## Finding Circuits for Simple XOR Extensions in Polynomial Time

Tim Jackman

Joint work with Marco Carmosino (IBM) and Ngu (Nathan) Dang

Special Thanks to Rahul Ilango (MIT)

## **Background & Motivation**

Or, What Does The Title Mean?

### Circuits

- Used for studying the complexity of Boolean functions f:  $\{0,1\}^n \rightarrow \{0,1\}$
- Circuits are Directed Acyclic Graphs (DAGs) with:
  - 1 sink the output
  - n sources/leaves the inputs
- The inputs are labeled x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
- Interior nodes, called gates, are labeled by Boolean functions from a Basis set
  - $\circ \quad \text{Example: } \{ \land, \lor, \neg \}, \{ \oplus, \land \}$
- DeMorgan Basis:  $\{\land, \lor, \neg\}$ 
  - $\circ$   $\land$ ,  $\lor$  have fanin 2, ¬ has fanin 1
  - Unbounded fanout on all gates
- Normalization:
  - $\circ$   $\,$  No double negations, all gates feed into at most one gate

### An Example Circuit



• Computes XOR<sub>2</sub>

| X <sub>1</sub> | x <sub>2</sub> | $XOR_2(x_1, x_2)$ |
|----------------|----------------|-------------------|
| 0              | 0              | 0                 |
| 0              | 1              | 1                 |
| 1              | 0              | 1                 |
| 1              | 1              | 0                 |

### An Example Circuit



• Computes XOR<sub>2</sub>

| X <sub>1</sub> | x <sub>2</sub> | $XOR_2(x_1, x_2)$ |
|----------------|----------------|-------------------|
| 0              | 0              | 0                 |
| 0              | 1              | 1                 |
| 1              | 0              | 1                 |
| 1              | 1              | 0                 |

### An Example Circuit



• Computes XOR<sub>2</sub>

- Complexity Measure:
  - Depth
  - Size
    - Number of  $\land$ ,  $\lor$  gates
    - ¬ gates are free
- This circuit has size 3
- CC(f) is the size of the smallest circuit computing f

### The (in)famous Minimum Circuit Size Problem (MCSP)

**Input**:  $f : \{0,1\}^n \rightarrow \{0,1\}$  as a truth table (2<sup>n</sup> bitstring) &  $s \in \mathbb{N}$ 

**Output**: Whether  $CC(f) \le s$ 

- In NP and...
- ...NP-completeness is open...
- ...few variants are known to be NP-complete [Mas 79, HOS 18, ILO 20, Ila 20]
- Resolving the question would imply major breakthroughs
  - If MCSP is NP Complete then EXP ≠ ZPP [MW15]
  - If MCSP  $\in$  P then there are no one way functions [KC00]
  - And many many many more...

What do we even know about circuit complexity?

### Taking a Step Back

- Most Boolean functions require large ( $\Omega(2^n/n)$ ) circuits [Sha 49]
- Known DeMorgan Circuit Lower Bounds (for Functions in NP)
  - $CC(XOR_n) = 3(n-1) [Schnorr 1973]$
  - $CC(MOD_4) \ge 4(n-7) [Zwick 1991]$
  - CC("k-mixed")  $\ge$  4.5n o(n) [Lachish and Raz, 2010]
  - CC(WSUMP)  $\ge$  5n o(n) [Amano and Tarui 2011]
- 5n upper bound for the best lower bounds [AT11]
- Can we do better with more resources (non-determinism, randomness)?
  - MAEXP does not have polynomial size circuits [BFT 98]
  - ZPEXP<sup>MCSP</sup> does not have polynomial size circuits [IKV 18]
  - MA/1 is not in SIZE[n<sup>k</sup>] for any k [Santhanam 19]

### **Relative Circuit Complexity**

- Proving circuit lower bounds seems to require a lot of work
- How do these lower bounds lift to <u>extensions</u>?
  - $g: \{0,1\}^{n+m} \rightarrow \{0,1\}$  is an **extension** of  $f: \{0,1\}^n \rightarrow \{0,1\}$  if

