

Simple Circuit Extensions for XOR in PTIME

2 **Anonymous author**

3 Anonymous affiliation

4 **Anonymous author**

5 Anonymous affiliation

6 **Anonymous author**

7 Anonymous affiliation

8 — Abstract —

9 The Minimum Circuit Size Problem for Partial Functions (MCSP*) is hard assuming the Exponential
10 Time Hypothesis (ETH) (Ilango, 2020). This breakthrough hardness result leveraged a characteriza-
11 tion of the optimal $\{\wedge, \vee, \neg\}$ circuits for n -bit OR (OR_n) and a reduction from the partial
12 f -Simple Extension Problem where $f = OR_n$. It remains open to extend that reduction to show
13 ETH-hardness of total MCSP. However, Ilango observed that the total f -Simple Extension Problem
14 is easy whenever f is computed by read-once formulas (like OR_n). Therefore, extending Ilango’s
15 proof to total MCSP would require one to replace OR_n with a slightly more complex but similarly
16 well-understood Boolean function.

17 This work shows that the f -Simple Extension problem remains easy when f is the next natural
18 candidate: XOR_n . We first develop a fixed-parameter tractable algorithm for the f -Simple Extension
19 Problem that is efficient whenever the optimal circuits for f are (1) linear in size, (2) polynomially
20 “few” and efficiently enumerable in the truth-table size (up to isomorphism and permutation of
21 inputs), and (3) all have constant bounded fan-out. XOR_n satisfies all three of these conditions.
22 When \neg gates count towards circuit size, optimal XOR_n circuits are binary trees of $n - 1$ subcircuits
23 computing $(\neg)XOR_2$ (Kombarov, 2011). We extend this characterization when \neg gates do not
24 contribute the circuit size. Thus, the XOR -Simple Extension Problem is in polynomial time under
25 both measures of circuit complexity.

26 We conclude by discussing conjectures about the complexity of the f -Simple Extension problem
27 for each explicit function f with general circuit lower bounds over the DeMorgan basis. Examining the
28 conditions under which our Simple Extension Solver is efficient, we argue that *multiplexer* functions
29 (MUX) are the most promising candidate for ETH-hardness of a Simple Extension Problem, towards
30 proving ETH-hardness of total MCSP.

31 **2012 ACM Subject Classification** Theory of computation → Circuit complexity; Theory of compu-
32 tation → Fixed parameter tractability

33 **Keywords and phrases** Minimum Circuit Size Problem, Circuit Lower Bounds, Exponential Time
34 Hypothesis

35 **Digital Object Identifier** 10.4230/LIPIcs.CVIT.2016.23

© Anonymous author(s);

licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:40

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

36 **1** Introduction

37 Circuits model the computation of Boolean functions on fixed input lengths by acyclic wires
 38 between atomic processing units — logical “gates.” To measure the circuit complexity of
 39 a function f , we first fix a set of gates \mathcal{B} — called a *basis*. This work studies circuits over
 40 the following basis: fan-in 2 AND, fan-in 2 OR, and fan-in 1 NOT gates. We consider two
 41 complexity size measures $\mu_{\mathcal{D}}$ and $\mu_{\mathcal{R}}$, which count *only* the binary gates and the *total* number
 42 of gates in a circuit respectively. We will refer to \mathcal{B} equipped with these two complexity
 43 measures as \mathcal{D} , the DeMorgan basis, and \mathcal{R} , the Red’kin basis respectively¹.

44 Basic questions about these models have been open for decades; we cannot even rule
 45 out the possibility that every problem in NP is decided by a sequence of linear-size circuits
 46 (see page 564 of [22]). Despite this, the ongoing search for circuit complexity lower bounds
 47 has fostered rich and surprising connections between cryptography, learning theory, and
 48 algorithm design [16, 12, 37, 6, 36, 17]. The *Minimum Circuit Size Problem* (MCSP, [23])
 49 appears in all of these areas, asking:

50 Given an n -input Boolean function f as a 2^n -bit truth table, what is the minimum s
 51 such that a circuit of size s computes f ?

52 The **existential** question — do functions that require “many” gates exist? — was solved
 53 in 1949: Shannon proved that almost all Boolean functions require circuits of near-trivial²
 54 size $\Omega(\frac{2^n}{n})$ by a simple counting argument [40]. The current best answer to the **explicit**
 55 question in the DeMorgan basis — is such a hard function in NP? — is a circuit lower bound
 56 of $5n - o(n)$, proved via *gate elimination* [21]. This is far from the popular conjecture that
 57 NP-complete problems require super-polynomial circuit size.

58 The **algorithmic** question — is MCSP NP-hard? — remains open after nearly fifty years
 59 [41], even under strong complexity assumptions such as the Exponential Time Hypothesis
 60 (ETH). But, many natural variants of MCSP have been proven NP-hard unconditionally.
 61 For instance, DNF-MCSP [31], MCSP for OR-AND-MOD Circuits [15], and MCSP for multi-
 62 output functions [20] are now known to be NP-hard. Furthermore, MCSP for partial functions
 63 (MCSP*) [18] is hard under the Exponential Time Hypothesis (ETH), later extended to
 64 unconditional NP-hardness under randomized reductions [14].

65 Our work studies the feasibility of generalizing Ilango’s technique for ETH-hardness of
 66 MCSP* to total MCSP. In particular, underlying Ilango’s proof is a related decision problem
 67 about circuit complexity of Boolean *simple extensions* which we call the f -Simple Extension
 68 Problem (f -SEP).

69 ▶ **Definition (Simple Extension).** Let f be a Boolean function that depends on all of its n
 70 variables. A simple extension of f is either f itself or a function g on $n + m$ variables
 71 satisfying:

- 72 1. g depends on all of its inputs.
 - 73 2. $CC(g)$ — the circuit-size complexity of g — is $CC(f) + m$.
 - 74 3. There exists a setting $k \in \{0, 1\}^m$, a key, such that for all $x \in \{0, 1\}^n$, $g(x, k) = f(x)$.
- 75 We define the f -Simple Extension decision problem for total functions below.³

¹ We will specify a basis if a statement pertains to *only* that basis. If the basis is not specified, then the statement applies to both \mathcal{D} and \mathcal{R} .

² From using a lookup table.

³ For partial function f -Simple Extension (f -SEP*), g is a *partial* function and we must determine whether any completion of g is a simple extension of f .

76 **► Problem** (The f -Simple Extension Problem). Let f be a sequence of Boolean functions
 77 $\{f_n\}_{n \in \mathbb{N}}$ such that each f_n depends on all of its n inputs. The f -Simple Extension Problem
 78 is defined as follows: Given $n \in \mathbb{N}$ and $tt(g)$ —the truth table of a binary function g —decide
 79 whether g is a simple extension of f_n .

80 For a fixed f whose truth table can be efficiently computed and whose exact circuit
 81 complexity is known, f -SEP reduces to a single call to an MCSP oracle, because checking
 82 whether g is a non-degenerate extension of f can be done in polynomial time via brute force
 83 (given the truth table of g). This observation gives rise to an MCSP-hardness proof framework:
 84 if one can identify an explicit function f for which deciding the f -Simple Extension Problem
 85 is hard, then MCSP is also hard.

86 This framework was implicitly used in Ilango's hardness proof for MCSP* [18], i.e. reducing
 87 an ETH-hard problem to deciding whether a partial function is a simple extension of $f = \text{OR}$.
 88 We make this observation explicit in Section 2. Now, a natural question arises: can one
 89 extend this idea to total MCSP and prove $\text{MCSP} \notin \text{P}$ assuming ETH? Ilango suggested that

90 “the most promising approach is to skip MCSP* entirely and extend our techniques to
 91 apply to MCSP directly.” - Rahul Ilango, SIAM J. of Computing, 2022

92 However, optimal circuits for OR are so well-structured that deciding whether a *total*
 93 function is a simple extension of it is actually easy (see the discussion in Section 1.2.2 in
 94 [18]). Minimal OR circuits are *read-once formulas*: each of the input is read exactly once and
 95 each internal gate has fan-out 1. Simple extensions of it will also be computed by read-once
 96 formulas, and deciding whether a given Boolean function has a read-once formula is *easy*
 97 [2, 13]. Therefore,

98 “the missing component in extending our results to MCSP is finding some function f
 99 whose optimal circuits we can characterize but are also sufficiently complex.” - Rahul
 100 Ilango, SIAM J. of Computing, 2022

101 Could simply replacing OR with some read-many f — perhaps XOR , which enjoys tight
 102 bounds and a full characterization — allow Ilango's technique to prove MCSP is ETH-hard?
 103 For XOR , we show the answer is a resounding **no**. For other potential functions, the answer
 104 is more ambiguous. We will discuss prospects for alternative hard functions in Section 1.3.

105 1.1 Our Results and Contributions

106 We narrow the field of candidate functions for such a hardness proof by developing a fixed-
 107 parameter tractable algorithm for the f -Simple Extension problem (Section D.4). Such an
 108 algorithm is surprising, because f -Simple Extension is a meta-complexity problem about
 109 *general circuits* and our algorithm works in regimes where we *know* explicit circuit lower
 110 bounds. Often, the combinatorial facts used in lower bounds imply a hardness result for
 111 the appropriately-restricted meta-complexity problem (e.g., DNF-MCSP)! Nonetheless, we
 112 obtain:

113 **► Main Result.** The f -Simple Extension Problem is in P whenever

- 114 1. $CC(f)$ — the circuit-size complexity of f — is linear,
- 115 2. the maximum fan-out over all optimal circuits for f is constant, and
- 116 3. the optimal⁴ circuits for f , up to isomorphism and permutation of its n inputs, are
 117 efficiently enumerable and polynomial few with respect to the length of its truth table: 2^n .

⁴ In \mathcal{D} , we require a circuit to be *normalized* for it to be optimal. In particular, it cannot contain any double-negations. This prevents every function from having an infinite number of optimal circuits.

23:4 Simple Circuit Extensions for XOR in PTIME

118 To apply our main result and discount a particular f , we require an exact specification of
119 its optimal circuits. The next natural candidate — XOR, a simple function whose circuits
120 are neither read-once nor monotone — has been well studied. Beyond enjoying exact size
121 bounds [39, 35], XOR is one of the few functions whose structure has been studied; it is
122 known that, in \mathcal{R} , all optimal XOR_n circuits are binary trees of $n - 1$ XOR_2 sub-blocks [25].
123 We extend this structural analysis to \mathcal{D} in Section E, obtaining

124 ▶ **Main Lemma** ([25], Theorem 37). *Optimal XOR_n circuits consist of $(n - 1)$ $(\neg)\text{XOR}_2$
125 sub-circuits.*

126 Each XOR_n circuit can therefore be characterized using binary trees with n leaves, of
127 which there are $C_{n-1} = O(2^n)$, where C_n is the n^{th} Catalan number [42]. As there are a
128 finite number of optimal normalized $(\neg)\text{XOR}_2$ circuits, combining this characterization and
129 our main result to immediately yields

130 ▶ **Main Corollary.** *The XOR-Simple Extension Problem is in P.*

131 Applying Ilango’s technique successfully will itself require a deeper study of circuit
132 minimization. This is not merely because any hardness proof needs to bypass our algorithm;
133 knowledge of circuit lower-bounds and optimal constructions for the base function is intrinsic
134 to the reduction itself. We make this connection explicit in Section 2, identifying that

135 ▶ **Main Observation.** *f -SEP* is ETH-hard under Levin reductions.*

136 Lastly, in Section 1.3, we inspect each explicit function f that enjoys DeMorgan circuit
137 lower bounds and argue how plausible it is that the optimal set of f circuits avoids our Main
138 Result — a *roadmap* towards ETH-hardness of total MCSP via f -SEP.

139 1.2 Related Work

140 **(Non-)hardness of MCSP Variants.** Hirahara showed that *Partial* MCSP is unconditionally
141 NP-hard under *randomized reductions* [14]. Extending his breakthrough result is another
142 approach towards hardness of total MCSP. Though promising, this also faces challenges: under
143 believable cryptographic conjectures (indistinguishability obfuscation and subexponentially-
144 secure one-way functions), GapMCSP is not NP-complete under randomized Levin-reductions
145 [32]. Such reductions appear to suffice for Hirahara’s proofs, so one may need new ideas to
146 obtain NP-hardness of total MCSP via his approach.

147 We bypass the issue by working towards hardness of total MCSP under ETH — a stronger
148 assumption than $P \neq NP$. Even so, ETH-hardness of total MCSP remains a major open
149 problem, and there are no known barriers to extending Ilango’s approach in this setting. The
150 reader can decide for themselves if our algorithm constitutes such a barrier or not.

151 **Optimal Circuit Structures.** Knowing the lower-bounds of some explicit Boolean functions
152 f , a natural question to ask is: *What about the structure of every optimal circuit computing*
153 f ? For some functions and bases, this is easy to answer: minimal Red’kin circuits for OR_n are
154 binary trees of \vee gates. For even slightly more complex functions, structural characterization
155 seems to require intricate and exhaustive case analysis. Some of the earliest work on this
156 question include [38] and [5] which investigated when optimal circuits for certain 2-output
157 Boolean functions must compute each output independently. More recently, Kombarov
158 extended the characterization of XOR circuits to other complete bases when NOT-gates are
159 counted [26].

160 **1.3 Discussion and Future Directions**

161 **A Remark on Bases.** Both \mathcal{R} and \mathcal{D} are compatible with Ilango’s proof of ETH-hardness
 162 of MCSP*. That proof relied on functions whose optimal $\{\wedge, \vee, \neg\}$ -circuits are read-once
 163 monotone formulas. There it was irrelevant whether \neg gates contribute to size: those circuits
 164 simply did not contain negations. However, when we move to more complex functions like
 165 XOR, negations *must* appear in the optimal circuits and as such, we must decide how to
 166 treat them.

167 In the search for non-linear circuit lower bounds, the choice between μ_R and μ_D is largely
 168 irrelevant: the two complexity measures the same up to a small constant factor. However, as
 169 we discuss in Section 2, Ilango’s technique requires knowledge of the *structure* of optimal
 170 circuits. In this setting, there is not necessarily as strong connection between the two bases.
 171 By extending Kombarov’s characterization of XOR circuits in \mathcal{R} to \mathcal{D} in Section E, we show
 172 for that *particular* function, optimal circuits are structurally similar in both bases. But, for
 173 other functions, this may well not be the case. It seems likely that negations could enable
 174 a function’s optimal circuits to greatly vary under the two complexity measures. Indeed,
 175 negations can greatly increase a problems complexity: [4] showed that a Boolean function
 176 learning problem became difficult only once the number of \neg gates exceeded a small threshold.

177 By considering both bases in this work, we limit how negations impact the complexity of
 178 f -SEP. We show that they do not greatly increase the complexity of the simple extensions
 179 themselves: in Section C, we find that simple extensions under both complexity measures
 180 are highly structured. If a future hardness reduction relies on negations, their role will be in
 181 increasing the structural complexity of the underlying base function, either by increasing the
 182 number of distinct optimal circuits, or by enabling non-constant fan-out in a base circuit.

183 **A Roadmap for ETH-Hardness Proofs via Simple Extensions** To prove f -SEP is ETH-hard
 184 we will need a Boolean function whose optimal circuits are more complex and/or varied
 185 than XOR. Specifically, these circuits must either (1) be superlinear in size, (2) require
 186 non-constant fanout, or (3) be sufficiently numerous. Superlinear bounds seem beyond
 187 current techniques—the most fruitful of which, gate elimination, seems unlikely to be able to
 188 prove lower bounds above even $11n$ for wide classes of functions [11]. As such, it seems more
 189 sensible to identify Boolean functions which violate the latter conditions. However, structural
 190 characterization of the optimal circuits is also hard, and seems to require very tight circuit
 191 bounds. Indeed, our DeMorgan basis characterization of XOR repeatedly exploited Schnorr’s
 192 *exact* $3(n - 1)$ bound for XOR_n [39]. Regardless, this greatly narrows the prospective class of
 193 functions from the original specification: “more complex than read-once formulas.” However,
 194 the known explicit functions with tight DeMorgan bounds that may violate these conditions
 195 are few and far between. In Table 1⁵, we summarize these explicit functions and assess how
 196 suitable they are for ETH-hardness of f -Simple Extension Problem.

197 Observe that every function besides XOR in the table has a (small) gap between the
 198 circuit lower and upper bound, and the “ $\Omega(1)$ Fanout” column ends with a question mark
 199 (?). This is because XOR is the *only* listed function for which we know the *exact* circuit
 200 complexity and an optimal circuit characterization. The other “ $\Omega(1)$ Fanout” entries above
 201 are extrapolated by assuming that their respective DeMorgan *upper bound* constructions

⁵ Some of listed bounds are in \mathcal{U}_2 , the basis consisting of every binary Boolean function besides XOR_2 and $\neg\text{XOR}_2$. For non-degenerate functions besides $f(x) = \neg x$, \mathcal{U}_2 and \mathcal{D} are equivalent in terms of size. The multiplexer lower bound of [33] is for the \mathcal{B}_2 , the basis of all binary Boolean functions, but it also serves as the best known lower bound in \mathcal{D} .

