOR6 is not a simple extension of XOR5

Let F = {fn}n∊ℕ be a sequence of non-degenerate Boolean functions on n variables

Input: g : {0,1}n+m → {0,1} represented as a truth table, n ∊ ℕ

Output: Whether g is a non-degenerate extension of fn and CC(g) = CC(fn) + m

The F - Simple Extension Problem

● Like MCSP, this is in NP

● Checking that g is a non-degenerate extension of fn is “easy”

● Checking CC(g) = CC(fn) + m reduces to MCSP

● Hardness of F-SEP implies hardness for MCSP

Let F = {fn}n∊ℕ be a sequence of non-degenerate Boolean functions on n variables

Input: g : {0,1}n+m → {0,1} represented as a truth table, n ∊ ℕ

Output: Whether g is a non-degenerate extension of fn and CC(g) = CC(fn) + m

Partial Function MCSP (MCSP*) Is ETH Hard

● MCSP* is MCSP but with partial truth-tables:
○ Is there any completion of the truth-table whose CC is at most k?

● MCSP* is hard assuming the Exponential Time Hypothesis (ETH) [Ila 20]
○ ETH : SAT cannot be solved in subexponential time
○ Proved via a reduction from Partial OR-Simple Extension

An ETH-hard
Problem
[LMS18]

OR-SEP* MCSP*≤ ≤

Awesome! Why don’t we just lift this proof
to ETH hardness of full MCSP?

The Catch

● Identifying simple extensions of total functions whose optimal circuits are
read-once formulas (ROF) is easy.
○ Read-once formula ≔ fanout of every node is 1
○ f is computed by a ROF ⇒ CC(f) = n - 1
○ g is a simple extension of f ⇒ g’s optimal circuits are ROFs
○ Deciding if functions can be computed by ROFs is in P [AHK93, GMR06]

● Ilango’s proof used structural knowledge of OR

“… the missing component in extending our results to
MCSP is finding some function f whose optimal circuits we
can characterize but are also sufficiently complex.”
Rahul Ilango, SIAM J. of Computing, 2022

XOR : The Next Natural Candidate

● Not computed by ROFs
● DeMorgan Basis Circuit Complexity is exactly known

○ 3(n - 1) Lower Bound from Schnorr
○ 3(n - 1) Upper Bound by Composing XOR2 subcircuits

● We’ve fully characterized the set of optimal XORn circuits:

All optimal XORn circuits are binary trees of (¬)XOR2 subcircuits

Theorem: All optimal XORn circuits are binary trees of (¬)XOR2 subcircuits

XOR : The Next Natural Candidate

Optimal
XOR7 Circuit

XOR

XOR XOR

¬XOR

¬XOR

XOR

x5 x4

x1

x2 x7

x3 x6

Awesome, Let’s Try to
Prove MCSP is ETH
Hard Using XOR
Simple Extension

Bad News

Bad News Good News?

Bad News Good News? News

Main Theorem: XORn-Simple Extension is in P

● We design a “generic” algorithm for f-Simple Extension
○ Running time depends on “shape” parameters of optimal circuits

■ Is not polynomial time in general
○ For XOR, it is polynomial

■ Probably also polynomial for the other explicit functions with lower
bounds

Naive Brute Force
Input: tt(g) (2n+m bit string)

Output: Whether g is a non-degenerate extension of f with CC(g) = CC(f) + m

● Brute-force checking for a key & non-degeneracy is “efficient”
● Suffices to find a circuit of size CC(f) + m
● Just check all circuits of the appropriate size:

○ Encoding argument: a circuit of size s can be encoded in O(s log s) bits
■ ≈ 2O(s log s) circuits

○ CC(f) is Ω(n) - there’s 2Ω((n+m)log(n+m)) circuits to check
■ Quasipolynomial time

We’ll just need to be clever then…

But I Really Really REALLY Like Brute Forcing Things

● Fine, but we need to come up with something better to brute force over.