 $\exists k \in \{0,1\}^m \forall x \in \{0,1\}^n : g(x,k) = f(x)$ 

- If g is an extension of f then  $CC(g) \ge CC(f)$ 
  - Substitute in k in any g circuit to get an f circuit
- g is a **non-degenerate** extension of f
  - $\forall$  i ∈ [n+m]  $\exists$  x ∈ {0,1}<sup>n+m</sup>: g(x) ≠ g(x<sup>⊕i</sup>)
  - Extension variables must be read in g circuits
  - $CC(g) \ge CC(f) + m$



### The *G*-Simple Extension Problem

Let  $\mathcal{F} = {f_n}_{n \in \mathbb{N}}$  be a sequence of non-degenerate Boolean functions on n variables

**Input**:  $g : \{0,1\}^{n+m} \rightarrow \{0,1\}$  represented as a truth table,  $n \in \mathbb{N}$ 

**Output**: Whether g is a non-degenerate extension of  $f_n$  and  $CC(g) = CC(f_n) + m$ 

- Example:
  - $\circ$  OR<sub>7</sub> is a simple extension of OR<sub>3</sub>
- Non Examples:
  - $XOR_6$  is <u>**not</u>** a simple extension of  $XOR_5$ </u>



### The *G*- Simple Extension Problem

Let  $\mathcal{F} = {f_n}_{n \in \mathbb{N}}$  be a sequence of non-degenerate Boolean functions on n variables

**Input**:  $g : \{0,1\}^{n+m} \rightarrow \{0,1\}$  represented as a truth table,  $n \in \mathbb{N}$ 

**Output**: Whether g is a non-degenerate extension of  $f_n$  and  $CC(g) = CC(f_n) + m$ 

- Like MCSP, this is in NP
- Checking that g is a non-degenerate extension of f<sub>n</sub> is "easy"
- Checking  $CC(g) = CC(f_n) + m$  reduces to MCSP
- Hardness of *G*-SEP implies hardness for MCSP



### Partial Function MCSP (MCSP\*) Is ETH Hard

- MCSP\* is MCSP but with *partial* truth-tables:
  - Is there any completion of the truth-table whose CC is at most k?
- MCSP\* is hard assuming the Exponential Time Hypothesis (ETH) [Ila 20]
  ETH : SAT cannot be solved in subexponential time
  - Proved via a reduction from Partial OR-Simple Extension



### The Catch

- Identifying simple extensions of **total** functions whose optimal circuits are read-once formulas (ROF) is *easy*.
  - **<u>Read-once formula</u>** = fanout of every node is 1
  - f is computed by a ROF  $\Rightarrow$  CC(f) = n 1
  - g is a simple extension of f  $\Rightarrow$  g's optimal circuits are ROFs
  - Deciding if functions can be computed by ROFs is in P [AHK93, GMR06]
- Ilango's proof used structural knowledge of OR

"... the missing component in extending our results to MCSP is finding some function f whose optimal circuits we can characterize but are also sufficiently complex."

Rahul Ilango, SIAM J. of Computing, 2022

### **XOR : The Next Natural Candidate**

- Not computed by ROFs
- DeMorgan Basis Circuit Complexity is *exactly* known
  - 3(n 1) Lower Bound from Schnorr
  - $\circ$  3(n 1) Upper Bound by Composing XOR<sub>2</sub> subcircuits
- We've fully characterized the set of optimal XOR<sub>n</sub> circuits:

<u>All</u> optimal XOR<sub>n</sub> circuits are binary trees of (¬)XOR<sub>2</sub> subcircuits



### **XOR : The Next Natural Candidate**

Theorem: <u>All</u> optimal XOR<sub>n</sub> circuits are binary trees of (¬)XOR<sub>2</sub> subcircuits