■ **Table 1** Explicit Functions with Circuit Lower Bounds in the DeMorgan Basis

Function(s)	Lower Bound	Upper Bound	$\Omega(1)$	Fanout	Source(s)
XOR	$3(n - 1)$	=	$3(n - 1)$	NO	[39]
Sum Mod 4	$4n - O(1)$	$5n - O(1)$	NO?	[44]	
Sum Mod 2^k	$4n - O(1)$	$7n - o(n)$	NO?	[44]	
Multiplexer	$2(n - 1)$	$2n + O(\sqrt{n})$	YES?	[34, 24]	
Well-Mixed	$5n - o(n)$	poly	MAYBE?	[27, 21]	
Weighted Sum of Parities	$5n - o(n)$	$5n + o(n)$	YES?	[1]	

202 are optimal. For instance, Zwick conjectured that optimal circuits computing the Sum Mod
 203 4 (MOD_4) function are “shaped like” ternary full-adder blocks [44]. If this conjecture is
 204 true, then MOD_4 -Simple Extension can be solved in poly-time since such circuits satisfy
 205 the properties of our Main Lemma. Since the MOD_{2^k} functions are computed similarly, we
 206 conjecture that exactly characterizing the optimal circuits for Zwick’s functions would yield
 207 efficient Simple Extension Solvers — not a proof of ETH-hardness for total MCSP.

208 However, we do have linear lower bounds for functions whose best known constructions
 209 have non-constant fanout: the multiplexing function (**MUX**) contains sub-circuits which are
 210 reused a logarithmic number of times [24]. In contrast to **XOR** however, the bounds for **MUX**
 211 are not tight. The best lower bound is $2(n - 1)$, given by Paul [33].

212 **Future Directions.** The most obvious next step is to either (1) obtain total characterization
 213 of the Multiplexer or (2) extend our Simple Extension Solver to handle circuits with super-
 214 constant fanout. Neither of these tasks seems easy, but also they have not been subject to
 215 intensive research the way that super-linear circuit lower bounds and hardness of MCSP
 216 have. We hope that connecting these kinds of results to ETH-hardness of MCSP provides
 217 new perspective and motivation.

218 Ilango’s MCSP* result has also formed the basis for several hardness results in other
 219 models of computation such as formulas and branching programs [19, 9, 10]; could one show
 220 that the simple extension problem for formulas or branching programs is hard? These other
 221 models of computations may prove easier to work with than unrestricted circuits. They also
 222 enjoy superlinear lower bounds thereby bypassing our algorithm. Investigating the simple
 223 extension problem in these settings would provide insight into the feasibility of the approach
 224 in the circuit setting.

225 We conclude this section with a discussion of the simple extension problem in general.
 226 Despite having only been studied as a tool for proving hardness of MCSP thus far, it may be of
 227 independent interest. For example, while hardness of time-bounded Kolmogorov complexity
 228 is tightly connected to the existence of one-way functions, hardness of MCSP has much weaker
 229 quantitative connections [28, 36]. The f -Simple Extension Problem is more “structured”
 230 than MCSP and easily reduces to it, so hardness assumptions about f -Simple Extension
 231 Problem are stronger. Could such assumptions imply one-way functions?

232 1.4 Proof Techniques

233 1.4.1 The Structure of Optimal XOR Circuits

234 Similar to [25], we show that *every* optimal $(\neg)\text{XOR}_n$ circuit over the DeMorgan basis
 235 partitions into trees of $(n - 1)$ sub-circuits computing $(\neg)\text{XOR}_2$ — even when NOT gates are
 236 free. The structure of optimal circuits computing the **XOR**-function is a crucial ingredient for

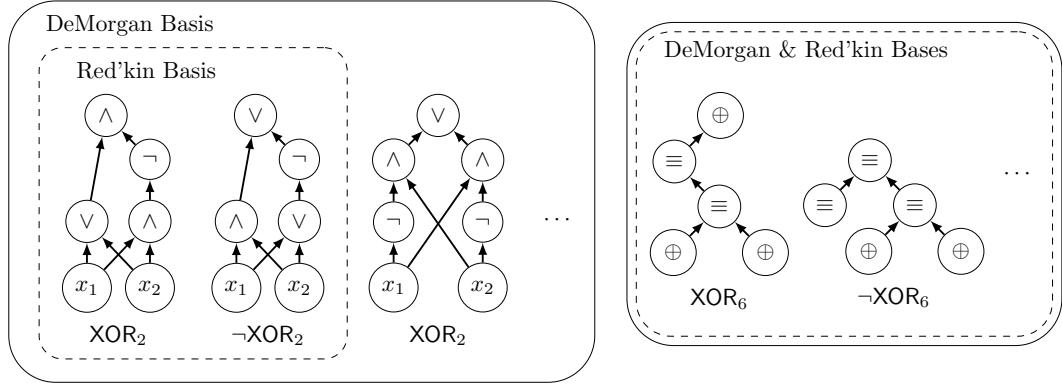


Figure 1 An example of the binary tree structure of optimal circuits computing XOR_6 . The left sub-figure depicts possible $(\neg)\text{XOR}_2$ blocks in the Red'kin and DeMorgan Bases. Notice each optimal Red'kin circuit is an optimal DeMorgan circuit, but not vice-versa. The right sub-figure depicts that the arrangement of XOR_2 blocks that make up XOR_6 circuits are shared by both bases.

237 ruling it out as a candidate function. We carry out an elementary but intricate case analysis
 238 of restricting and eliminating gates from optimal XOR circuits. Essentially we extract more
 239 information from the proof of Schnorr's lower bound by using it to identify "templates"
 240 that must be found in *any* optimal XOR circuit. We push this process to the limit, fully
 241 characterizing the "shape" of all such circuits. Specifically,

- 242 ■ Schnorr's proof is essentially a technical lemma which says that any one-bit restriction will
 243 eliminate at least 3 costly gates [39]. This means that at the bottom level of every optimal
 244 XOR circuit, any variable must be fed into two distinct costly gates, and furthermore, one
 245 of these two must be fed into another costly gate. Any deviation from these properties will
 246 violate essential properties of the XOR -function, such as " XOR depends on all the input
 247 bits." Via a basic inductive argument and the fact that XOR is downward self-reducible,
 248 Schnorr's lower bound follows: $CC(\text{XOR}_n) \geq 3(n - 1)$.
- 249 ■ Schnorr's proof leaves the local structure of the optimal circuit computing XOR "open."
 250 Namely, it does not provide any information about the other inputs of the costly gates
 251 or where their outputs connect to the rest of the circuit, since we consider fan-in 2 and
 252 unbounded fan-out. However, we know that XOR circuit has a matching upper-bound of
 253 $3(n - 1)$. In particular, this means *each one-bit restriction cannot remove more than 3
 254 gates*. We also know that *each variable in optimal XOR -circuits must be read twice*.
- 255 ■ We leverage these two properties to show that in every optimal XOR circuit, any two
 256 distinct input variables x_i and x_j must be fed into a block \mathcal{B} as shown in the left sub-figure
 257 of Figure 1. Specifically, we argue that any deviations from the block will violate at
 258 least one of the properties via exhaustive case analyses of gate elimination steps. Finally,
 259 we argue that this block \mathcal{B} must compute either XOR_2 or $\neg\text{XOR}_2$ and apply a basic
 260 inductive argument to obtain the desired structural characterization of any optimal circuit
 261 computing XOR_n as depicted in the right sub-figure of Figure 1.
- 262 Besides the linear size for optimal circuits computing XOR , our structural theorem yields two
 263 more properties that rule out XOR as a candidate function for MCSP-hardness via Simple
 264 Extension. That is, for optimal circuits computing XOR_n , (1) *the maximum fan-out is a
 265 constant*, and (2) *the number of such optimal circuits up to permutation of variables, is $2^{O(n)}$* .

■ **Algorithm 1** Informal Simple Extension Solver, taking input $n \in \mathbb{N}$, $g \in \mathcal{F}_{n+m}$

```

1: if there is no key to  $f$  in  $g$  or  $g$  is degenerate then
2:   return False
3:  $\triangleright$  If the above tests pass, then  $g$  is a non-degenerate extension of  $f$ . It remains to check
   simplicity.
4: for each isomorphism class  $\mathcal{C}$  of open optimal circuits for  $f$  do
5:    $F \leftarrow$  an arbitrary element of  $\mathcal{C}$  with all gates labelled in topological order
6:   label the open nodes of  $F$  by an arbitrary permutation of  $x_1, \dots, x_n$ 
7:   for each reverse elimination  $E$  that adds exactly  $m$  costly gates to  $F$  do
8:      $\tilde{G} \leftarrow \text{Decode}(F, E)$ 
9:     if  $\text{tt}(\tilde{G}) \simeq \text{tt}(g)$  then  $\triangleright$  Test using the procedure of Theorem 26.
10:    return True
11: return False

```

266 **1.4.2 A Fixed-Parameter Tractable Simple Extension Solver**

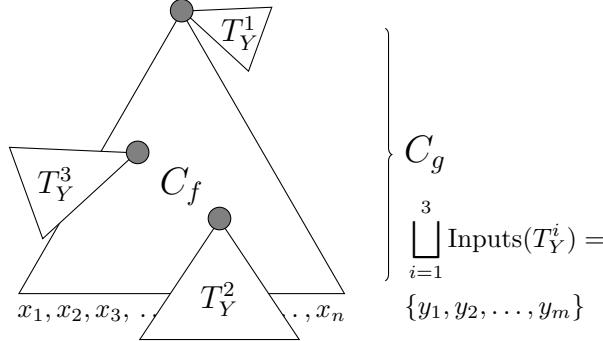
267 It is easy to see that the approach of solving the Simple Extension Problem for XOR_n via
 268 brute-forcing over all possible circuits of size $CC(f) + m$ is super-polynomial in terms of
 269 the length of the input truth-tables. Using the following ingredients, we design Algorithm
 270 1 below, a Fixed-Parameter Tractable (FPT) algorithm for the Simple Extension problem
 271 that depends on the following three parameters: (1) the number of optimal circuits for f (up
 272 to isomorphism & permutation of variables), (2) the maximum fanout of any node in any
 273 optimal circuit for f , and (3) $CC(f)$.

274 **Structured Simple Extension Circuits.** By analyzing the *behavior* of optimal simple ex-
 275 tension circuits under gate elimination, we are able to characterize the *structure* of *every*
 276 optimal circuit computing a simple extension. By definition, if g is a simple extension of
 277 f then there are restrictions of g 's added variables (called *extension variables* and denoted
 278 y_i) that yield f . We call such a restriction a *key* to f in g . We first show that *circuits*
 279 *obtained by partially restricting with a key are themselves optimal simple extension circuits for*
 280 *intermediate extensions*. Building on this, we then develop convenient *all-stops restrictions*
 281 that order substitutions and simplification steps with the following properties: (1) *single-bit*
 282 *substitutions from this key in the given order eliminate exactly one costly gate at each step*, (2)
 283 *there exists such an all-stops restriction for any optimal circuit computing a simple extension*
 284 (Lemma 17).

285 Combining these tools, we inductively show a robust structure arises in optimal simple
 286 extension circuits: *each extension variable occurs in an isolated read-once subformula that*
 287 *depends only on other extension variables* (referred to as the *Y-trees*). Formally,

288 ▶ **Definition 1** (Y-Tree Decomposition). *Let G be a circuit with two distinguished sets of*
 289 *inputs: base variables X and extension variables Y . A Y-Tree Decomposition of G is a set*
 290 *of triples $\langle \gamma, b, T \rangle$ where γ —referred to as a combiner—is a costly gate of G , bit $b \in \{0, 1\}$*
 291 *designates an input of γ , and T is a sub-circuit of G rooted at the b child of γ such that*

- 292 1. *Each T is a read-once formula in only extension variables Y .*
 293 2. *Each $y_i \in Y$ appears in at most one T .*
 294 3. *Each T is isolated in G — gate γ is the unique gate reading from T , and it only reads*
 295 *the root of T .*
 296 4. *The sub-circuit of G rooted at the $\neg b$ child of γ contains at least one X variable.*



■ **Figure 2** An example of a Y-Tree Decomposition of size three.

297 The size of a decomposition is the number of tuples — Y-trees and their associated
 298 combiner gates — present in the decomposition. The weight of a Y-tree decomposition is the
 299 number of extension variables that are read in some T . We say a Y-tree decomposition is total
 300 if its weight is $|Y|$, i.e. every extension variable appears. An example Y-tree decomposition
 301 of size three is depicted in Figure 2, where the shaded circles represent the circuitry around
 302 each combiner γ connecting each T_Y to the rest of the circuit.

303 When gate elimination is performed with a total key, these added Y-trees and their
 304 combiners are pruned to reveal an embedded optimal circuit for the base f function. We get
 305 the following structural insight: *every optimal simple extension circuit has a total Y-tree*
 306 decomposition. This decomposition forms the basis of our strategy: we brute force over every
 307 optimal base circuit and try to “splice in” every possible Y-tree.

308 **Encoding & Decoding the “Grafts” in a Y-Tree Decomposition.** To ensure we can
 309 efficiently construct these candidate simple extension circuits, we devise an encoding scheme
 310 and corresponding decoding algorithm which efficiently captures the difference in local
 311 neighborhoods after each new Y-tree is spliced on top of an existing gate or input. Our final
 312 encoding must be $O(n + m)$ bits long to ensure brute-force runs in $2^{O(n+m)}$. We present our
 313 encoding as a communication problem to clarify the overhead and constraints involved.

314 Suppose g is a simple extension of f and Alice knows G , an optimal circuit for g . Alice
 315 can obtain an optimal circuit F computing f by simply restricting the y -variables of G with
 316 a key and performing gate elimination. Now consider the following communication problem:
 317 Bob (i.e., line 5 of Algorithm 1) knows F , and Alice would like to send him G using as
 318 few bits as possible. Because g is a simple extension of f , Alice can compute the Y-tree
 319 decomposition of optimal circuit G . The idea is to send Bob a sequence of instructions that
 320 tell him exactly how to graft each Y-Tree of G onto the gates of F , where all information is
 321 encoded relative to isomorphism-invariant properties of F .

322 **Speeding Up Via Truth-table Isomorphism.** Brute-forcing over the total encodings de-
 323 scribed above is still incredibly inefficient. Since each Y-tree is a read-once formula in the
 324 added m variables there are least $C_{m-1} \cdot m!$ such explicit Y-trees, where C_a is the a^{th} Catalan
 325 number [42]. The dominating term— $m!$ —comes from permuting the labels of the variables.
 326 The same issue arises if our base function f is symmetric: the number of optimal f circuits
 327 is $\Omega(n!)$.

328 We sidestep this issue and drastically improve the speed of brute-force search. If we
 329 “incorrectly” assign variables in the base circuit or in the Y-trees, the result is a circuit for

330 a Boolean function that is *truth-table isomorphic* to g , i.e. their truth-tables are the same
 331 up to a permutation of the inputs. If h and g are truth-table isomorphic then they have
 332 the same circuit complexity. Thus it suffices to brute-force over unlabeled (“open”) base
 333 circuits and Y -trees, assign variables to inputs arbitrarily, generate each circuit’s truth table,
 334 and check if it is truth-table isomorphic to g . This final step is feasible since truth-table
 335 isomorphism testing can be done in polynomial time [30].

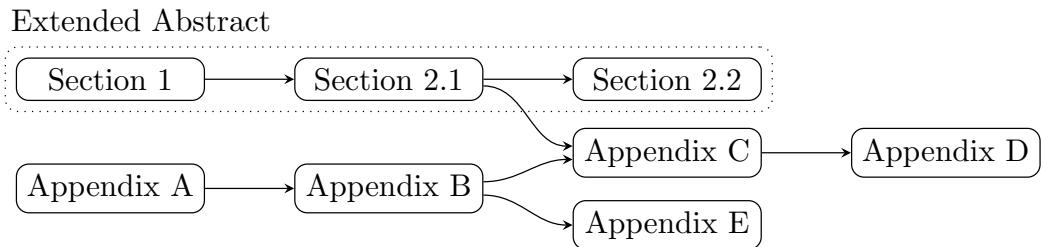
336 This results in our final algorithm, which runs in time $O(|L| \cdot 2^{O(\ell(s+m))})$ where $|L|$ is the
 337 number of optimal base f circuits up to permutation of variables, ℓ is the maximum fanout
 338 in any of those base circuits, and $s = CC(f)$. As discussed above, for XOR these parameters
 339 are all sufficiently small and hence XOR-Simple Extension is in P.

340 1.4.3 Paper Outline

341 The paper is laid out as follows. Section 2 explores the implicit reduction present to f -SEP in
 342 the ETH-hardness proof for MCSP* in [18]. This discussion yields our Main Observation and
 343 motivates our study of f -SEP and circuit structures. It, in conjunction with this introduction,
 344 constitutes an extended abstract of our paper.