Characterize
Optimal SE

Circuits

Reduce Our
Search Space

Building Up Our Toolbox
How can we design an algorithm if we don’t know anything?

Notation & Basic Tools

● For a simple extension g, we separate its’ inputs into:
○ “Original” variables: x1, x2, …, xn
○ “Extension” variables: y1, y2, …, ym

● We refer to restrictions k ∈ {0,1}m such that g(x, k) = f(x) as keys
● We refer to AND and OR gates as costly gates
● Main Tool: Substitution with keys in circuits and performing gate elimination

Gate Elimination

● Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

∨

1 h

1
“Fixing” Rules:
Removed gates
become “fixed”
constants

Fixing rules are hard to analyze since more
simplifications must occur

Gate Elimination

● Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

“Passing” Rules:
Removed gates
“pass” wires to
their other input

∨

0 h

h

Passing rules are easier to analyze since
they remove constants

Gate Elimination

● Circuit simplification scheme which removes constants & “obvious”
inefficiencies in a circuit

∨

h

h

Arguments using gate elimination are a
case analysis nightmare

An Example of a Simple Extension Circuit

∨

∧

¬

∧

¬

¬

∧ ∨

 x3

∨

¬

∧ ∧

¬
¬

 x1 x2

∨

 y1

∧

 y4

 y6

¬

∨

 y2

∧

∨

 y3 y7

 y5

● This is an optimal circuit for a simple
extension of XOR3 with 7 extension variables

● If we restrict with k = 1001001 we get…

An Example of a Simple Extension

● This is an optimal circuit for a simple
extension of XOR3 with 7 extension variables

● If we restrict with k = 1001001 we get…

¬

∧

¬

∧ ∨

 x3

∨

¬

∧ ∧

¬ ¬

 x1 x2

An optimal XOR3 circuit!

An Example of a Simple Extension Circuit

An Example of a Simple Extension

∨

∧

¬

∧

¬

¬

∧ ∨

 x3

∨

¬

∧ ∧

¬
¬

 x1 x2

∨

 y1

∧

 y4

 y6

¬

∨

 y2

∧

∨

 y3 y7

 y5

● Let’s highlight this embedded circuit…

An Example of a Simple Extension Circuit

An Example

∨

∧

¬

∧

¬

¬

∧ ∨

 x3

∨

¬

∧ ∧

¬
¬

 x1 x2

∨

 y1

∧

 y4

 y6

¬

∨

 y2

∧

∨

 y3 y7

 y5

● Let’s highlight this embedded circuit…

An Example of a Simple ExtensionAn Example of a Simple Extension Circuit

An Example

∨

∧

¬

∧

¬

¬

∧ ∨

 x3

∨

¬

∧ ∧

¬
¬

 x1 x2

∨

 y1

∧

 y4

 y6

¬

∨

 y2

∧

∨

 y3 y7

 y5

● Let’s highlight this embedded circuit…

…and focus in on what’s added on to it

An Example of a Simple ExtensionAn Example of a Simple Extension Circuit

An Example

∨

∧

¬

∨

 y1

∧

 y4

 y6

¬

∨

 y2

∧

∨

 y3 y7

 y5

● Let’s highlight this embedded circuit…

…and focus in on what’s added on to it

Full Tree which only reads y
variables. Furthermore, it’s
a formula

An added gate that
combines the tree with the

rest of the circuit

We call these structures
Y-trees and combiners

An Example of a Simple ExtensionAn Example of a Simple Extension Circuit

Structural Claims

● These structures are not unique to our example
● Embedding Lemma: Every optimal circuit for a SE has an embedded optimal

circuit for the base function
○ Substituting m non-degenerate variables & simplifying reduces circuit

size by at least m
● Structural Theorem: All optimal SE circuits can be decomposed into:

○ The embedded base circuit
○ Non-intersecting Y-trees & their respective “combiners”