Awesome, Let's Try to **Prove MCSP is ETH** Hard Using XOR Simple Extension

### **Bad News**

### Bad News Good News?



### Bad News Good News? News

### **Main Theorem:** XOR<sub>n</sub>-Simple Extension is in P

- We design a "generic" algorithm for f-Simple Extension
  - Running time depends on "shape" parameters of optimal circuits
    - Is not polynomial time <u>in general</u>
  - $\circ$   $\,$  For XOR, it is polynomial
    - Probably also polynomial for the other explicit functions with lower bounds



### **Naive Brute Force**

**Input**: tt(g) (2<sup>n+m</sup> bit string)

**Output**: Whether g is a non-degenerate extension of f with CC(g) = CC(f) + m

- Brute-force checking for a key & non-degeneracy is "efficient"
- Suffices to find a circuit of size CC(f) + m
- Just check all circuits of the appropriate size:
  - $\circ$   $\:$  Encoding argument: a circuit of size s can be encoded in O(s log s) bits  $\:$ 
    - $\approx 2^{O(s \log s)}$  circuits
  - CC(f) is  $\Omega(n)$  there's  $2^{\Omega((n+m)\log(n+m))}$  circuits to check
    - Quasipolynomial time

We'll just need to be clever then...

### But I Really *Really <u>REALLY</u>* Like Brute Forcing Things

• Fine, but we need to come up with something better to brute force over.





# **Building Up Our Toolbox**

How can we design an algorithm if we don't know anything?

### **Notation & Basic Tools**

- For a simple extension g, we separate its' inputs into:
  - "Original" variables:  $x_1, x_2, ..., x_n$
  - "Extension" variables:  $y_1, y_2, ..., y_m$
- We refer to restrictions  $k \in \{0,1\}^m$  such that g(x, k) = f(x) as **keys**
- We refer to AND and OR gates as **costly** gates
- Main Tool: Substitution with keys in circuits and performing gate elimination



### **Gate Elimination**

• Circuit simplification scheme which removes constants & "obvious" inefficiencies in a circuit

"Fixing" Rules: Removed gates become "fixed" constants



Fixing rules are hard to analyze since more simplifications must occur



### **Gate Elimination**

• Circuit simplification scheme which removes constants & "obvious" inefficiencies in a circuit

"Passing" Rules: Removed gates "pass" wires to their other input



Passing rules are easier to analyze since they remove constants



### **Gate Elimination**

• Circuit simplification scheme which removes constants & "obvious" inefficiencies in a circuit



Arguments using gate elimination are a case analysis nightmare



- This is an optimal circuit for a simple extension of XOR<sub>3</sub> with 7 extension variables
- If we restrict with k = 1001001 we get...





- This is an optimal circuit for a simple extension of XOR<sub>3</sub> with 7 extension variables
- If we restrict with k = 1001001 we get...

An optimal XOR<sub>3</sub> circuit!





• Let's highlight this embedded circuit...



• Let's highlight this embedded circuit...



• Let's highlight this embedded circuit...

...and focus in on what's added on to it



An added gate that combines the tree with the rest of the circuit

 $(\mathbf{y}_1)$ 

**y**<sub>4</sub>



...and focus in on what's added on to it

Full **Tree** which only reads **y variables.** Furthermore, it's a *formula* 

We call these structures **Y-trees** and **combiners** 



### **Structural Claims**

- These structures are not unique to our example
- **Embedding Lemma**: Every optimal circuit for a SE has an embedded optimal circuit for the base function
  - Substituting m non-degenerate variables & simplifying reduces circuit size by at least m
- **<u>Structural Theorem</u>**: All optimal SE circuits can be decomposed into:
  - The embedded base circuit
  - Non-intersecting Y-trees & their respective "combiners"
- <u>Completely generic</u> nothing to do with XOR