345 Appendix A and Appendix B formally define circuits and gate elimination respectively.
 346 In Appendix C, we establish that every optimal circuit computing simple extensions are
 347 highly structured: they can be decomposed into Y -trees. This observation forms the basis of
 348 our Main Result, a fixed parameter tractable algorithm for f -SEP, in Appendix D. Finally,
 349 in Appendix E, we extend Kombarov’s characterization of optimal XOR circuits in \mathcal{R} to \mathcal{D} ,
 350 in order to apply our Main Theorem to XOR-SEP.

351 The dependence between sections varies. For example, Appendix E is independent of the
 352 f -SEP material like Section 2 and Appendix C. To aid the reader, we provide a reading order
 in Figure 3.



353 **Figure 3** The structure of our paper. Sections 1 and 2 form an extended abstract. An incoming
 354 arrow indicates that the material depends on the previous section.

355

356 2 Revisiting ETH hardness for MCSP* via Simple Extensions

357 We re-examine the proof that MCSP* is ETH-hard from [18]. Our aim is to better understand
 358 the reduction from $2n \times 2n$ Bipartite Permutation Independent Set (BPIS) to the Partial f
 359 Simple Extension problem (f -SEP*).

360 2.1 The f -Simple Extension Problem

361 We give formal definitions of simple extensions and its associated decision problem. We first
 362 define non-degeneracy of a Boolean function.

361 ► **Definition 2.** A function $f \in \mathcal{F}_n$, the set of Boolean functions on n variables, depends
 362 on its i^{th} variable, x_i , if there exists an input $\alpha \in \mathcal{F}_n$ such that $f(\alpha) \neq f(\alpha \oplus e_i)$, where e_i
 363 denotes the Boolean vector that is 0 everywhere except for a 1 at index i and \oplus is bitwise XOR.
 364 If f depends on all of its variables, then we say f is a non-degenerate function. Conversely,
 365 we say f is a degenerate function if it does not depend on at least one variable.

366 We now define simple extension as

367 ► **Definition 3.** Let $f \in \mathcal{F}_n$ be non-degenerate. A simple extension of f is either f itself or
 368 a function $g \in \mathcal{F}_{n+m}$ satisfying:

- 369 1. g is a non-degenerate function,
- 370 2. $CC(g) = CC(f) + m$, and
- 371 3. there exists a setting $k \in \{0, 1\}^m$, called a key, such that for all $x \in \{0, 1\}^n$, $g(x, k) = f(x)$.

372 We denote the first n inputs of f and g by x_1, \dots, x_n and will refer to the extra m inputs
 373 of g as *extension variables* and refer to them as y_1, \dots, y_m . From the definition of simple
 374 extension above, we define the following decision problem.

375 ► **Problem 1** (f -SEP). Let f be a sequence of Boolean functions $\{f_n\}_{n \in \mathbb{N}}$ such that each f_n
 376 is a non-degenerate function in \mathcal{F}_n . The f -Simple Extension Problem is defined as follows:
 377 Given $n \in \mathbb{N}$ and $tt(g)$ —the truth tables of a binary function $g \in \mathcal{F}_{n+m}$ —decide whether g is
 378 a simple extension of f_n .

379 We extend this to partial functions,

380 ► **Problem 2** (f -SEP*). Given $n \in \mathbb{N}$ and a partial $tt(g)$, decide whether any completion of
 381 the truth table is a simple extension of f_n .

382 2.2 An Explicit Reduction BPIS from to f -SEP*

383 Recall the formulation of BPIS from [18],

384 ► **Problem 3** (BPIS). The $2n \times 2n$ Bipartite Permutation Independent Set is defined as
 385 follows: Given $G = (V, E)$ a directed graph with vertex set $V = [n] \times [n]$. Decide whether
 386 there exists a permutation $\pi : [2n] \rightarrow [2n]$ such that:

- 387 1. $\pi([n]) = [n]$,
- 388 2. $\pi(\{n + i : i \in [n]\}) = \{n + i : i \in [n]\}$,
- 389 3. if $((j, k), (j', k')) \in E$, then either $\pi(j) \neq k$ or $\pi(j' + n) \neq k' + n$

390 If the Exponential Time Hypothesis holds, then BPIS cannot be solved much faster than
 391 brute-forcing over all $2^{o(n \log n)}$ permutations [29]. BPIS is a natural problem to show hardness
 392 of circuit size problems since there are $O(2^{s \log s})$ circuits of size s . Reducing from BPIS
 393 implies, assuming ETH, that our problem can not be solved much faster than by brute-forcing
 394 over all possible circuits.

395 The reduction from BPIS to f -SEP*, as it appears as part of the original proof, is somewhat
 396 *implicit*; the target problem, as written, could be described more simply as “determine whether
 397 a partial truth table is ever consistent with a monotone read-once formula.” Since this is *easy*
 398 for total functions [2, 13], this view of the reduction cannot help us to extend the reduction
 399 technique to total MCSP. We will need the more general f -SEP and by reframing Ilango’s
 400 proof we gain insight into how it might extend to total functions.

401 The connection to f -SEP* is *explicitly* stated, however, in the introduction of [18]. Here,
 402 the reduction is identified with OR_{4n} -SEP* where each z variable is an extension variable.

23:12 Simple Circuit Extensions for XOR in PTIME

403 This is true, though non-degenerate functions computed by read-once formulas are simple
404 extensions of *any* of their non-degenerate restrictions. When framing the reduction to f -SEP*
405 explicitly, we find it more compelling to choose a different function \hat{f} , whose truth table
406 is given by $\bigvee_{i \in [2n]} (y_i \wedge z_i)$ — because using \hat{f} makes the intuitive description of Ilango's
407 technique "reverse gate elimination" an obvious property of the reduction. Under this framing,
408 the extension variables will instead be the x variables in Ilango's original proof. Despite
409 this, fixing f to be OR_{4n} is *not* arbitrary; afterwards, we discuss what insight it provides.
410 Informally, the two choices of base function provide distinct "channels" for ETH to imply
411 hardness of f -SEP*.

412 **Structural Lemmas** To encode BPIS in \hat{f} -SEP*, we first prove two lemmas which were
413 essentially proven in tandem in [18] as Lemma 16. We separate them out here and stay faithful
414 to the original arguments. Like Lemma 16, these lemmas establish structural properties of
415 circuits computing our base function \hat{f} and our eventual output \hat{g} .

416 ▶ **Lemma 4.** *Let $\hat{f} : \{0, 1\}^{2n} \times \{0, 1\}^{2n} \rightarrow \{0, 1\}$ be the Boolean function computed by
417 $\bigvee_{i \in [2n]} (y_i \wedge z_i)$. If ψ be an optimal normalized⁶ formula computing \hat{f} , then ψ , as a formula,
418 is equal to $\bigvee_{i \in [2n]} (y_i \wedge z_i)$.*

419 In particular, the only difference between two distinct optimal circuits for \hat{f} is which binary
420 tree of fanin 2 \vee gates is used.

421 **Proof.** Observe that ψ must read all of its input variables and furthermore must do so
422 positively. This is because (1) f depends on all of its variables and is monotone in them, and
423 (2) ψ is normalized and thus no \neg gates can appear internally in the circuit. We note that ψ
424 must use a total of $4n - 1$ gates since f is non-degenerate on $4n$ variables computable. We
425 see that ψ must contain at least $2n - 1$ \vee gates: substituting $z = 1^{2n}$ and simplifying yields
426 a monotone read once formula computing $\text{OR}_{2n}(y_1, \dots, y_{2n})$ which must consist of $2n - 1$ \vee
427 gates that appear in ψ .

428 We now argue that each z_i feeds into an \wedge gate. Assume otherwise, then observe that
429 setting $z_i = 1$ and simplifying removes at least two gates (since $z_1 \vee p \equiv 1 \vee p \equiv 1$). The
430 resulting read once formula for $\hat{f}|_{z_i \leftarrow 1}$ uses at most $4n - 3$ gates. This is a contradiction
431 since $\hat{f}|_{z_i \leftarrow 1}$ still depends on all of its remaining $4n - 1$ variables: it cannot be computed by
432 a circuit with fewer than $4n - 2$ gates.

433 We now argue the other input to the \wedge gate fed by z_i is y_i . Assume otherwise. Notice
434 that since ψ is read-once, setting $z_i \leftarrow 0$ simplifying disconnects the other input to \wedge gate
435 and thus removes dependence on any variables it depends on. However, $\hat{f}|_{z_i \leftarrow 0}$ still depends
436 on all of its variables besides y_i . Thus the \wedge gate can only read y_i .

437 Since each z_i and y_i feed a distinct \wedge gate, there are at least $2n \wedge$ gates. Since there are
438 $4n - 1$ total gates, and at least $2n - 1$ \vee gates, we know that these \wedge gates are the only \wedge
439 gates that appear. Thus the remainder of the circuit is a binary tree of $2n - 1$ \vee gates whose
440 $2n$ leaves are the $2n \wedge$ gates. ◀

441 Having established the structure of optimal circuits computing \hat{f} we can further restrict
442 its simple extensions. Extra restrictions to the truth table enforce that extension variables
443 must be spliced into the circuit using $2n$ additional \vee gates that each read a different y_i .

⁶ A formula is normalized if all negations are pushed down to the input level. Normalization does not affect the size of the formula, and thus f -SEP* still reduces to MCSP* even if we restrict ourself to normalized formulas.

■ **Table 2** BPIS requirements and the corresponding restrictions on \hat{g}

BPIS Requirement on σ	Corresponding \hat{g} Restriction	Impact If π Violates
$\sigma(\{1, \dots, n\}) = \{1, \dots, n\}$	$\text{OR}_n(x_1, \dots, x_n)$ when $z = 1^n 0^n$ and $y = 0^{2n}$	If $\pi(i) = j \geq n$, then $z_j \leftarrow 0$ removes x_i in C_π
$\sigma(\{n+1, \dots, 2n\}) = \{n+1, \dots, 2n\}$	$\text{OR}_n(x_{n+1}, \dots, x_{2n})$ when $z = 0^n 1^n$ and $y = 0^{2n}$	As above, $C_\pi _{z_j \leftarrow 0}$ will not depend on x_i
If $((j, k), (j', k')) \in E$ then $\sigma(j) \neq k$ or $\sigma(n+j') \neq \sigma(n+k')$	1 if $(x, y, z) = (e_k e_{k'}, 0^{2n}, e_j e_{j'})$ where $\exists ((j, k), (j', k')) \in E$	C_π wrongly outputs 0

444 This pairing of each y_i with a different x_j will define a permutation in which we can encode
 445 BPIS solutions.

446 ▶ **Lemma 5.** *Let $g : \{0, 1\}^{2n} \times \{0, 1\}^{2n} \times \{0, 1\}^{2n} \rightarrow \{0, 1\}$ be any simple extension of \hat{f}
 447 satisfying the following conditions:*

$$448 \quad g(x, y, z) = \begin{cases} \hat{f}(y, z) & \text{if } x = 0^{2n} \\ \text{OR}_{2n}(z_1, \dots, z_{2n}) & \text{if } x = 1^{2n} \\ \text{OR}_{4n}(x_1, \dots, x_{2n}, y_1, \dots, y_{2n}) & \text{if } z = 1^{2n} \\ 0 & \text{if } z = 0^{2n} \end{cases}$$

449 If ϕ is an optimal normalized formula computing g then there exists a permutation $\pi : [2n] \rightarrow$
 450 $[2n]$ such that ϕ equals, as a formula, $\bigvee_{i \in [2n]} ((x_{\pi(i)} \vee y_i) \wedge z_i)$.

451 **Proof.** Since $g(x, y, z) = \hat{f}(y, z)$ when $x = 0^{2n}$, we know that ϕ must read all y and z
 452 variables positively. Similarly, all x variables must be read positively, since $g(x, y, 1^{2n}) =$
 453 $\text{OR}_{4n}(x_1, \dots, x_{2n}, y_1, \dots, y_{2n})$. Note that these restrictions also imply that ϕ contains exactly
 454 $4n - 1 \vee$ gates and $2n \wedge$ gates since substituting and simplifying yields optimal formulas for
 455 those restrictions. From the lemma above, we know know that when setting $x = 0^{2n}$ and
 456 simplifying, we obtain a circuit structurally equivalent to $\bigvee_{i \in [2n]} (y_i \wedge z_i)$. Therefore $2n \vee$
 457 gates must be removed during simplification. These \vee gates cannot feed any remaining \vee
 458 above the \wedge gates, since otherwise setting $x = 1^{2n}$ would fix the circuit to be 1, rather than
 459 $\text{OR}_{2n}(z_1, \dots, z_{2n})$. Similarly, z_i cannot feed any of these \vee gates, as setting $x = 1^{2n}$ would
 460 remove dependence on that z_i since the circuit is a read-once formula. Thus each \vee gate can
 461 only depend on the x and y variables. Observe that each y_i must feed into one of these \vee
 462 gates instead of the \wedge gate fed by z_i , as otherwise when we set $x = 1^{2n}$, the function would
 463 still depend on y_i . Since there are exactly $2n$ additional \vee gates, and exactly $2n$ y and $2n$ x
 464 variables, its easy to see that each additional \vee gate must read one x_i and one y_j . Therefore,
 465 as a formula, ϕ must be $\bigvee_{i \in [2n]} ((x_{\pi(i)} \vee y_i) \wedge z_i)$ for some permutation π . ◀

466 **An Explicit Reduction** We now provide an explicit reduction from BPIS to \hat{f} -SEP*. Given an
 467 instance G of BPIS we output $4n$ and the partial truth-table for a function \hat{g} that is consistent
 468 with the requirements of Lemma 5. We add three additional restrictions (listed in Table 2) to
 469 ensure that any permutation π , whose corresponding circuit $C_\pi \equiv \bigvee_{i \in [2n]} ((x_{\pi(i)} \vee y_i) \wedge z_i)$
 470 is consistent with \hat{g} , is also a solution for G (and vice versa). All other rows of the truth table
 471 are left undefined (e.g. as \star). We summarize the requirements for any valid BPIS solution σ ,
 472 the corresponding restriction, and how it enforces the requirement on π in Table 2.

473 This completes the reduction as any σ satisfying BPIS for G can be used to construct
 474 a read-once circuit consistent with \hat{g} and vice versa. The arguments verifying this are the
 475 same as in [18], and we refer the reader there for the full details.

476 ▶ **Lemma 6.** BPIS reduces to \hat{f} -SEP* in $2^{O(n)}$ time.

477 **The Original Framing** In its introduction, [18] identifies \hat{g} as a simple extension of OR_{4n} .
 478 Under this lens, the hardness comes from determining which OR_{4n} base circuit can have the
 479 z extension variables added. The additional truth-table restrictions on \hat{g} force each z_i to be
 480 spliced in a particular way adjacent to y_i . Assuming ETH, there are $\Omega(n!)$ optimal base
 481 OR_{4n} circuits that must be checked via brute-force.

482 **Implicit Circuit Lower Bounds & Enumeration of Optimal Circuits** From both presenta-
 483 tions, we see that leveraging f -SEP involves explicit circuit size lower bounds. Indeed, both
 484 Lemma 4 and Lemma 5 prove formula lower bounds for specific non-degenerate functions.
 485 However, in a sense, circuit lower bounds are intrinsic to the reduction itself. This connection
 486 can be made rigorous: the reduction can be used to produce explicit Boolean functions which
 487 enjoy non-vacuous lower bounds. On no instance of BPIS, the reduction outputs a partial
 488 truth table where every completion is non-degenerate but *not* a simple extension. Hence, the
 489 circuit complexity of these completions is not the vacuous $6n - 1$ lower bound obtained by
 490 knowing that functions produced are non-degenerate.

491 Furthermore, the reduction did not solely rely on the circuit complexity of \hat{f} and \hat{g} .
 492 Lemmas 4 and 5 *tightly control* how base circuits and their extensions can be arranged;
 493 and this is pivotal for encoding BPIS permutations. This structural requirement can be
 494 formalized by observing the reduction is also an efficient *Levin reduction*.

495 Recall, from [32], that a Levin reduction is a many-one reduction that also efficiently
 496 maps witnesses, not just problem instances. More precisely, let R be a set of ordered pairs
 497 (x, w) where x is a yes-instance of a problem and w is an accompanying certificate. We define
 498 L_R , the language defined by R , to be the set of elements x such that $(x, w) \in R$ for some w .
 499 Then a Levin reduction between two languages A and B is an efficient many-one reduction r
 500 between problem instances paired with two efficient mappings m, ℓ between instance-witness
 501 pairs that satisfy (1) if $(x, w) \in R_A$ then $(r(x), m(x, w)) \in R_B$ and (2) $(t(x), w) \in R_B$ implies
 502 $(x, \ell(x, w)) \in R_A$.