● Completely generic - nothing to do with XOR

Proof Sketch of Structural Theorem

● Relies on the following lemmas:
○ Intermediate SE Lemma: Restricting G with a partial key produces an

optimal circuit for an intermediate simple extension lying between f & g
■ Restricting s < m extension variables may eliminate > s costly gates

due to fixing rules
○ Good Keys Lemma: For any s extension variables, there’s some partial

key restriction of those variables that eliminates exactly s costly gates.
■ Good key substitution for the variables in a Y tree eliminates just the

Y-tree + the combiner
● We will prove this via induction on m

Proof Sketch Continued

F

Y

Y2

Y4 Y3

Y5Y6

Y7

Y8

● Take any optimal g circuit G

● There is an f circuit F embedded in G

● Identify a Y-tree & combiner

● Eliminate it using a good key

● Resulting G’ is optimal for
intermediate SE by lemma

● Apply Inductive Hypothesis

● Lift decomposition back to G

GG’

Y1

Our “Efficient” Algorithm
Step Aside Brat Summer It’s Brute-Force Fall

Our Strategy

● Every optimal SE circuit is an embedded optimal base circuit + Y-trees
● Take optimal base circuits & build extension ckts by adding Y-trees
● Check if what we built computes g
● Reject once we’ve exhausted all optimal base circuits

We’ll need to make sure our search
space is sufficiently small so thus

brute force is “efficient”

2O(n + m) is Efficient? I mean…

● Input is a truth table of a Boolean function on n+m variables:
○ 2n+m bits long ⇒ poly(2n+m) ⇒ 2O(n+m)

● What’s Allowed:
○ Going over the truth table a lot : 2O(n+m) * 2O(n+m) = 2O(n+m)

○ Computing truth tables for size s circuits: O(s * 2n+m)
● What’s Not:

○ 2O(n log n)

○ n! - PERMUTATIONS ARE OFF THE TABLE
■ Rahul’s partial hardness relies on searching over n! being unavoidable

● What’s kind of allowed?
○ Dependence on other parameters that are small for XOR

■ Circuit size -> O(n)
■ Maximum fanout -> O(1)

Counting is Fun!

● Sanity Check - Is It Feasible For XORn?
○ XORn circuits are binary trees of (¬)XOR2 subcircuits:

■ # of unlabeled binary trees on n inputs:
● (n-1)th Catalan Number Cn-1
● Cn-1= O(4n-1) = 2O(n)

■ Labeling the inputs
● n! options

To Fix Later:
● # of Base Circuits

Counting is Fun

● We can imagine “splicing” in combiners & Y-trees “one-by-one”
● How many Y-trees are there? How many ways to splice in Y-trees?

To Fix Later:
● # of Base Circuits

Counting is Fun

● How many Y-trees are there? How many ways to splice in Y-trees?

To Fix Later:
● # of Base Circuits

● # of extension variables in a Y-tree ranges from 1 to m
○ d extension variables

● Y-trees are Boolean formulas ≈ Weighted Binary Trees
○ Interior nodes labeled AND/OR
○ Negations correspond to edges with weight 1

● # of unweighted BT w/ d leaves = Cd-1= 2O(d)

● # of edges = 2(d-1) + 1 => 2O(d) options for weights
● Labeling inputs => d!

Counting is Fun

● How many Y-trees are there? How many ways to splice in Y-trees?
● # of extension variables in a Y-tree ranges from 1 to m

○ d extension variables
● Y-trees are Boolean formulas ≈ Weighted Binary Trees

○ Interior nodes labeled AND/OR
○ Negations correspond to edges with weight 1

● # of unweighted BT w/ d leaves = Cd-1= 2O(d)

● # of edges = 2(d-1) + 1 => 2O(d) options for weights
● Labeling inputs => d!