### Proof Sketch of Structural Theorem

- Relies on the following lemmas:
  - **Intermediate SE Lemma:** Restricting G with a partial key produces an optimal circuit for an intermediate simple extension lying between f & g
    - Restricting s < m extension variables may eliminate > s costly gates due to fixing rules
  - **Good Keys Lemma:** For any s extension variables, there's some partial key restriction of those variables that eliminates exactly s costly gates.
    - Good key substitution for the variables in a Y tree eliminates just the Y-tree + the combiner
- We will prove this via induction on m

### **Proof Sketch Continued**

- Take any optimal g circuit G
- There is an f circuit F embedded in G
- Identify a Y-tree & combiner
- Eliminate it using a *good* key
- Resulting G' is optimal for intermediate SE by lemma
- Apply Inductive Hypothesis
- Lift decomposition back to G



# Our "Efficient" Algorithm

Step Aside Brat Summer It's Brute-Force Fall

### **Our Strategy**

- Every optimal SE circuit is an embedded optimal base circuit + Y-trees
- Take optimal base circuits & build extension ckts by adding Y-trees
- Check if what we built computes g
- Reject once we've exhausted all optimal base circuits

We'll need to make sure our search space is sufficiently small so thus brute force is "efficient"

### 2<sup>O(n + m)</sup> is Efficient? I mean...

- Input is a truth table of a Boolean function on n+m variables:
  - $2^{n+m}$  bits long  $\Rightarrow$  poly $(2^{n+m}) \Rightarrow 2^{O(n+m)}$
- What's Allowed:
  - Going over the truth table *a lot* :  $2^{O(n+m)} * 2^{O(n+m)} = 2^{O(n+m)}$
  - Computing truth tables for size s circuits:  $O(s * 2^{n+m})$
- What's Not:
  - 2<sup>0(n log n)</sup>

#### • <u>n! - PERMUTATIONS ARE OFF THE TABLE</u>

- Rahul's partial hardness relies on searching over n! being unavoidable
- What's kind of allowed?
  - Dependence on other parameters that are small for XOR
    - Circuit size -> O(n)
    - Maximum fanout -> 0(1)



To Fix Later:

# of Base Circuits

- Sanity Check Is It Feasible For XOR<sub>n</sub>?
  - XOR<sub>n</sub> circuits are binary trees of  $(\neg)$ XOR<sub>2</sub> subcircuits:
    - # of unlabeled binary trees on n inputs:



To Fix Later: • # of Base Circuits

- We can imagine "splicing" in combiners & Y-trees "one-by-one"
- How many Y-trees are there? How many ways to splice in Y-trees?



- How many Y-trees are there? How many W
- # of extension variables in a Y-tree ranges from 1 to m
  - d extension variables
- Y-trees are Boolean formulas  $\approx$  Weighted Binary Trees
  - Interior nodes labeled AND/OR  $\bigcirc$
  - Negations correspond to edges with weight 1 Ο
- # of unweighted BT w/ d leaves =  $C_{d-1} = 2^{O(d)}$ # of edges = 2(d-1) + 1 =>  $2^{O(d)}$  options for weights
- Labeling inputs => d!





To Fix Later:

# of Base Circuits

Y-trees?

- How many Y-trees are there? How many W
- # of extension variables in a Y-tree ranges from 1 to m
  - d extension variables
- Y-trees are Boolean formulas  $\approx$  Weighted Binary Trees
  - Interior nodes labeled AND/OR  $\bigcirc$
  - Negations correspond to edges with weight 1 Ο
- # of unweighted BT w/ d leaves =  $C_{d-1} = 2^{O(d)}$ # of edges = 2(d-1) + 1 =>  $2^{O(d)}$  options for weights
- Labeling inputs => d!



To Fix Later:

- # of Base Circuits
- # of Y-trees

in Y-trees?



How many Y-trees are there? How many way



To Fix Later:

- # of Base Circuits
- # of Y-trees

e in Y-trees?