503 For BPIS, the witnesses for an instance are simply the valid permutations σ and witnesses
 504 for \hat{f} -SEP are optimal circuits computing the extension. Let $\mathcal{R}_{\text{BPIS}}$ and $\mathcal{R}_{\hat{f}\text{-SEP}^*}$ be the
 505 sets of ordered pairs consisting of problem instances and all of their witnesses as described.
 506 The reduction admits linear time mappings between witnesses: given σ , simply construct
 507 $\bigvee_{i \in [2n]} ((x_{\sigma(i)} \vee y_i) \wedge z_i)$ and given a circuit for \hat{g} , simply read off the permutation from the
 508 x variables.

509

 References

- 510 1 Kazuyuki Amano and Jun Tarui. A well-mixed function with circuit complexity $5n$: Tightness
511 of the lachish–raz-type bounds. *Theoretical computer science*, 412(18):1646–1651, 2011.
- 512 2 Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas with
513 queries. *J. ACM*, 40(1):185–210, 1993. doi:10.1145/138027.138061.
- 514 3 Vikraman Arvind and Yadu Vasudev. Isomorphism testing of boolean functions computable
515 by constant-depth circuits. *Inf. Comput.*, 239:3–12, 2014. URL: <https://doi.org/10.1016/j.ic.2014.08.003>, doi:10.1016/J.IC.2014.08.003.
- 516 4 Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Servedio, and Li-Yang Tan. Learning
517 circuits with few negations. *arXiv preprint arXiv:1410.8420*, 2014.
- 518 5 Norbert Blum and Martin Seysen. Characterization of all optimal networks for a si-
519 multaneous computation of AND and NOR. *Acta Informatica*, 21:171–181, 1984. doi:
520 10.1007/BF00289238.
- 521 6 Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Circuit lower
522 bounds for mcsps from local pseudorandom generators. *ACM Transactions on Computation
523 Theory (TOCT)*, 12(3):1–27, 2020.
- 524 7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction
525 to Algorithms, 3rd Edition*. MIT Press, 2009. URL: <http://mitpress.mit.edu/books/introduction-algorithms>.
- 526 8 William Feller and Philip M Morse. An introduction to probability theory and its applications.
527 vol i, 1968.
- 528 9 Ludmila Glinskih and Artur Riazanov. MCSP is hard for read-once nondeterministic branching
529 programs. In Armando Castañeda and Francisco Rodríguez-Henríquez, editors, *LATIN 2022:
530 Theoretical Informatics - 15th Latin American Symposium, Guanajuato, Mexico, November
531 7-11, 2022, Proceedings*, volume 13568 of *Lecture Notes in Computer Science*, pages 626–640.
532 Springer, 2022. doi:10.1007/978-3-031-20624-5_38.
- 533 10 Ludmila Glinskih and Artur Riazanov. Partial minimum branching program size problem is
534 eth-hard. *Electron. Colloquium Comput. Complex.*, TR24-117, 2024. (To Appear in ITCS
535 2025). URL: <https://eccc.weizmann.ac.il/report/2024/117>, arXiv:TR24-117.
- 536 11 Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On
537 the limits of gate elimination. *J. Comput. Syst. Sci.*, 96:107–119, 2018. doi:10.1016/j.jcss.
538 2018.04.005.
- 539 12 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
540 Kolokolova, and Avishay Tal. Ac0 [p] lower bounds against mcsps via the coin problem.
541 In *ICALP*, 2019.
- 542 13 Martin Charles Golumbic, Aviad Mintz, and Udi Rotics. Factoring and recognition of read-
543 once functions using cographs and normality and the readability of functions associated with
544 partial k-trees. *Discrete Applied Mathematics*, 154(10):1465–1477, 2006. URL: <https://www.sciencedirect.com/science/article/pii/S0166218X06000072>, doi:<https://doi.org/10.1016/j.dam.2005.09.016>.
- 545 14 Shuichi Hirahara. Np-hardness of learning programs and partial MCSP. In *63rd IEEE Annual
546 Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
547 - November 3, 2022*, pages 968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095.
- 548 15 Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. Np-hardness of minimum circuit
549 size problem for OR-AND-MOD circuits. In Rocco A. Servedio, editor, *33rd Computational
550 Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA*, volume 102
551 of *LIPICS*, pages 5:1–5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:
552 <https://doi.org/10.4230/LIPIcs.CCC.2018.5>, doi:10.4230/LIPIcs.CCC.2018.5.
- 553 16 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of mcsps and its
554 variants. In *32nd Computational Complexity Conference (CCC 2017)*. Schloss Dagstuhl
555 Leibniz-Zentrum fuer Informatik, 2017.

- 560 17 Yizhi Huang, Rahul Ilango, and Hanlin Ren. Np-hardness of approximating meta-complexity:
 561 A cryptographic approach. *Cryptology ePrint Archive*, 2023.
- 562 18 Rahul Ilango. Constant depth formula and partial function versions of mcsp are hard. *SIAM*
 563 *Journal on Computing*, 0(0):FOCS20–317–FOCS20–367, 2020. [arXiv:https://doi.org/10.](https://doi.org/10.1137/20M1383562)
 564 [10.1137/20M1383562](https://doi.org/10.1137/20M1383562), doi:10.1137/20M1383562.
- 565 19 Rahul Ilango. The minimum formula size problem is (ETH) hard. In *62nd IEEE Annual*
 566 *Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February*
 567 *7-10, 2022*, pages 427–432. IEEE, 2021. doi:10.1109/FOCS52979.2021.00050.
- 568 20 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization
 569 for multi-output functions. In *Electronic Colloquium on Computational Complexity (ECCC)*,
 570 volume 27, page 21, 2020.
- 571 21 Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of $5n - o(n)$ for boolean circuits.
 572 In Krzysztof Diks and Wojciech Rytter, editors, *Mathematical Foundations of Computer*
 573 *Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,*
 574 *2002, Proceedings*, volume 2420 of *Lecture Notes in Computer Science*, pages 353–364. Springer,
 575 2002. doi:10.1007/3-540-45687-2_29.
- 576 22 Stasys Jukna. *Boolean Function Complexity - Advances and Frontiers*, volume 27 of *Algorithms*
 577 and *combinatorics*. Springer, 2012. doi:10.1007/978-3-642-24508-4.
- 578 23 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and
 579 Eugene M. Luks, editors, *Proceedings of the Thirty-Second Annual ACM Symposium on*
 580 *Theory of Computing, May 21-23, 2000, Portland, OR, USA*, pages 73–79. ACM, 2000.
 581 doi:10.1145/335305.335314.
- 582 24 Klein and Paterson. Asymptotically optimal circuit for a storage access function. *IEEE*
 583 *Transactions on Computers*, C-29(8):737–738, 1980. doi:10.1109/TC.1980.1675657.
- 584 25 Yu A Kombarov. The minimal circuits for linear boolean functions. *Moscow University*
 585 *Mathematics Bulletin*, 66(6):260–263, 2011.
- 586 26 Yu A Kombarov. Complexity and structure of circuits for parity functions. *Journal of*
 587 *Mathematical Sciences*, 233:95–99, 2018.
- 588 27 Oded Lachish and Ran Raz. Explicit lower bound of $4.5n - o(n)$ for boolean circuits. In
 589 *Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing*, STOC
 590 '01, page 399–408, New York, NY, USA, 2001. Association for Computing Machinery. doi:
 591 10.1145/380752.380832.
- 592 28 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In Sandy
 593 Irani, editor, *61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,*
 594 *Durham, NC, USA, November 16-19, 2020*, pages 1243–1254. IEEE, 2020. doi:10.1109/
 595 FOCS46700.2020.00118.
- 596 29 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
 597 problems. *SIAM Journal on Computing*, 47(3):675–702, 2018. [arXiv:https://doi.org/10.](https://doi.org/10.1137/16M1104834)
 598 [10.1137/16M1104834](https://doi.org/10.1137/16M1104834), doi:10.1137/16M1104834.
- 599 30 Eugene M Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
 600 *Proceedings of the thirty-first annual ACM symposium on Theory of computing*, pages 652–658,
 601 1999.
- 602 31 William J Masek. Some np-complete set covering problems. *Unpublished manuscript*, 1979.
- 603 32 Noam Mazor and Rafael Pass. Gap MCSP is not (levin) np-complete in obfustopia. In Rahul
 604 Santhanam, editor, *39th Computational Complexity Conference, CCC 2024, July 22-25, 2024,*
 605 *Ann Arbor, MI, USA*, volume 300 of *LIPICS*, pages 36:1–36:21. Schloss Dagstuhl - Leibniz-
 606 Zentrum für Informatik, 2024. URL: <https://doi.org/10.4230/LIPICS.CCC.2024.36>, doi:
 607 10.4230/LIPICS.CCC.2024.36.
- 608 33 Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.
 609 In *Proceedings of the Seventh Annual ACM Symposium on Theory of Computing*, STOC
 610 '75, page 27–36, New York, NY, USA, 1975. Association for Computing Machinery. doi:
 611 10.1145/800116.803750.

- 612 34 Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.
613 *SIAM J. Comput.*, 6(3):427–443, 1977. doi:10.1137/0206030.
- 614 35 NP Red'kin. Proof of minimality of circuits consisting of functional elements. *Systems Theory*
615 *Research: Problemy Kibernetiki*, pages 85–103, 1973.
- 616 36 Hanlin Ren and Rahul Santhanam. Hardness of kt characterizes parallel cryptography.
617 *Cryptology ePrint Archive*, 2021.
- 618 37 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. *LIPICS*, 151,
619 2020.
- 620 38 Jürgen Sattler. Netzwerke zur simultanen berechnung boolescher funktionen. In Peter Deussen,
621 editor, *Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25,*
622 *1981, Proceedings*, volume 104 of *Lecture Notes in Computer Science*, pages 32–40. Springer,
623 1981. URL: <https://doi.org/10.1007/BFb0017293>, doi:10.1007/BFB0017293.
- 624 39 Claus-Peter Schnorr. Zwei lineare untere schranken für die komplexität boolescher funktionen.
625 *Computing*, 13(2):155–171, 1974. doi:10.1007/BF02246615.
- 626 40 Claude. E. Shannon. The synthesis of two-terminal switching circuits. *The Bell System*
627 *Technical Journal*, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.
- 628 41 B. A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms.
629 *Annals of the History of Computing*, 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.
- 630 42 J. H. van Lint and R. M. Wilson. *Recursions and generating functions*, page 109–1311.
631 Cambridge University Press, 1992.
- 632 43 Ingo Wegener. *The Complexity of Boolean Functions*. Wiley-Teubner, 1987.
- 633 44 Uri Zwick. A $4n$ lower bound on the combinational complexity of certain symmetric boolean
634 functions over the basis of unate dyadic boolean functions. *SIAM Journal on Computing*,
635 20(3):499–505, 1991.

636 **A Circuits**

637 In this section, we precisely define Boolean circuit complexity and accompanying notions
 638 related to the “shapes” and “parts” of circuits. These definitions are straightforward, but
 639 the details matter because we are working with *general* circuits and functions of *linear* size
 640 complexity. We cannot, for example, afford to layer circuits or put them into negation normal
 641 form (NNF, all NOT-gates on the inputs) because size-optimal circuits do not (in general)
 642 obey these restrictions. In particular, optimal circuits for XOR are neither layered nor in
 643 NNF (Theorem 37). We will require normal forms that are *free* to impose (Lemma 10).

644 Define general circuits over the basis $\mathcal{B} = \{\wedge, \vee, \neg, 0, 1\}$ of Boolean functions: binary
 645 \wedge and \vee , unary \neg and zero-ary (constants) 1 and 0. Circuits take zero-ary variables in
 646 $X = \{x_1, x_2, \dots, x_n\}$ and $Y = \{y_1, y_2, \dots, y_m\}$ for some fixed n and m as inputs. Throughout
 647 this work, we use the standard formulation of circuits consisting of single-sink and multi-
 648 source DAGs where internal nodes, called gates, are labeled by function symbols, sources
 649 are labeled by input variables, and edges as “wires” between the gates. We write V_C and
 650 E_C to denote the set of nodes and the set of edges of a circuit C respectively, omitting
 651 the subscript when it is clear which circuit is being referenced. Circuits compute Boolean
 652 functions through *substitution* followed by *evaluation*.

653 An *assignment* ρ of input variables is a mapping from the set of inputs to $\{0, 1\}$. To
 654 substitute into a circuit according to an assignment ρ , each input x_i is replaced by the
 655 constant $\rho(x_i)$. For a circuit G and assignment ρ we write $G \upharpoonright \rho$ to denote the circuit obtained
 656 by substituting into G according to ρ . To evaluate a circuit, the values of interior nodes
 657 labeled by function symbols are computed in increasing topological order. Each gate’s value
 658 is obtained by applying its function to the value of the node’s incoming wires. The output
 659 of the circuit overall is the value of its sink.

660 Let \mathcal{F}_n be the family of Boolean functions on n variables. We say a circuit G on n
 661 variables computes $g \in \mathcal{F}_n$ if for all $\alpha \in \{0, 1\}^n$, $G(\alpha) = g(\alpha)$. The size of a circuit G is
 662 denoted $|G|$ and $CC(g)$, the circuit complexity of a Boolean function g , is the minimum size
 663 of any circuit computing g . We study two notions of circuit size, μ_D and μ_R , which count the
 664 number of binary gates and the total number of gates respectively. We decorate any notation
 665 with \mathcal{D} or \mathcal{R} (e.g. $CC(G)^{\mathcal{D}}$) to denote μ_D and μ_R whenever necessary, but will omit if the
 666 measure is clear from context or if a statement holds for both measures. We say a circuit G
 667 computing g is optimal if $|G| = CC(g)$ and, in \mathcal{D} , require that the circuit is *normalized*, i.e.
 668 does not contain double-negations and every non- \neg node feeds at most one \neg gate.

669 We will often order the nodes of a circuit by *depth*, the maximum number of binary gates
 670 on any path from the node to the output. We sort a circuit’s nodes in *decreasing* order by
 671 depth, i.e. $\text{depth}(u) > \text{depth}(v)$ implies u appears before v in our ordering, breaking ties
 672 arbitrarily. Such orderings are efficiently realizable as depth is efficiently computable. To
 673 ensure we correctly account just binary gates for the depth, we first assign the outgoing
 674 edges of each binary gate and negation gate with weight -1 and 0 respectively. Then, we
 675 simply take the circuit’s underlying DAG, reverse its edges, and compute the shortest path
 676 from the output node to every other node in linear time [7].

677 We will sometimes work closely with specific parts of circuits. To this end we formally
 678 define a subcircuit rooted at a vertex α .

679 **► Definition 7 (Induced Subcircuit rooted at α).** Let $C = (V, E)$ be a circuit and let $\alpha \in V$.
 680 Let $P_\alpha = \{b \in V \mid \exists \text{ a path from } \beta \text{ to } \alpha\}$. The induced subcircuit rooted at α in C , denoted
 681 $C[\alpha]$, is the vertex-induced subgraph of C whose vertex set is P_α and whose edge set consists
 682 of the edges in E_C whose endpoints are nodes in P_α .

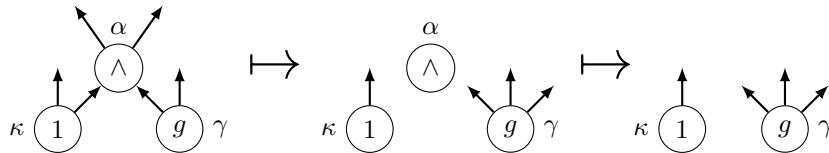
■ **Table 3** Gate elimination rules, categorized by their impact on fanout

Fixing	Passing	Resolving	Pruning
$0 \wedge \gamma \rightarrow 0$	$1 \wedge \gamma \rightarrow \gamma$	$\gamma \wedge \neg\gamma \rightarrow 0$	$\gamma \wedge \gamma \rightarrow \gamma$
$\gamma \wedge 0 \rightarrow 0$	$\gamma \wedge 1 \rightarrow \gamma$	$\neg\gamma \wedge \gamma \rightarrow 0$	
$1 \vee \gamma \rightarrow 1$	$0 \vee \gamma \rightarrow \gamma$	$\gamma \vee \neg\gamma \rightarrow 1$	$\gamma \vee \gamma \rightarrow \gamma$
$\gamma \vee 1 \rightarrow 1$	$\gamma \vee 0 \rightarrow \gamma$	$\neg\gamma \vee \gamma \rightarrow 1$	
$\neg 0 \rightarrow 1$			$\neg\neg\gamma \rightarrow \gamma$
$\neg 1 \rightarrow 0$			

683

B Gate Elimination

684 Most of the proofs in this paper involve arguments by gate elimination: we take a circuit,
 685 substitute a subset of inputs with constants, and then eliminate gates according to a set of
 686 basic simplification rules. This is illustrated in Figure 4.



■ **Figure 4** An example of applying the passing simplification $1 \wedge \gamma \rightarrow \gamma$. Notice that γ inherits the fanout from α , and α can then be garbage collected.