To Fix Later:
● # of Base Circuits
● # of Y-trees

Counting is “Fun”

● How many Y-trees are there? How many ways to splice in Y-trees?
● When there are multiple Y-trees we need to divy up the extension variables

○ We are partitioning the set {y1 , y2 , …, ym} into t subsets
○ ∑1≤ t ≤ m (# of ways to partition an m-set into t subsets)

■ Equals the mth Bell Number Bm
■ Bm ≥ (m/2)(m/2)

To Fix Later:
● # of Base Circuits
● # of Y-trees

Counting is “Fun”

● How many Y-trees are there? How many ways to splice in Y-trees?
● When there are multiple Y-trees we need to divy up the extension variables

○ We are partitioning the set {y1 , y2 , …, ym} into t subsets
○ ∑1≤ t ≤ m (# of ways to partition an m-set into t subsets)

■ Equals the mth Bell Number Bm
■ Bm ≥ (m/2)(m/2)

● # of Y-trees

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

Counting is “Fun”

● How many ways to splice in Y-trees are there?

To Fix Later:
● # of Base Circuits

● Where can we put combiners?
● Observation: When a combiner is eliminated via “good” keys, it’s out wires are

“passed” down to it’s other input

● # of Y-trees

∨ ∧

¬

∧

∨

 y3 y7

Sub y3 = 0
& y7= 1

∨ ∧

¬

∧

1

∨ ∧

¬

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

Counting is “Fun”

● How many ways to splice in Y-trees are there?
● Where can we put combiners?
● Observation: When a combiner is eliminated via “good” keys, it’s out wires are

“passed” down to it’s other input
● During splicing we can think of “stealing” some out edges from some

“original” node in the original base circuit
● Label each combiner with what it “steals”

○ O(s) choices for the “origin” where s = CC(f)
○ 2O(max-fanout(F)) choices for what to steal

What if two or more combiners have the same label?

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

Counting is “Fun”

● How many ways to splice in Y-trees are there?
● What if two or more combiners have the same label?

○ We have to decide how to order them with respect to one another
○ If we have k Y-trees with the same label…

■ k! ways to arrange them in a stack

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees?

Counting is “Fun”

● How many ways to splice in Y-trees are there?
● What if two or more combiners have the same label?

○ We have to decide how to order them with respect to one another
○ If we have k Y-trees with the same label…

■ k! ways to arrange them in a stack

You are over counting!
AH! AH! AH!

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

● Ordering Y-Trees

Counting is “Fun”

● How many ways to splice in Y-trees are there?
● What if two or more combiners have the same label?

○ We have to decide how to order them with respect to one another
○ If we have k Y-trees with the same label…

■ k! ways to arrange them in a stack

● # of Y-trees
● Ordering Y-trees

Iteration i ∨

∧

∨

 y3 y7

 y5

Y1 Y2

Y1 above Y2

∧

∨

 y3 y7

∨

 y5

Iteration j Y2 above Y1

∧

∨

 y3 y7

∨

 y5

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

● Ordering Y-Trees

∨

 y5

∧

∨

 y3 y7

Counting is “Fun”

● How many ways to splice in Y-trees are there?
● What if two or more combiners have the same label?

○ We have to decide how to order them with respect to one another
○ If we have k Y-trees with the same label…

■ k! ways to arrange them in a stack

● # of Y-trees
● Ordering Y-trees

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

● Ordering Y-Trees

■ We can just arbitrarily label the added trees Y1, Y2, …
■ If Yi and Yj have the same label & i > j then Yi appears above Yj

Counting is “Fun”

● How many ways to splice in Y-trees are there?

To Fix Later:
● # of Base Circuits

● What if two or more combiners have the same label?
○ We have to decide how to order them with respect to one another
○ If we have k Y-trees with the same label…

■ k! ways to arrange them in a stack
■ We can just arbitrarily label the added trees Y1, Y2, …
■ If Yi and Yj have the same label & i > j then Yi appears above Yj

● # of Y-trees
● Ordering Y-trees

To Fix Later:
● # of Base Circuits

● Partitioning y’s
● # of Y-trees

● Ordering Y-Trees

No But Seriously… What About The Permutations?