- When there are multiple Y-trees we need to divy up the extension variables
  - We are partitioning the set  $\{y_1, y_2, ..., y_m\}$  into t subsets
  - $\circ \sum_{1 \le t \le m}$  (# of ways to partition an m-set into t subsets)
    - Equals the m<sup>th</sup> Bell Number B<sub>m</sub>
    - $B_m \ge (m/2)^{(m/2)}$



• How many Y-trees are there? How many w



- # of Base Circuits
- # of Y-trees
- Partitioning y's
- When there are multiple Y-trees we need to divy up the extension variables
  - We are partitioning the set  $\{y_1, y_2, ..., y_m\}$  into t subsets
  - $\sum_{1 \le t \le m}$  (# of ways to partition an m-set into t subsets)
    - Equals the m<sup>th</sup> Bell Number B<sub>m</sub>
    - $B_m \ge (m/2)^{(m/2)}$



- How many ways to splice in Y-trees are there?
- Where can we put combiners?
- <u>Observation</u>: When a combiner is eliminated via "good" keys, it's out wires are "passed" down to it's other input



- # of Base Circuits
- # of Y-trees
- Partitioning y's

- How many ways to splice in Y-trees are there?
- Where can we put combiners?
- <u>Observation:</u> When a combiner is eliminated via "good" keys, it's out wires are "passed" down to it's other input
  - During splicing we can think of "stealing" some out edges from some "original" node in the original base circuit
  - Label each combiner with what it "steals"
    - $\circ$  O(s) choices for the "origin" where s = CC(f)
    - 2<sup>O(max-fanout(F))</sup> choices for what to steal

What if two or more combiners have the same label?

To Fix Later:# of Base Circuits

- # of Y-trees
- Partitioning y's

- How many ways to splice in Y-trees are there?
- What if two or more combiners have the same label?
  - We have to decide how to order them with respect to one another
  - If we have k Y-trees with the same label...
    - k! ways to arrange them in a stack

- # of Base Circuits
- # of Y-trees
- Partitioning y's



- How many ways to splice in Y-trees are there?
- What if two or more combiners have the same label?
  - We have to decide how to order them with respect to one another
  - If we have k Y-trees with the same label...
    - k! ways to arrange them in a stack



- # of Base Circuits
- # of Y-trees
- Partitioning y's
- Ordering Y-Trees

- How many ways to splice in Y-trees are there?
- What if two or more combiners have the same label?
  - We have to decide how to order them with respect to one another
  - If we have k Y-trees with the same label...
    - k! ways to arrange them in a stack



- # of Base Circuits
- # of Y-trees
- Partitioning y's
- Ordering Y-Trees

- How many ways to splice in Y-trees are the
- What if two or more combiners have the same label?
  - We have to decide how to order them with respect to one another
  - If we have k Y-trees with the same label...
    - k! ways to arrange them in a stack
    - We can just arbitrarily label the added trees Y<sub>1</sub>, Y<sub>2</sub>, ...
    - If Y and Y have the same label & i > j then Y appears above Y



- # of Base Circuits
- # of Y-trees
- Partitioning y's
- Ordering Y-Trees



- How many ways to splice in Y-trees are this
- What if two or more combiners have the same label?
  - We have to decide how to order them with respect to one another
  - If we have k Y-trees with the same label...
    - k! ways to arrange them in a stack
    - We can just arbitrarily label the added trees Y<sub>1</sub>, Y<sub>2</sub>, ...
    - If Y<sub>i</sub> and Y<sub>i</sub> have the same label & i > j then Y<sub>i</sub> appears above Y<sub>i</sub>

To Fix Later: # of Base Circuits

- # of Y-trees
- Partitioning y's
- Ordering Y Trees

### No But Seriously... What About The Permutations?

- Permutations pop up in our counting in a few spots:
  - The # of base  $XOR_n$  circuits
  - The # of Y-trees
- We also run into issues partitioning the Y variables amongst the Y-trees