687 Towards algorithms for the *f*-Simple Extension Problem, we fix a concrete encoding of
 688 these circuit-manipulation steps. Gates γ are identified by natural numbers. We have one
 689 book-keeping manipulation: *garbage collection* deletes a gate γ with no outgoing wires; i.e,
 690 $\text{fanout}(\gamma) = 0$. A garbage collection step is encoded by $\langle \text{Gc}, \gamma \in \mathbb{N} \rangle$.

691 The main *gate elimination* rules are organized into four categories in Table 3, according
 692 to how they impact fanout. All these rules (i) eliminate at least one logic gate and (ii) have
 693 no effect on the function computed by a circuit C , because they are Boolean identities.

694 A gate elimination step is encoded by the tuple $\langle \text{GE}, r \in 17, b : \mathbb{N} \rightarrow 7 \rangle$ where r identifies
 695 a rule and b is a “binding” that maps gates of C to gates of the circuit *pattern* on the left
 696 hand side of rule r . Each pattern is a well-formed Boolean formula and thus has a *main*
 697 *connective* α in the standard sense. To apply a rule, examine the right hand side: if it is
 698 ■ **a constant** $c \in \{0, 1\}$: delete all incoming wires to α and change the type of α to c .
 699 ■ **a matched node (i.e., γ)**: redirect all wires reading α to read from γ instead.

700 Note that the identifier of α **never** changes; only its type and incident wires. Depending
 701 on the initial fanout of each gate involved in the pattern, applying a rule could totally
 702 disconnect some gate(s) and leave the circuit in a state that needs garbage collection. We
 703 introduce notation for applying sequences of these steps to circuits, and define composed
 704 circuit manipulations that are “well behaved” with respect to specific circuits.

705 ► **Definition 8.** A simplification is a sequence of gate elimination and garbage collection
 706 steps. If λ is a simplification and C is a circuit, write $\lambda(C)$ to denote the new circuit obtained
 707 by applying each step of λ to C in order. If a single step of λ fails to apply in C , then fix
 708 $\lambda(C) = C$ so that invalid λ for C are idempotent by convention. A simplification λ is called

■ **Table 4** Changes to fanout after each type of gate elimination step.

Fixing	Passing	Resolving	Pruning
$\text{fo}'(\kappa) = \text{fo}(\kappa) - 1$	$\text{fo}'(\kappa) = \text{fo}(\kappa) - 1$	$\text{fo}'(\alpha') = \text{fo}(\alpha)$	$\text{fo}'(\gamma) \geq \text{fo}(\gamma) + \text{fo}(\alpha) - 2$
$\text{fo}'(\gamma) = \text{fo}(\gamma) - 1$	$\text{fo}'(\gamma) = \text{fo}(\gamma) + \text{fo}(\alpha) - 1$	$\text{fo}'(\gamma) = \text{fo}(\gamma) - 1$	$\text{fo}'(\alpha) = 0$
$\text{fo}'(\alpha) = \text{fo}(\alpha)$	$\text{fo}'(\alpha) = 0$	$\text{fo}'(\neg) = \text{fo}(\neg) - 1$	$\text{fo}'(\neg) = \text{fo}(\neg) - 1$

- 709 ■ terminal for C if, for every λ' that extends λ by one additional gate elimination or garbage
 710 collection step, $\lambda(C) = \lambda'(C)$, and/or
 711 ■ layered for C if the depth of **binary** gates binding to α in each step is non-decreasing.

712 Simplifications formalize every sequence of circuit-manipulation steps except for sub-
 713 stitution. They change the function computed by a circuit if and only if some input gate
 714 is garbage-collected. Simplifications suffice to impose convenient structural properties on
 715 arbitrary circuits.

- 716 ▶ **Definition 9.** A circuit C is normalized or in normal form if
 717 1. C is constant-free or C is a single constant,
 718 2. every gate in C has a path to the output, and
 719 3. no sub-circuit of C matches the left hand side of a gate elimination rule.

720 Any terminal simplification suffices to put a circuit C in normal form, and it straight-
 721 forward to see that the number of constants in C lower-bounds the number of eliminated
 722 gates. We require more: every circuit C can be normalized by a layered simplification, and
 723 the number of eliminated gates is lower-bounded by the cumulative fanout of constants in C .

724 ▶ **Lemma 10.** For any well-formed circuit C with q constants that have total fanout ℓ , there is
 725 a terminal and layered simplification λ such that $\lambda(C)$ is a single constant or $|\lambda(C)| \leq |C| - \ell$.

726 **Proof.** We update two potential functions as C is simplified: ϕ_t , the cumulative fanout of
 727 constants in C and μ_t , the number of binary gates eliminated after t manipulations. Since
 728 a circuit is normalized only when it is a single constant or $\phi_t = 0$, it suffices to exhibit a
 729 terminal layered simplification λ such that $\mu_t \geq \ell$ if $\phi_t = 0$.

730 Sort the gates of C by depth (breaking ties arbitrarily) to fix a total order on gates.
 731 This ordering remains consistent throughout the entirety of simplification. Constructing λ is
 732 straightforward: apply gate elimination rules in depth-order (by α) from the input gates of
 733 the circuit “up”, garbage collecting any disconnected gate(s) immediately afterwards so only
 734 gates with a path to the output remain.

735 To update ϕ_t , we enumerate how fanout changes for the possible gates that may appear
 736 in each rule: the main connective α , a matched node γ , a constant κ , and a negation gate
 737 \neg . Write $\text{fo}(\cdot)$ for the fanout of a gate before rule application, and $\text{fo}'(\cdot)$ for the fanout of
 738 a gate afterwards. For example, in Figure 4, we have $\text{fo}'(\alpha') = 0$, $\text{fo}'(\kappa) = \text{fo}(\kappa) - 1$, and
 739 $\text{fo}'(\gamma) = \text{fo}(\gamma) + \text{fo}(\alpha) - 1$. We display the fanout-updates for each rule type in Table 4.

740 Because α has a path to the output, $\text{fo}(\alpha) \geq 1$. Thus, each rule application reduces ϕ_t by
 741 at most 1, even when γ matches a constant (as in Figure 5). Any reduction in ϕ_t by 1 is
 742 accompanied by a corresponding increase in μ_t . Furthermore, observe that any subsequent
 743 garbage collection steps only increase μ and never reduce the ϕ . Any β that is garbage
 744 collected cannot read a constant: β would be the main connective for a rule application lower
 745 in the circuit than α . Hence if $\phi_t = 0$, we must have $\mu_t \geq \ell$.

746 Lastly, always choosing the depth-maximal α guarantees that our simplification is layered.
 747 This follows from the fact that rule applications only introduce new opportunities for gate
 748 elimination whose main connectives are shallower in the circuit. \blacktriangleleft

749 To finish capturing circuit manipulation, we encode a variable substitution step by the
 750 tuple $\langle \text{SUB}, v \in \{x, y\}, i \in \mathbb{N}, c \in \{0, 1\} \rangle$ where v identifies the target set of variables (base
 751 x 's or extension y 's), i gives the variable number, and c is the value to be substituted. Apply
 752 a single substitution $\langle \text{SUB}, v, i, c \rangle$ and to the circuit C by changing the type of every v_i -gate
 753 γ to the given constant c while **leaving the identifier of each γ intact**, exactly as in the
 754 application of a fixing rule.

755 Substitution *always* changes the function computed by C , restricting its domain to a
 756 subcube. Additionally, C remains well-formed after any substitution, because input gates
 757 have fanin 0. However, C is *never* in normal form immediately after a substitution because
 758 it introduces a constant. So we generalize simplifications by allowing for substitution steps.

759 **► Definition 11.** A restriction is a sequence of substitution, gate elimination, and garbage
 760 collection steps. Restrictions generalize simplifications, so we extend notation and conventions
 761 accordingly: $\rho(C)$ denotes the result of applying restriction ρ to circuit C , and invalid
 762 restrictions for C are idempotent by convention.

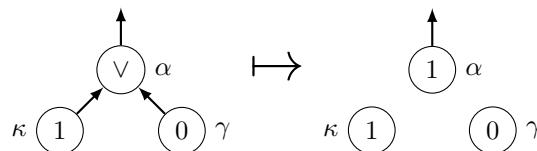
763 The categories of *terminal* and *layered* simplifications apply immediately to restrictions,
 764 because they explicitly reference only gate elimination or garbage collection steps. Thus,
 765 restrictions are terminal and/or layered only with respect to how they simplify and **not** how
 766 they substitute. When applying a restriction ρ to a Boolean function instead of a circuit, we
 767 simply ignore the additional simplification steps (if any).

768 C Structural Properties of Optimal Simple Extension Circuits

769 In this section we characterize the structure of optimal simple extension circuits. The main
 770 result is a *Y-trees decomposition* (Theorem 19), summarized below.

771 **► Theorem (Informal).** In any optimal circuit for a simple extension, extension variables
 772 occur in isolated read-once formulas (Y-trees) that depend only on extension variables.

773 **► Remark 12.** From this point onward, we exclusively consider the DeMorgan basis \mathcal{D} .
 774 The same arguments show an identical decomposition theorem in \mathcal{R} . In fact, \mathcal{R} is simpler.
 775 Negations cannot be involved in any of our restrictions with keys, since Lemma 10 removes
 776 at least m binary gates from the circuit and no simplification steps introduce negations.
 777 Therefore, the removal of any negations would surpass the budgeted additional m gates in
 778 our complexity measure. Consequently, each Y-tree in an optimal \mathcal{R} simple extension circuit
 779 is not only a read-once formula, it is also monotone.



775 **Figure 5** An application of a pruning rule where γ itself is a constant. Since $\text{fo}(\alpha) \geq 1$, we have
 $\phi_{t+1} = \phi_t + \text{fo}'(\alpha) - 2 = \phi_t + \text{fo}(\alpha) - 2 \geq \phi_t + 1 - 2 = \phi_t - 1$.

780 **C.1 Restrictions With “Speed Limits” on Gate Elimination**

781 First we construct restrictions that are guaranteed to eliminate the gates of an optimal
 782 simple extension circuit as “slowly” as possible: exactly one costly logic gate is eliminated for
 783 each substituted variable. Structural information is then obtained by “watching” these slow
 784 restrictions operate. We begin by establishing basic properties of optimal simple extension
 785 circuits. First, combining normalization with the requirement that simple extensions are
 786 non-degenerate functions yields

787 ▶ **Corollary 13** (Extension Variables are Read-Once). *In any optimal circuit for a simple
 788 extension, the fanout of each extension variable is exactly one. Furthermore, if an extension
 789 is negated, this negation has fanout exactly one.*

790 If any extension variable has fanout greater than one, substituting a key and normalizing
 791 (Lemma 10) would eliminate more than m gates. This leads to a contradiction: the resulting
 792 circuit computing f would have size less than $CC(f)$. Generalizing this observation, we
 793 obtain a short list of feasibly-checkable properties that guarantee a given circuit is the optimal
 794 circuit of a simple extension in Lemma 14.

795 Essentially, the existence of a circuit G computing g with size $CC(f) + m$ that (1) is
 796 not “trivially sub-optimal” and (2) not “trivially degenerate” witnesses that g is a Simple
 797 Extension of f . This is not immediate; such a circuit does not necessarily *guarantee* non-
 798 degeneracy of g and that $CC(g) = CC(f) + m$ as G could admit non-trivial simplifications.
 799 However, non-degeneracy of f implies that such straightforward witness circuits suffice.

800 ▶ **Lemma 14.** *Let $f \in \mathcal{F}_n$ be non-degenerate and suppose $g \in \mathcal{F}_{n+m}$ is an arbitrary extension
 801 of f . If there exists a normalized circuit G computing g such that*

- 802 1. $|G| = CC(f) + m$,
 - 803 2. G reads each base variable at least once, and
 - 804 3. G reads each extension variable exactly once,
- 805 then g is a simple extension of f and G is an optimal circuit for g .

806 **Proof.** Let functions f, g and circuit G be as specified in the lemma. If g is non-degenerate
 807 in all variables, then G must be an optimal circuit for g — otherwise we could restrict G
 808 with any key to f in g and contradict the circuit complexity of f . So in this case g is indeed
 809 a simple extension of f , and G is optimal. Suppose now (towards contradiction) that g is
 810 degenerate with respect to some set of extension variables D .

811 We proceed by reverse induction starting with base case $|D| = 1$. Let y_i be the unique
 812 degenerate variable. By definition of degeneracy, $g|_{y_i=0} = g|_{y_i=1}$. Thus, there are keys to f
 813 in g with both $y_i = 1$ and $y_i = 0$. Therefore, we can substitute y_i to eliminate ≥ 1 costly
 814 logic gate α of G with a *fixing rule*. The matched gate γ loses a wire to α , so it may become
 815 disconnected. Run garbage collection recursively starting at γ , until no more fanout-0 gates
 816 exist in G , and call the resulting circuit G' .

817 Because y_i is the *only* degenerate variable, no other input gates can be disconnected by
 818 garbage collection after substituting into y_i (though some logic gates may be eliminated). So
 819 G' is a well-formed circuit with constant fanout ≥ 1 and size $|G'| \leq |G| - 1$. Furthermore,
 820 G' computes function g' , an $(n + m - 1)$ -variable extension of f , because the keys to f in
 821 g matching one setting of y_i are preserved in g' . Now substitute the remaining $(m - 1)$
 822 extension variables of G' according to one of these keys to f in g' and normalize (Lemma 10)
 823 to obtain a circuit F^* that either

- 824 1. has at most $|G'| - (m - 1) + 1 < CC(f)$ gates, or
- 825 2. computes a constant function.

826 Both cases yield a contradiction; either to the circuit complexity or non-degeneracy of f .

827 Now suppose $|D| \geq 1$. Because all y -variables in D are degenerate, there are keys for all
 828 possible settings of them. So we reduce to the base case by substituting $|D| - 1$ extension
 829 variables such that, for each variable, exactly one costly logic gate is eliminated by a *passing*
 830 *rule*. Passing rules never disconnect the matched γ . This leaves a single degenerate y -variable
 831 in the new function g'' , an $(n + m - |D| + 1)$ -variable extension of f , computed by circuit
 832 G'' obtained by normalization. G'' and g'' are now exactly as specified in the statement of
 833 this Lemma, except for the guarantee that g'' has a unique degenerate extension variable.
 834 Therefore the base case with $|D| = 1$ applies to G'' and g'' , concluding this proof. \blacktriangleleft

835 We will want to substitute key bits one by one to better analyze intermediate circuits.
 836 This analysis lends itself to induction only if the intermediate circuits themselves are optimal
 837 circuits for intermediate simple extensions. This motivates the following special class of
 838 restrictions.

839 **► Definition 15 (All-Stops Restrictions).** *Let C denote an arbitrary circuit with $n + m$ input
 840 variables. A restriction ρ that substitutes m variables is all-stops for C if, for each $i \in m$,
 841 there is a prefix ρ_i of ρ such that $\rho_i(C)$ is an optimal circuit for a simple extension of the
 842 function computed by $\rho(C)$ on $(n + m - i)$ variables.*

843 If a restriction is all-stops, then exactly one binary gate is eliminated per substitution.
 844 Since each extension variable (or its negation) is read by a single binary gate, it is
 845 straightforward to analyze the simplifications that occur.

846 **► Claim 16 (Simple Simplifications).** Simplifications between substitutions in all-stops
 847 restrictions are *simple*, i.e. after substitution, the following gate elimination rules are applied
 848 in this exact order: a constant negation (if necessary), a passing rule, and lastly a double
 849 negation (if necessary).

850 The sole binary gate cannot be eliminated via a fixing rule, as otherwise the circuit is
 851 not constant free and must either become constant or we could eliminate more costly gates.
 852 These highly-structured manipulations will help us build up a robust structure for optimal
 853 simple extension circuits in the next subsection. However, we must first show that such
 854 restrictions even exist. We surpass this goal: we construct one that is also layered.

855 **► Lemma 17.** *Let $f \in \mathcal{F}_n$ and suppose $g \in \mathcal{F}_{n+m}$ is a simple extension of f . For any
 856 optimal circuit G computing g , there is an all-stops restriction ρ for G such that*

- 857 1. ρ is terminal and layered, and
- 858 2. $\rho(G)$ is an optimal circuit computing f .

859 **Proof.** Let Boolean functions f, g and circuit G be as in the Lemma. Sort the binary gates
 860 of G by depth (breaking ties arbitrarily) to fix a total order on gates. This ordering remains
 861 consistent throughout the entirety of our proof. Denote by $K \subseteq \{0, 1\}^m$ the set of all keys to
 862 f in g . Normalize G to eliminate double negations — no other rules can apply because G is
 863 optimal (Lemma 10). Record these initial steps in ρ_0 , which we then iteratively extend to
 864 the desired all-stops restriction.

865 Take y_i , read by the maximal in G . Such y_i are well-defined because G reads all extension
 866 variables exactly once (Lemma 14) and so each y_i has a unique depth in G . Consider the
 867 subcircuit around y_i : denote by α the **binary** main connective that reads $(\neg)y_i$ and by γ the
 868 sibling of $(\neg)y_i$ (the “matched gate” in elimination rules). Now let $K' \subseteq K$ be the subset of
 869 keys such that substituting y_i according to any $k \in K'$ would eliminate α with a passing
 870 rule.