● Permutations pop up in our counting in a few spots:
○ The # of base XORn circuits
○ The # of Y-trees

● We also run into issues partitioning the Y variables amongst the Y-trees

Silver Bullet: Truth Table Isomorphism

Well That Was Easy

● Two Boolean functions f & g are truth table isomorphic if there exists a
permutation π: [n] → [n] such that g(x) = f(π(x))
○ If f and g are tt-iso then CC(f) = CC(g)

■ Take any f circuit and permute its inputs to get a circuit for g
○ Checking tt-iso is in P [Luks 99]

● Can assign variables arbitrarily
○ Brute force over “open” (i.e. unlabeled input) circuits & subcircuits

● Avoid partitioning the set of extension variables
○ Decide how many Y-trees & how many vars each has
○ # of compositions of m -> 2m - 1

Wooo Brute-Force!
On input tt(g), n:

1. Check that g is a non-degenerate extension of fn
2. For each “open” optimal circuit of f:

a. For each “open” Y-tree decomposition:
i. Construct G’ := the base circuit w/ the Y-tree decomposition spliced

in where variables are filled arbitrarily
ii. Compute tt(G’)
iii. If tt(G’) ≅ tt(G) then accept

3. Reject
Running Time: Ln ᐧ 2O(φ(s+m)) where

Ln is the # of open optimal ckts for fn (up to isomorphism)
φ is the maximum fanout in any optimal ckt for fn

It works for XOR

● The algorithm is poly time if #OpenOptCkts(fn) = 2O(n), CC(fn) = O(n), and the
maximum fanout in any optimal circuit is constant

● Every optimal XORn circuit is a binary tree of (¬)XOR2 subcircuits
○ Cn unlabeled binary trees
○ Label each internal node with a (¬)XOR2 subcircuit

■ Some constant number of options, say ≤28

■ (n-1) subcircuits to label
○ Total number of “open” XORn circuits: ≤28(n-1),Cn = 2O(n)

○ Maximum fanout is 2

Discussion & Future Directions
Okay? What Now?

What Else Is Ruled Out?

● If a function’s optimal circuits are
○ of O(n) size,
○ with constant maximum fanout,
○ and polynomially many (up to permutation of inputs),

then it is not a candidate for hardness of MCSP

● If the best known constructions for:
○ MOD4
○ WSUMP

Are optimal & exhaustive then they are ruled out

Bypassing our algorithm will require:
1) Better structural knowledge of circuits
2) Significantly improved lower bounds

Tweaking The Model

● The reduction to MCSP still holds even if we:
○ Change the Basis

■ B2
 (all binary Boolean functions)?

○ Increase the “gap”
■ CC(g) ≤ CC(f) + c · m for some constant c

● Other models of Boolean computation:
○ Formulas -> MFSP is Hard [Ilango 21]
○ Branching Programs

Do We Need Non-Degeneracy?

● Reduction to MCSP still holds without non-degeneracy
○ Non-degeneracy yields structure
○ Can “pad” the the truth table with degenerate variables increasing gap

● Subtly “easier” than the general relative complexity problem
○ Input: Given g an extension of f & a natural number d

Output: Whether CC(g) = CC(f) + d
○ Padding in the truth-table allows our running time to be longer

Thank you!

Appendix
You wanted to hear more?

Our “Actual” Algorithm

● Actual implementation of brute-forcing:
○ Encode the sequence of Y-trees splices from F to G
○ Design an efficient decoding algorithm
○ Brute force over all possible encodings

● Encoding length we get is max-fanout(F)(s + m)
○ Check all 2max-fanout(F)(s+m) possible encodings

● Same issues that affected our counting occur in encoding
○ Truth-table isomorphism saves us the same bits

● One extra issue - specifying splice locations with names
○ Splice Y-trees in increasing topological order
○ Specify how many more gates up the next origin is