Silver Bullet: Truth Table Isomorphism



### Well That Was Easy

- Two Boolean functions f & g are *truth table isomorphic* if there exists a permutation  $\pi$ : [n]  $\rightarrow$  [n] such that g(x) = f( $\pi(x)$ )
  - If f and g are tt-iso then CC(f) = CC(g)
    - Take any f circuit and permute its inputs to get a circuit for g
  - Checking tt-iso is in P [Luks 99]
- Can assign variables arbitrarily
  - Brute force over "open" (i.e. unlabeled input) circuits & subcircuits
- Avoid partitioning the set of extension variables
  - Decide how many Y-trees & how many vars each has
  - $\circ$  # of compositions of m -> 2<sup>m-1</sup>

### Wooo Brute-Force!

On input tt(g), n:

- 1. Check that g is a non-degenerate extension of f<sub>n</sub>
- 2. For each "open" optimal circuit of f:
  - a. For each "open" Y-tree decomposition:
    - i. Construct G' := the base circuit w/ the Y-tree decomposition spliced in where variables are filled arbitrarily
    - ii. Compute tt(G')
    - iii. If  $tt(G') \cong tt(G)$  then **accept**

3. Reject

Running Time:  $L_n \cdot 2^{O(\phi(s+m))}$  where  $L_n$  is the # of open optimal ckts for  $f_n$  (up to isomorphism)  $\phi$  is the maximum fanout in any optimal ckt for  $f_n$ 

### It works for XOR

- The algorithm is poly time if #OpenOptCkts(f<sub>n</sub>) = 2<sup>O(n)</sup>, CC(f<sub>n</sub>) = O(n), and the maximum fanout in any optimal circuit is constant
- Every optimal XOR<sub>n</sub> circuit is a binary tree of (¬)XOR<sub>2</sub> subcircuits
  - C<sub>n</sub> unlabeled binary trees
  - Label each internal node with a  $(\neg)XOR_2$  subcircuit
    - Some constant number of options, say  $\leq 2^8$
    - (n-1) subcircuits to label
  - Total number of "open" XOR<sub>n</sub> circuits:  $\leq 2^{8}(n-1)C_{n} = 2^{O(n)}$
  - Maximum fanout is 2



## **Discussion & Future Directions**

Okay? What Now?

### What Else Is Ruled Out?

- If a function's optimal circuits are
  - $\circ$  of O(n) size,
  - with constant maximum fanout,
  - $\circ$   $\,$  and polynomially many (up to permutation of inputs),

then it is not a candidate for hardness of MCSP

- If the best known constructions for:
  - MOD4
  - WSUMP

Are optimal & exhaustive then they are ruled out

Bypassing our algorithm will require:1) Better structural knowledge of circuits2) Significantly improved lower bounds



### **Tweaking The Model**

- The reduction to MCSP still holds even if we:
  - Change the Basis
    - B<sub>2</sub> (all binary Boolean functions)?
  - Increase the "gap"
    - $CC(g) \le CC(f) + c \cdot m$  for some constant c
- Other models of Boolean computation:
  - Formulas -> MFSP is Hard [llango 21]
  - Branching Programs



### Do We Need Non-Degeneracy?

- Reduction to MCSP still holds without non-degeneracy
  - Non-degeneracy yields structure
  - Can "pad" the the truth table with degenerate variables increasing gap
- Subtly "easier" than the general relative complexity problem
  - Input: Given g an extension of f & a natural number d
    Output: Whether CC(g) = CC(f) + d
  - Padding in the truth-table allows our running time to be longer



Thank you!

# Appendix

You wanted to hear more?

### Our "Actual" Algorithm

- Actual implementation of brute-forcing:
  - Encode the sequence of Y-trees splices from F to G
  - Design an efficient decoding algorithm
  - Brute force over all possible encodings
- Encoding length we get is max-fanout(F)(s + m)
  - Check all 2<sup>max-fanout(F)(s+m)</sup> possible encodings
- Same issues that affected our counting occur in encoding
  - Truth-table isomorphism saves us the same bits
- One extra issue specifying splice locations with names
  - Splice Y-trees in increasing topological order
  - Specify how many more gates up the next origin is