871 If K' is non-empty, then substitute y_i according to any key in K' and normalize the
 872 resulting circuit. Record these steps in a restriction ρ_1 that extends ρ_0 . The resulting circuit
 873 $G' = \rho_1(G)$ is in normal form, reads each base variable exactly as many times as G did, and
 874 reads each remaining extension variable exactly once. Therefore, the function computed by
 875 G' is a simple extension of f on $(n + m - 1)$ variables, and G' is an optimal circuit (Lemma
 876 14). By construction, ρ_1 is layered and terminal, so we will continue extending ρ_1 by selecting
 877 a depth-maximal extension variable in G' and re-starting this case analysis.

878 If K' is empty, consider cases depending on the type of γ . Suppose towards contradiction
 879 that γ is not an extension variable or the negation of an extension variable; in this case
 880 there is no y_j with a path to γ because we selected a y_i of maximal depth. Substitute y_i
 881 according to any key in K , and observe that we obtain a circuit with total constant-fanout
 882 exactly $\text{fo}(\alpha) \geq 1$ after applying a fixing rule. Then substitute all other extension variables
 883 according to the same key: the resulting circuit G'' has total constant-fanout $\text{fo}(\alpha) + m - 1$.
 884 Normalizing, we contradict either the circuit size or non-degeneracy of f (exactly as in the
 885 proof of Lemma 16).

886 Therefore, if K' is empty, we must have that γ is $(\neg)y_j$ for some $j \neq i$ — a *layer
 887 tie* between extension variables. Thus, a restriction will be layered regardless of which
 888 substitution (into y_i or y_j) is made first. Using the particular structure of this sub-circuit
 889 (i.e., “ $(\neg)y_j \alpha (\neg)y_i$ ” where α is the main binary connective) we construct a key that sets
 890 y_j to eliminate α with a passing rule while preserving the rest of K . The idea is to extract
 891 information from G after y_i is substituted according to any key in K . Such substitution
 892 mutates the sub-circuit around y_i in G . If we can *identically mutate* G after setting y_j to
 893 eliminate α by passing *first*, then we are done. The details of this construction follow.

894 Purely to inspect the results, substitute y_i in G according to any key in K , and observe
 895 that we obtain a circuit G' with total constant fanout exactly $\text{fo}(\alpha)$ after applying a fixing
 896 rule. Furthermore, the function computed by G' is an $(m - 1)$ -input extension of f where
 897 α has been substituted with a particular constant value $c_i \in \{0, 1\}$ and the variable y_j is
 898 disconnected from the input (and thus degenerate). This constant c_i is all the information
 899 we need.

900 Returning to G , there *must* exist a substitution $s_j \in \{0, 1\}$ for y_j that eliminates α via a
 901 passing rule: this follows immediately by inspecting the truth tables of binary $\{\wedge, \vee\}$ and
 902 case analysis on the occurrence of a negation gate between y_j and α . Extend ρ by first
 903 substituting s_j for y_j in G and normalize. The resulting circuit G'' passes all wires reading
 904 α to $(\neg)y_i$ and loses exactly one costly gate. Again by inspection, we can substitute y_i with
 905 some value $s_i \in \{0, 1\}$ such that the wires reading $(\neg)y_i$ read the constant c_i — identical to
 906 the subcircuit in G' . Thus, G' computes an $(m - 1)$ -input extension g_j of f witnessed by
 907 the key $\{y_j \mapsto s_j\}$. Extend the working restriction ρ_1 by first $\{y_j \mapsto s_j\}$ and then $\{y_i \mapsto s_i\}$,
 908 recording normalization steps in between and afterwards.

909 Finally, observe that G' meets all the preconditions of Lemma 14 and so g_j is a simple
 910 extension of f and G' is an optimal circuit computing g_j . The proof concludes by iterating
 911 this case analysis on the set of keys and depth-maximal extension variables until all extension
 912 variables are eliminated. ◀

913 C.2 Y-tree Decomposition

914 Equipped with layered all-stops restrictions, we can now inductively prove that optimal
 915 simple extension circuits have the following nice structure: each extension variable occurs
 916 in an isolated read-once subformula called a *Y-tree* that depends only on other extension
 917 variables, and the output of these read-once formulas is read by a single costly gate called a

918 combiner. Formally,

919 **► Definition 18 (Y-Tree Decomposition).** Let G be a circuit with two distinguished sets
 920 of inputs: base variables X and extension variables Y . We say a triple $\langle \delta, b, T \rangle$, where
 921 δ —referred to as a combiner—is a binary gate in G , bit $b \in \{0, 1\}$ designates an input of
 922 δ , and T is a sub-circuit of G rooted at the b child of δ , is admissible if the following local
 923 conditions are met:

- 924 1. Each T is a read-once formula in only extension variables Y .
 925 2. Each T is isolated in G — gate γ is the unique gate reading from T , and it only reads
 926 the root of T .
 927 3. The sub-circuit of G rooted at the $\neg b$ child of γ contains at least one X variable.

928 A Y-Tree Decomposition of G is a set of admissible triples which are non-intersecting,
 929 that is, each $y_i \in Y$ appears in at most one T . The size of a decomposition is the number of
 930 tuples present in the decomposition. The weight of a Y-tree decomposition is the number of
 931 extension variables that are read in some T . We say a Y-tree decomposition is total if its
 932 weight is $|Y|$, i.e. every extension variable appears.

933 We first remark that the binary gates spread across the read-once formulas and combiners
 934 in a total decomposition account for all m binary gates eliminated when substituting and
 935 simplifying with a key.

936 **► Theorem 19.** If G is a minimal circuit for a simple extension, then G has a total Y-tree
 937 decomposition.

938 **Proof.** We proceed via induction over m , the number of extension variables. When $m = 0$,
 939 the statement is vacuously true: the empty Y-tree decomposition is total for any optimal
 940 circuit of the base function.

941 Assume the statement holds for any simple extension with $k - 1$ extra variables. Let G_k
 942 be an optimal circuit for g_k , some simple extension of a function f , with k extension variables.
 943 By Lemma 17, there exists an all-stops layered restriction ρ such that $\rho(G_k)$ is optimal for f .
 944 By definition, there exists a prefix ρ_1 of ρ such that $G_{k-1} = \rho_1(G_k)$ is an optimal circuit for
 945 a simple extension of f with $k - 1$ extension variables. Without loss of generality, assume y_k
 946 is the variable substituted and eliminated by ρ_1 . By our inductive hypothesis, G_{k-1} admits
 947 a total Y-tree decomposition, \mathcal{Y}_{k-1} . We will show how to add to/modify \mathcal{Y}_{k-1} to obtain a
 948 total Y-tree decomposition for G_k by carefully considering the steps of ρ_1 .

949 By Corollary 16, ρ_1 is exactly the following sequence: a single substitution, (possibly) a
 950 constant negation, a passing rule, and (possibly) a double negation elimination. Consider
 951 this passing rule, and denote by α its the main connective, κ its constant, and γ its matched
 952 node. Observe that $(\neg)y_k$ is κ since, after substitution (and possibly constant negation), it
 953 is the only constant in the circuit. Let $(\neg)\beta$ be the matched node γ , i.e. the other input
 954 to α . We remark that ρ_1 only impacts the local neighborhoods of nodes adjacent to α ; any
 955 triples of \mathcal{Y}_{k-1} not involving these nodes are still admissible in G_k . We modify \mathcal{Y}_{k-1} in the
 956 following ways, depending on whether β is present in any triples.

957 **Adding a Triple:** If β is not present in any triple, we argue that the triple $\langle \alpha, b, T' = (\neg)y_i \rangle$,
 958 where b denotes which input of α is $(\neg)y_i$, can be added to \mathcal{Y}_{k-1} . It is easy to see this
 959 triple is admissible: since ρ is layered, β can only depend on X variables, else there are
 960 deeper nodes reading extension variables that must be eliminated first. However, we
 961 must check that all triples of \mathcal{Y}_{k-1} remain admissible in G_k . The only nodes of \mathcal{Y}_{k-1}
 962 possibly impacted from G_k to G_{k-1} are combiners, since only those can read $(\neg)\beta$ in
 963 G_{k-1} . However, these combiners still fulfill the third condition in G_k : the sub-circuit

964 rooted at $(\neg)\alpha$ still depends contains X variables since $(\neg)\alpha$ reads $(\neg)\beta$. Hence all of
 965 these triples are admissible, and are non-intersecting—forming a total Y decomposition
 966 for G_k .

967 **Modifying a Triple:** It is not hard to see that the non-intersecting requirement enforces that
 968 β appear in at most one triple. Furthermore, if β is present in some triple, then it must
 969 be an extension variable: if it is an interior binary gate of some tree T , then there are
 970 deeper binary gates than α that read extension variables which are eliminated later in
 971 the layered ρ . When β is present in some triple of \mathcal{Y}_{k-1} , we will need to modify its tree
 972 to include y_k and α

973 Let $t = \langle \delta_i, b_i, T_i \rangle$ be the triple from \mathcal{Y}_{k-1} that includes β . Not only is t inadmissible in
 974 G_k , it is not even well-formed: wires reading nodes of T_i in G_{k-1} are actually reading
 975 $(\neg)\alpha$ in G_k . As the modifications to G_k by ρ_1 are local, every other triple in \mathcal{Y}_{k-1} remains
 976 admissible in G_k . We simply need to incorporate $(\neg)\alpha$ and $(\neg)\gamma$ into the triple, ensuring
 977 the first two conditions are met. Observe that there is only one node reading $(\neg)\alpha$,
 978 as otherwise the fanout of $(\neg)\beta$ will have greater than one fanout in G_{k-1} , violating
 979 Corollary 13. We modify t in two ways, depending on which gate in the triple is reading
 980 it.

981 **α disconnects δ_i from T_i :** If δ_j reads $(\neg)\alpha$, then observe it, not the root of T_i , is the
 982 b_i child of δ_j . However, the sub-circuit T' rooted at $(\neg)(\alpha)$ is a read-once formula in
 983 only extension variables. Replacing T_i with T' in t repairs the triple and produces a
 984 total decomposition.

985 **α disconnects β inside T_i :** If a node in T_i reads $(\neg)\alpha$ in G_k , then T_i is not actually a
 986 well-formed sub-circuit of G_k . However, the sub-circuit T' rooted at the b_i child of
 987 δ_i is still read-once formula over extension variables, once we include $(\neg)\alpha$ and $(\neg)y_k$.
 988 Hence $\langle \gamma_j, b_j, T' \rangle$ can replace t to produce a total decomposition \mathcal{Y}_k .

989

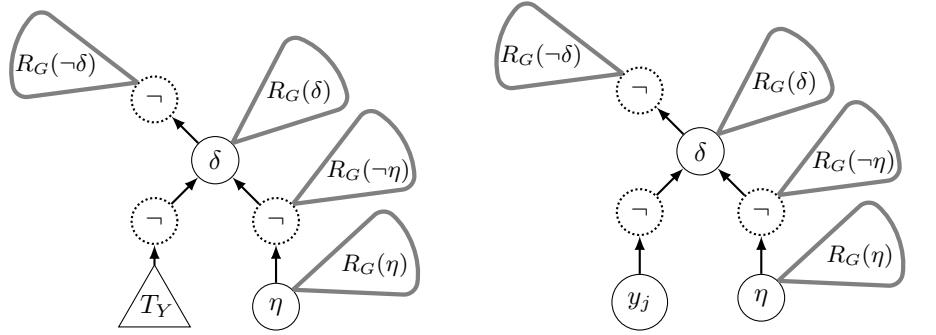
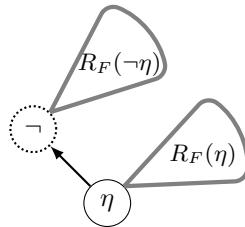
990 D The f -Simple Extension Problem is Fixed-Parameter Tractable

991 In this section we build a polynomial time algorithm for the XOR-Simple Extension Problem.
 992 By Lemma 14, it suffices to find a normalized circuit for g of size $CC(f) + m$ which reads
 993 every extension variable.

994 For exposition, recall the framing of encoding simple circuit extensions from Section 1.4.2:
 995 suppose g is a simple extension of f and Alice knows G , an optimal circuit for g . Alice can
 996 obtain an optimal circuit F computing f by simply restricting the y -variables of G with a
 997 key and performing gate elimination. Now consider the following communication problem:
 998 Bob knows F , and Alice would like to send him G using as few bits as possible. Because g is
 999 a simple extension of f , Alice can compute the Y -tree decomposition of optimal circuit G .
 1000 The idea is to send Bob a sequence of instructions that tell him exactly how to graft each
 1001 Y -Tree of G onto the gates of F .

1002 D.1 Grafting Y -Trees: Key Ideas & Structural Properties

1003 We begin by illustrating the “grafting” idea for the algorithm. First consider the case where
 1004 there is only a single Y -tree T_Y in the decomposition of G . Then there must be some
 1005 costly gate η — an *origin* already present in F — that is combined with T_Y in G . Our
 1006 decomposition theorem shows that every possible arrangement of this *graft* is depicted in

(a) Before any extension variable restrictions (b) All extension variables restricted except y_j Figure 6 The local neighborhood of a combiner δ and Y -tree T_Y grafted on an origin η .Figure 7 The origin η after the Y -tree has been pruned.

1007 Figure 6, which shows the local neighborhood⁷ of the single Y -tree in G .

1008 In Figure 6, both δ and η represent costly gates that *must* be present, the dotted negations
 1009 represent NOT gates that *may* be present, and the cones represent connections to the rest
 1010 of G . The notation $R_G(\beta)$ means “the set of costly gates that read gate β in circuit G .”
 1011 These sets are depicted by shaded cones, because at least one of them must be non-empty —
 1012 otherwise, G would not be an optimal circuit — but we do not know which. Note how the
 1013 Y -tree and potential negation atop it are *isolated* from the rest of the circuit, except for
 1014 connections via the *combiner* gate δ . We will describe in some detail how this single graft
 1015 can be transmitted and sketch the issues involved in efficiently coding *all* grafts and Y -trees
 1016 for Bob.

1017 First, Alice applies gate elimination to G using a prefix of a terminal and layered all-stops
 1018 restriction (Lemma 17), eliminating all but one of the y -variables in T_Y . Because T_Y is an
 1019 isolated formula in G , a single variable y_j is left in G at the end of this process: the local
 1020 neighborhood transforms from Figure 6a to Figure 6b. Crucially, all gates outside T_Y are
 1021 unaffected. Now, Alice runs a final step of gate elimination, substituting y_j according to the
 1022 key. The result will be as depicted in Figure 7: the local neighborhood of η in F . The key
 1023 observation is that *Bob has perfect knowledge of this structure* — it is simply a sub-circuit
 1024 of F . If Alice can send (1) an identifier for η (2) a “diff” between the neighborhood of η in
 1025 F compared to G (Fig. 6b vs. 7) and (3) a description of T_Y this would suffice for Bob to
 1026 efficiently transform F into G .

1027 The most straightforward protocol would send $O(\log(\#gates(F)))$ bits to identify η for
 1028 Bob. This is too expensive if there is more than one Y -tree in G . Recall that we can only

⁷ Think of this as “zooming in” to inspect one of the shaded circles in Figure 2.

23:28 Simple Circuit Extensions for XOR in PTIME

1029 tolerate runtime of $2^{O(n+m)}$ and intend to brute-force all possible codes. There could be
 1030 as many as m Y-trees with a single variable each and thus m origins, so brute-forcing this
 1031 simple code would require time $2^{O(m \log(n)+n)}$ for $\#\text{gates}(F) = O(n)$ — super-polynomial in
 1032 $2^{(n+m)}$ and therefore unacceptable.

1033 Instead, Alice can send a $\#\text{gates}(F)$ -bit origin indicator vector χ , where χ_i is 1 if gate i
 1034 of F is the origin of some Y-tree. It is feasible to brute-force these vectors in $2^{O(n)}$ -time for
 1035 any possible number of origins given a linear upper bound on the circuit size of f . Returning
 1036 to the case where G has a single Y-tree, Bob identifies η by reading the single 1-bit of χ . For
 1037 the local neighborhood of η , the following information must be transmitted to summarize
 1038 the “diff” between F and G :

- 1039 1. The costly functions computed by gates η and δ ,
- 1040 2. presence or absence of each possible NOT gate depicted in Figure 6b,
- 1041 3. whether η is connected to the left or right input of δ ,
- 1042 4. the description of T_Y , and
- 1043 5. the sets of gates that read from each individual element of the graft, $R_G(\cdot)$.

1044 Items 1 - 3 can be described by a constant-length bitstring, depending only on the enumeration
 1045 of all possible “graft” sub-circuits implied by our characterization of gate elimination. We
 1046 code the exact Y-Tree T_Y (item 4) explicitly for now and eliminate it later. Here, we are
 1047 concerned with how to efficiently code the sets $R_G(\cdot)$ without sending explicit “pointers” to
 1048 nodes of F , which remain too expensive per the discussion of transmitting η above.

1049 To code these wire movements efficiently, Alice will exploit the relationship between
 1050 the gates reading from η in F and the gates reading from η in G as determined by gate
 1051 elimination. Bob knows the contents of $R_F(\eta)$ and $R_F(\neg\eta)$ — the sets of costly gates reading
 1052 from $(\neg)\eta$ in F . Collect the gates that read from the graft, in both G and F :

$$1053 \quad R_G = R_G(\eta) \cup R_G(\neg\eta) \cup R_G(\delta) \cup R_G(\neg\delta)$$

$$1054 \quad R_F = R_F(\eta) \cup R_F(\neg\eta)$$

1055 Observe that $R_G \subseteq R_F$ because during the single run of gate elimination that transforms
 1056 Figure 6b into Figure 7, all the wires reading the eliminated gate δ are “inherited” by η .
 1057 Furthermore, *Bob knows η from χ and thus can reconstruct R_F* , so Alice can identify any
 1058 wire relevant to the graft by coding “the j -th element of R_F .” Here we must apply the
 1059 assumption that optimal circuits for f have at most constant fanout, independent of n , to
 1060 bound the length of these *relative* wire-identifiers by a constant. Thus, Alice can identify
 1061 *exactly which* wires should be moved from η to read $(\neg)\delta$ in G . Inspecting Figure 6b again,
 1062 she can also code *where* they move using constantly many bits, because there are only two
 1063 options: reading from $\neg\delta$ or δ directly.

1064 This discussion has outlined the base case of our encoding/decoding argument, where only
 1065 a single Y-tree is transmitted to Bob. Notice that, if there are multiple *combiner-disjoint*
 1066 Y-trees in G , an essentially identical strategy could encode all these Y-trees. However, reverse
 1067 gate elimination can create somewhat more complex structures: specifically, we can have
 1068 combiners δ_i grafted onto a *distinct combiner* δ_j , instead of a gate η that was present in the
 1069 original circuit F . These *compounded combiners* correspond exactly to the “adding a triple”
 1070 case in the proof that Y-Tree decompositions exist (Theorem 19) where α occurs *between* β
 1071 and an existing combiner.

1072 Even so, Alice can use the fact that every combiner δ_i has a *unique* origin η to identify
 1073 the “first” combiner grafted onto η and instruct Bob to add subsequent η -derived combiners
 1074 in depth-respecting order. We now prove the required properties of origins and combiners.

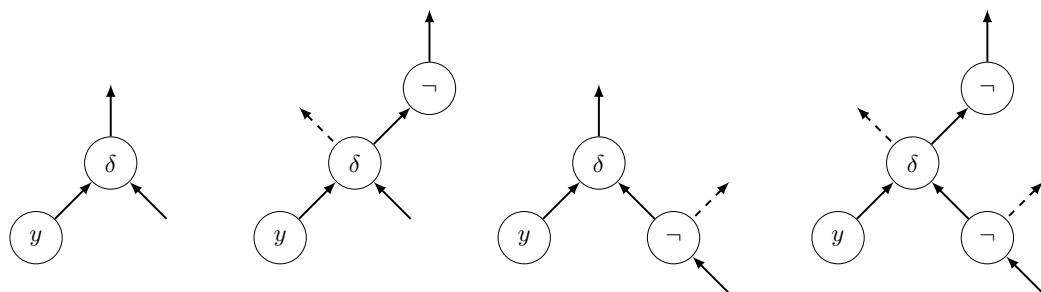
1075 ► **Definition 20** (Original & Originating Gates). Let G and F be circuits, ρ be an all-stops
 1076 restriction, and suppose $\rho(G) = F$. We call a gate β of G original if it is not garbage
 1077 collected by ρ — i.e., if $\beta \in F$. Furthermore, let G have a Y -tree decomposition with elements
 1078 $\langle \delta, b, T \rangle$. The origin of each δ is the depth-maximal original gate η such that X variables
 1079 occur in $G[\eta]$ and there is a path from η to the output of G through δ .

1080 The origin of a combiner can be depth-trivial: a single input gate x_i or the unique output
 1081 gate are both valid origins. Intuitively, if η is the origin of δ , then δ “takes” wires from
 1082 η when it is grafted into the circuit. When the maximum fanout of an optimal circuit is
 1083 constant, this imposes a hard limit on the number of compounded combiners that share the
 1084 same origin.

1085 ► **Lemma 21** (Every Combiner has a Unique Origin). Suppose G is a circuit with Y -tree
 1086 decomposition \mathcal{D} , and let $\langle \delta, b, T \rangle$ be an arbitrary element of \mathcal{D} . Then δ has exactly one
 1087 origin in G .

1088 **Proof.** We argue by induction on the structure of G , exploiting that the DeMorgan basis
 1089 has fan-in two. We will walk “down” the circuit from δ until an original gate is encountered.
 1090 By definition, δ has only two inputs: input b leads to a Y -tree, and input $\neg b$ leads to a
 1091 sub-circuit containing X variables. Thus we must go down the $\neg b$ argument to find the
 1092 origin. Argument $\neg b =$ gate β is either another combiner in the decomposition or not — if β
 1093 is not a combiner, then it is an original gate, and thus unique because the path to β from
 1094 δ was fully determined. β is topologically maximal because it was the first non-combiner
 1095 encountered walking “down” the circuit in topological order. Then, if argument $\neg b$ is another
 1096 combiner, we are done by induction: there is simply another deterministic choice to find a
 1097 sub-circuit where X variables occur, because argument b of β is also a Y -tree. ◀

1098 Finally, observe that there are only constantly-many ways to eliminate a binary gate by
 1099 a simple simplification (Claim 16) as depicted in Figure 8. This follows by brute-forcing all
 1100 possible sequences of simple simplifications around eliminating one costly gate, formalizing
 1101 the idea of a particular “graft” sub-circuit from earlier in this section: call each possible
 1102 realization of sub-circuits a *widget*.



■ **Figure 8** The four possible widgets in a splice code (up to symmetry). The node labeled y represents which child of the combiner δ is the Y -tree. A dotted edge not leading to another node represents one (or more) possible connections to a *costly* gate outside of the widget. A solid edge not leading to another node represents one (or more) guaranteed connections to a *costly* gate outside of the widget.

1103 **D.2 Grafting Y -Trees: Efficient and Explicit Encodings**

1104 Suppose η is a gate in some circuit C , and let the gates $\zeta_1, \dots, \zeta_{\leq \ell}$ read η in C . We use
 1105 η -relative fanout-coding to name another gate β in a circuit C' obtained by transforming C
 1106 by writing an ℓ -bit vector v where:

$$1107 \quad v_i(\beta, \eta) = \begin{cases} 1, & \text{if } \zeta_i \text{ reads } \beta \text{ in } C' \\ 0, & \text{otherwise} \end{cases}$$

1108 Trivially, when $C = C'$ and we fanout-code η relative to itself, the result is $1^{\text{fo}(\eta)} \circ 0^{\ell - \text{fo}(\eta)}$.
 1109 Suitability for fanout-coding is the prime motivation of our requirement that gate identifiers
 1110 are **never** mutated (only recycled or discarded) by circuit manipulation.

1111 ► **Definition 22** (Splice Codes). Suppose F is a circuit with maximum fanout ℓ . A splice code
 1112 E is a sequence of tuples that encode a transformation of F into G , a circuit for a simple
 1113 extension of F . The splice code begins with an **Origin Indicator Vector**: a bitvector of
 1114 length $CC(f)$ where entry i is set to 1 iff gate i of F is an origin. Then, for each origin η ,
 1115 a **sequence of splices** follows — one splice per combiner originating in η . A splice is:

- 1116 1. **Target Gate**: Which gate should be grafted onto? Written as η -fanout-relative code.
- 1117 2. **Selected Wires**: Which wires does the spliced widget take from the target gate? Written
 as ℓ -bit indicator vector, where 1-bits must be a subset of the target gate's code.
- 1119 3. **Widget**: A constant number of bits naming one of constantly-many combiner widgets.
- 1120 4. **Wire Moves**: Map from taken wires taken to gates of the widget: at most $(\ell - 1)$
 constant-length identifiers.
- 1122 5. **Explicit Y -Tree**: A fully specified read-once formula in the Y variables.

1123 ► **Theorem 23** (Splice Codes for Simple Extensions). Suppose $g \in \mathcal{F}_{n+m}$ is a simple extension
 1124 of $f \in \mathcal{F}_n$ and let \tilde{G} be an isomorphism class of minimal circuits for g . Then, there is
 1125 an “unlocked” isomorphism class $UL(\tilde{G})$ of minimal circuits computing f such that, for
 1126 every representative F of $UL(\tilde{G})$, there is a splice code E such that an efficient algorithm
 1127 $\text{Decode}(F, E)$ prints a circuit in the isomorphism class \tilde{G} . The length of E is $O(\ell \cdot |F| \cdot m \cdot$
 1128 $\text{bits}(Y))$, where ℓ is the maximum fanout of F and $\text{bits}(Y)$ is the number of bits required to
 1129 code a Y -tree on m variables.

1130 **Proof.** Take a representative G of the isomorphism class of circuits \tilde{G} with gates named
 1131 such that they are compatible with depth and a topological order. Let \mathcal{D} be the Y -tree
 1132 decomposition of G (Theorem 19) and let ρ be the particular all-stops restriction of G implicit
 1133 in the proof of Theorem 19 such that $F = \rho(G)$ computes f and F is optimal for F . We will
 1134 “reverse” ρ to obtain a circuit isomorphic to G from F .

1135 First, list all the origins in G — it is immediate from the definition and inspecting ρ
 1136 that this is possible. Now, if the set of combiners associated with each origin is of size 1, it is
 1137 clear that the trivial fanout-relative code is used to set the Target Gate for each combiner,
 1138 and the length lower bounds are immediate because the overhead of encoding sequences is
 1139 linear, and all fields of the sequences are linear in ℓ , a constant, or proportional to the size
 1140 of a particular Y -tree. Origin gates are **never** named explicitly; the order of sequences of
 1141 splices suffices to associate them with the appropriate splice-sequence.

1142 Suppose now that some gates of G originate q combiners where $1 < q \leq m$ and fix an
 1143 arbitrary such origin η . To order the splices, perform breadth-first-search starting from
 1144 η in G and observe which wires of η have been “spliced” with which combiners in each
 1145 stop of the all-stops restriction ρ . Using this ordering and the sub-sequences of ρ where
 1146 combiners originating in η are eliminated, observe that at each step there is a set of

1147 maximally-shallow *available combiners* that could be grafted to: those between η and the
 1148 output of the circuit which feed into a gate that used to be fed by η directly.

1149 Each available combiner must be uniquely identified by an η -relative fanout-code, because
 1150 otherwise an intermediate normal circuit ρ would not be size-optimal: we could restrict
 1151 using the key embedded in ρ to find that the same gate must read η twice, which triggers a
 1152 resolving gate-elimination. Therefore, even compound-combiners can be uniquely regenerated
 1153 by splice codes.

1154 To conclude the proof, observe that the isomorphism class of F is exactly $\text{UL}(\tilde{G})$, as
 1155 desired, because all coding operations relied only on being given a circuit isomorphic to F
 1156 whose gates were named in depth-sorted and thus topological order. This is because our
 1157 formalization of circuit manipulation never introduces “fresh” identifiers; it only deletes or
 1158 recycles them. \blacktriangleleft

1159 D.3 The Final Ingredient: Truth-Table Isomorphism

1160 There are two issues with trivial brute-force over splice codes. First, there are too many
 1161 base circuits for XOR_n : there are at least as many optimal XOR_n circuits as there are
 1162 labeled rooted binary trees with n leaves. Let C_n be the n^{th} Catalan number; there are
 1163 $n! C_{n-1} = 2^{\omega(n \log n)}$ labeled rooted binary trees [42]. Similarly, there are $m! C_{m-1}$ explicit
 1164 Y -trees reading all m variables. However, in both expressions, the dominating factorial terms
 1165 $n!$ and $m!$ arise from permuting the labels of the variables. But two circuits which can be
 1166 transformed into one another by permuting inputs compute *truth-table isomorphic functions*.

1167 **► Definition 24** ([30, 3]). *Two functions $f, g \in \mathcal{F}_n$ are truth-table isomorphic if there exists
 1168 a permutation π on $[n]$ such that $g(x) = f(\pi(x))$.*

1169 It is straightforward to connect truth-table isomorphism with permuting circuit inputs.

1170 **► Observation 25.** *The following two statements, the first a universal statement and the
 1171 second existential, describe the relationship between permuting circuit variable labels and
 1172 truth-table isomorphism.*

- 1173 (1) *If a Boolean function $f \in \mathcal{F}_n$ is truth-table isomorphic to another Boolean function $g \in \mathcal{F}_n$
 1174 then **any circuit** for f can be transformed into some circuit for g by relabeling input x_i
 1175 with $x_{\sigma(i)}$ for all $i \in [n]$ using some permutation σ on $[n]$.*
- 1176 (2) *If a **given circuit** for $f \in \mathcal{F}_n$ can be transformed into a circuit for $g \in \mathcal{F}_n$ by relabeling
 1177 input x_i with $x_{\sigma(i)}$ for all $i \in [n]$ using some permutation σ on $[n]$ then f is truth-table
 1178 isomorphic to g .*

1179 **Proof.** We first prove (1). Let π be the witnessing permutation between f and g , i.e.
 1180 $f(x) = g(\pi(x))$. Observe that $f(\pi^{-1}(x)) = g(\pi(\pi^{-1}(x))) = g(x)$. Let F be any circuit for
 1181 f . Let G be the circuit obtained by relabeling each input x_i by $x_{\pi(i)}$. We wish to argue G
 1182 computes g . Observe that evaluating g on input x is the same as evaluating F on $\pi^{-1}(x)$
 1183 since $x_{\pi(\pi^{-1}(i))} = x_i$. Therefore $G(x) = F(\pi^{-1}(x)) = f(\pi^{-1}(x)) = g(x)$.

1184 For (2), fix some optimal circuit F and let σ be the witnessing permutation used to
 1185 relabel F to obtain G , a circuit for g . We have $f(x) = F(x) = G(\sigma^{-1}(x)) = g(\sigma^{-1}(x))$. As
 1186 σ is a permutation on $[n]$, σ^{-1} is also a permutation on $[n]$ and thus f and g are truth-table
 1187 isomorphic. \blacktriangleleft

1188 The implication is that do not need to try every possible base XOR_n circuit or even try
 1189 every explicit splice code. We can take an unlabeled base circuit and unlabeled Y -trees and
 1190 assign variables arbitrarily. We then just need to check whether the function our reconstructed

23:32 Simple Circuit Extensions for XOR in PTIME

1191 circuit computes is isomorphic to g . This is feasible because (rather surprisingly) truth-table
 1192 isomorphism testing can be done in polynomial time.

1193 ▶ **Theorem 26** (Corollary 1.3 of [30]). *Given the truth-tables for two Boolean functions,
 1194 testing whether they are equivalent under permutation of variables can be done in time $c^{O(n)}$
 1195 where c is a constant.*

1196 To this end we formally define “unlabeled” optimal circuits.

1197 ▶ **Definition 27** (Open Optimal Circuit). *A circuit is open if all of its inputs are unlabeled.
 1198 An open circuit is optimal for a Boolean function f if there exists some labeling of its’ inputs
 1199 so that the resulting circuit is an optimal circuit for f .*

1200 D.4 An Efficient Simple Extension Problem Solver for XOR

1201 The following algorithm, when given L , a complete list of representatives from each open
 1202 isomorphism class of optimal circuits for f , decides the f -Simple Extension Problem. By
 1203 “implicit splice code,” we mean a splice code without the Y -trees specified.

Algorithm 2 Ckt-SE-Solver($n \in \mathbb{N}$, $g \in \mathcal{F}_{n+m}$, L)

```

1: Verify  $\exists \rho \in \{0, 1\}^m$  such that  $g|_\rho \equiv f$  and return False if not
2: Verify  $g$  is non-degenerate and return False if not
3: for each open circuit  $F$  in  $L$  do
4:    $s \leftarrow$  number of costly gates in  $F$ 
5:   label the open nodes of  $F$  by an arbitrary permutation of  $x_1, \dots, x_n$ 
6:   for each implicit splice code  $E$  of length at most  $m + s$  do
7:      $d \leftarrow$  number of combiners recorded in  $E$ 
8:     for each  $a_1, \dots, a_d \in \mathbb{N}$  s.t.  $\sum_{i=1}^d a_i = m$  do ▷ Valid distribution of variables to
    $Y$ -trees
9:       for each  $d$ -tuple of read-once formulas with  $a_1, \dots, a_d$  open nodes do
10:          label the open nodes of each read-once formula by an arbitrary permutation
            of  $y$ -inputs
11:          insert the read-once formulas into combiner instructions of  $E$  in lexicographic order
12:           $\tilde{G} \leftarrow \text{Decode}(F, E)$ 
13:          if  $\text{tt}(\tilde{G}) \simeq \text{tt}(g)$  then ▷ Test using the procedure of Theorem 26
14:            return True
15: return False

```

1204 ▶ **Theorem 28.** *Given L is a list with a representative from every optimal open circuit class
 1205 of f , Algorithm 2 decides the f -Simple Extension Problem in time $|L| \cdot 2^{O(\ell(s+m))}$ where ℓ is
 1206 the maximum fanout of any node in any circuit in L and $s = CC(f)$.*

1207 **Proof.** We first prove completeness, i.e. that if g is a simple extension then Algorithm 2
 1208 returns true. By definition of simple extension, the checks in steps 1 and 2 pass. Since g
 1209 is a simple extension, $CC(g) = s + m$; fix any optimal circuit G for g . By Theorem 23,
 1210 there is an explicit splice code \hat{E} and circuit isomorphism class representative \hat{F} such that
 1211 $\text{Decode}(\hat{F}, \hat{E})$ produces a circuit \hat{G} isomorphic to G . Let $\hat{T}_1, \dots, \hat{T}_t$ be the explicit Y -trees
 1212 in \hat{E} . During some iteration of the algorithm (1) the implicit splice code will be consistent
 1213 with E and (2) F and T_1, \dots, T_t , the chosen open read-once formulas, will be isomorphic to

1214 $\text{open}(\hat{F})$, $\text{open}(\hat{T}_1), \dots, \text{open}(\hat{T}_t)$ (where $\text{open}(C)$ is circuit C with its input labels stripped
 1215 away). In this iteration, let F' and E' be the arbitrary explicit completion of the open circuit
 1216 F and implicit splice code E chosen by the algorithm. Let $G' = \text{Decode}(F', E')$ and observe
 1217 $\text{open}(G')$ is isomorphic to $\text{open}(\hat{G})$. Thus there is a permutation of the variables of G' such
 1218 that the resulting circuit is isomorphic to \hat{G} . By part (2) of Observation 25, the function
 1219 computed by G' is truth-table isomorphic to g and thus the algorithm accepts.

1220 For soundness, observe that if the algorithm accepts then it passed step 1 and 2 which
 1221 demonstrate the existence of a key and non-degeneracy of g . Finally in steps 12 and 13,
 1222 the algorithm must have constructed a constant-free circuit of size $s + m$ which computes a
 1223 function truth-table isomorphic to g . Applying part (1) of Observation 25 we can transform
 1224 this circuit into a circuit for g by relabeling inputs. This constant-free circuit of size $s + m$
 1225 for g , in conjunction with the fact f is non-degenerate and the existence of a key, guarantees
 1226 $CC(g) = s + m$ by Lemma 14. Therefore, by definition, g is a simple extension of f .

1227 For the running time, we first observe that steps 1 and 2 take $2^{O(s+m)}$ since the algorithm
 1228 just verifies whether one of the 2^m restrictions yields $tt(f)$ (and $s = \Omega(n)$) and verifies for
 1229 each of the m extension variables there is an assignment where flipping the value of the
 1230 variable changes the output of g . There are then $|L|$ iterations where each run in time
 1231 $2^{O(\ell(s+m))}$ where ℓ is the maximum fanout of any node in any circuit in L as the algorithm
 1232 builds this number of explicit splice codes. The algorithm tries every explicit splice code
 1233 where y -inputs are labeled arbitrarily (say, in increasing order). The number of such codes is
 1234 $\sum_{d=1}^m r(d)$ where $r(d)$ is the number of such splice codes with d combiners. We see

$$1235 \quad r(d) = \sum_{\substack{a_1 + \dots + a_d = m \\ a_i \in \mathbf{N}^+}} \prod_{j=1}^d t(a_j),$$

1236 where $t(a_j)$ is the number of read-once formulas with a_j open nodes.

1237 We first bound $t(a_j)$. A number of read-once formula with a_j open nodes corresponds to
 1238 the number of rooted binary trees where each internal node is labeled \wedge or \vee and each edge is
 1239 weighted 0 or 1 (representing if there is a negation between those two nodes). The number of
 1240 unlabeled rooted binary trees with n leaves is C_{n-1} —the $(n-1)^{\text{th}}$ Catalan number [42]. Thus
 1241 $t(a_j) = C_{a_j-1} \cdot 2^{a_j-1} \cdot 2^{2(a_j-1)+1} = C_{a_j-1} \cdot 2^{2a_j}$ where the latter factors are from labeling the
 1242 internal nodes and edge weights (including the output edge) respectively. Since $C_{a_j-1} < 4^{a_j}$,
 1243 we have $t(a_j) < 2^{5a_j}$ [42]. Since the a_j sum to m , then $\prod_{j=1}^d t(a_j) < 2^{5m} = 2^{O(m)}$. The
 1244 number of solutions to $a_1 + \dots + a_d = m$ where $a_j > 0$ is $\binom{m+d-1}{d-1}$ [8]. Notice that
 1245 $\binom{m+d-1}{d-1} \leq \sum_{i=0}^{m+d-1} \binom{m+d-1}{i} = 2^{m+d-1}$ [8]. Since $k < m$ then this is $2^{O(m)}$. Therefore
 1246 $r(d) < 2^{O(m)}$ and thus the number of explicit splice codes is at most $m2^{O(m)} = 2^{O(m)}$.

1247 Once an explicit splice code is constructed, constructing \hat{G} with the decoder takes
 1248 $\text{poly}(s+m)$ time and testing truth table isomorphism takes $O((s+m)^2) \cdot 2^{O(n+m)} \cdot 2^{O(n+m)} =$
 1249 $2^{O(n+m)}$ as the algorithm has to write the truth-table and then run the algorithm from
 1250 Theorem 26. Since $s = \Omega(n)$ this takes $2^{O(s+m)}$. Overall the running time is therefore
 1251 $|L| \cdot 2^{O(\ell \cdot (s+m))}$. ◀

1252 In general, $|L|$ may be exponential in $|tt(g)|$, ℓ may be $\omega(1)$, and s may be superlinear in
 1253 n . As such Algorithm 2 is not a polynomial time algorithm for the Simple Extension problem
 1254 in general. However, as noted in Corollary 33, these parameters for XOR_n are tractable. This
 1255 yields our main theorem:

1256 ▶ **Corollary 29.** *The Simple Extension Problem with the base function $f = \text{XOR}_n$ is in P*

1257

E Optimal XOR Circuits Are Binary Trees of XOR_2 Sub-Circuits

1258 Algorithm 2 of Section D can only rule out a particular f from showing hardness for
 1259 MCSP via f -SEP when the optimal circuits for f are well-understood. It requires an exact
 1260 characterization of the set of all optimal circuits—a requirement that currently is rarely
 1261 fulfilled.

1262 One of the earliest studied explicit Boolean functions, XOR , is one of the only functions
 1263 for which we even have partial fulfillment of this ornery prerequisite. Recall the definition
 1264 XOR , the parity function.

1265 ► **Definition 30** (XOR). For $x \in \{0, 1\}^n$, $\text{XOR}_n(x) = \begin{cases} 1 & \text{if an odd number bits of } x \text{ are 1} \\ 0 & \text{otherwise.} \end{cases}$

1266 Schnorr proved one of the first explicit circuit lower-bounds on XOR .

1267 ► **Theorem 31** ([39]). XOR_n requires at least $3(n - 1)$ gates in the DeMorgan basis.

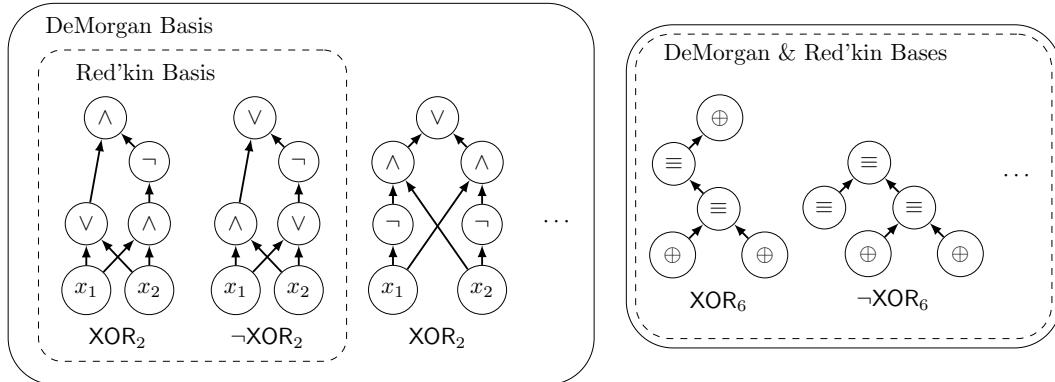
1268 This lower-bound in fact has a matching upper bound and the construction is straightfor-
 1269 ward: take any binary tree with n leaves labeled x_1, \dots, x_n where the $n - 1$ interior nodes
 1270 have been labeled by \oplus and replace the \oplus nodes with any circuit of size 3 that computes
 1271 XOR_2 . Furthermore, since \neg gates do not count towards the circuit size, any circuit for
 1272 XOR_n can easily be transformed into an equal size circuit computing $\neg\text{XOR}_n$ and vice versa.
 1273 Combining these observations yields:

1274 ► **Corollary 32** ([39, 43]). A circuit C computing $(\neg)\text{XOR}_n$ is optimal if and only if $|C| =$
 1275 $3(n - 1)$.

1276 However, this leaves open *how* those $3(n - 1)$ gates can be arranged. Are there optimal
 1277 circuits for XOR that do not follow the upper-bound construction? Previous work showed
 1278 that in \mathcal{R} , all optimal circuits follow this construction: optimal XOR_n circuits are binary
 1279 trees of $(n - 1)$ XOR_2 sub-circuits [25]. In this section, we extend this characterization, as
 1280 seen in Figure 1, to \mathcal{D} .

1281 ► **Theorem** (Informal Statement of Theorem 37). Optimal $(\neg)\text{XOR}_n$ circuits in \mathcal{D} partition
 1282 into trees of $(n - 1)$ $(\neg)\text{XOR}_2$ sub-circuits.

1283 This structural characterization implies the crucial combinatorial parameter bounds that
 1284 are required to apply Algorithm 2 and therefore rule out the possibility of proving hardness
 1285 of MCSP via XOR -SEP.



- 1286 ▶ **Corollary 33.** *The following properties hold for XOR_n , where $n \geq 1$*
- 1287 ■ *The size of optimal circuits computing XOR_n is linear (Corollary 32).*
- 1288 ■ *The maximum fan-out of such circuits is a constant.*
- 1289 ■ *The number of optimal circuits for XOR_n , up to permutation of variables, is $2^{O(n)}$.*

1290 Before we prove our main result of this section, we introduce some auxiliary facts that
1291 we will repeatedly require.

1292 **E.1 Basic Properties of XOR**

1293 We first give two basic facts about $(\neg)\text{XOR}_n$ that are immediate consequences of the definition.

1294 ▶ **Fact 1** *((\neg)XOR is Fully DSR).* XOR_n is fully downward self-reducible, i.e. for any input
1295 $x \in \{0, 1\}^n$, any non-empty sets S and T partitioning $[n]$,

1296
$$\text{XOR}_n(x) = \text{XOR}_2(\text{XOR}_{|S|}(x_S), \text{XOR}_{|T|}(x_T))$$

1297 where $x_S = \{x_i : i \in S\}$ and $x_T = \{x_i : i \in T\}$. Furthermore, this means for any assignment
1298 α_S of variables in x_S , $\text{XOR}_n(x)|_{\alpha_S} = (\neg)\text{XOR}_{|T|}(x_T)$. The same is also true of $\neg\text{XOR}_n(x)$

1299 ▶ **Fact 2** *(All Subfunctions of $(\neg)\text{XOR}$ are Non-Degenerate).* $(\neg)\text{XOR}_n$ not only depends on
1300 all of its inputs but it is also maximally sensitive, i.e. for all $i \in [n]$, for inputs $x \in \{0, 1\}^n$,
1301 $(\neg)\text{XOR}_n(x) \neq (\neg)\text{XOR}_n(x \oplus e_i)$.

1302 Combining Facts 1 and 2, if we substitute for a single variable in a $(\neg)\text{XOR}_n$ circuit
1303 where $n \geq 2$ are guaranteed to get a circuit which computes $(\neg)\text{XOR}_{n-1}$. Applying the tight
1304 version of Schnorr (Corollary 32) we see that subsequent simplification cannot remove more
1305 than three costly gates. Formally,

1306 ▶ **Corollary 34** *(Elimination Rate Limit for Optimal XOR Circuits).* Let C be an optimal circuit
1307 computing $(\neg)\text{XOR}_n$ where $n \geq 2$. Let C' be the circuit after substituting $x_i = \alpha$ for some
1308 $i \in [n]$ and $\alpha = \{0, 1\}$ and applying simplifying. We have that $|C'| \geq |C| - 3$ and C' is not
1309 constant.

1310 We will repeatedly apply this corollary in our proof: deviation from the prescribed
1311 structure will often allow us to substitute and remove more than three distinct binary gates.
1312 The other main source of contradictions will be substitutions and rewrites that disconnect
1313 inputs (violating Fact 2) or that leave inputs with exactly one costly successor. This violates
1314 the fact that XOR_n reads each of its inputs twice.

1315 ▶ **Lemma 35** *((\neg)XOR is Read-Twice (Folklore)).* Let C be a normalized optimal circuit
1316 computing $(\neg)\text{XOR}_n$ where $n \geq 2$. The fanout of every variable C is exactly 2.

1317 ▶ **Remark 36.** In the proofs of this section, we will omit negations whenever reasonable, since
1318 we are more interested in the binary gates which solely contribute to circuit size in \mathcal{D} . We
1319 write α is a *costly successor* to β to mean $(\neg)\beta$ is an input to binary gate α .

1320 **Proof.** Let C be an optimal normalized circuit computing $(\neg)\text{XOR}_n$ for arbitrary n . Suppose
1321 there is a variable x_i whose fanout is not 2. There are two cases: (1) the fanout of x_i is 1
1322 and (2) the fanout of x_i is at least 3.

1323 (1) Take α , the assumed unique costly successor of x_i and let β be the input to α . Let X'
1324 be the set of input variables that β depends on (i.e. that are present in the sub-circuit rooted
1325 at β). Observe that $x_i \notin X'$. Consider the truth-table of the sub-circuit rooted at β and

1326 observe it must be a non-constant function of the variables of X' . If it were constant, then we
 1327 could replace β with this constant and remove α from the circuit via a gate elimination rule,
 1328 reducing the size of the circuit and violating optimality. Therefore, there is an assignment of
 1329 the variables in X' such that if we substitute and simplify, eventually a constant will feed
 1330 into α that allows us to remove it with a fixing rule. This disconnects x_i from the circuit,
 1331 which violates Fact 2 since we did not substitute for x_i and thus the the resulting parity
 1332 function must still depend on it.

1333 (2) Suppose x_i has more than two costly successors. Let α_1, α_2 and α_3 be three of these
 1334 and without loss of generality assume these are indexed in descending depth. Observe that
 1335 $(\neg)\alpha_3$ is not the output of the circuit as otherwise we could substitute x_i to be some constant
 1336 that fixes α_3 and make the circuit constant. This would violate the rate limit on eliminations
 1337 for optimal XOR circuits (Corollary 34). Let β_3 be the costly successor of α_3 and notice
 1338 that, since α_1, α_2 and α_3 are in descending depth order, β_3 is a new distinct gate. Thus if
 1339 we substitute x_i to fix β_3 and simplify, we can remove $\alpha_1, \alpha_2, \alpha_3$ and β_3 with a passing or
 1340 fixing rule applying to β_3 after applying a fixing rule to β_3 . This violates Corollary 34.

1341 Both cases reach a contradiction and therefore every input has two costly successors in
 1342 any normalized optimal circuit computing $(\neg)\text{XOR}_n$. \blacktriangleleft

1343 E.2 Optimal $(\neg)\text{XOR}_n$ Circuits Are Binary Trees of $(\neg)\text{XOR}_2$ Blocks

1344 We now have the tools required to show that binary trees of optimal $(\neg)\text{XOR}_2$ subcircuits
 1345 are the *only* optimal circuits for computing XOR_n . Formally,

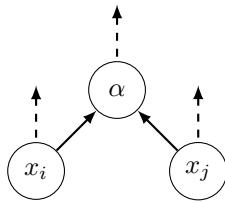
1346 ▶ **Theorem 37.** *Optimal $(\neg)\text{XOR}$ circuits partition into trees of $(\neg)\text{XOR}_2$ sub-circuits —
 1347 even when NOT gates are free. Formally, for every circuit C with the minimum number of
 1348 AND, OR gates computing XOR_n , there is a partition of the gates of C into $(n - 1)$ blocks
 1349 together with a multi-labelling of each wire w in C by tuples $\langle i, t \rangle$ where $t \in \{\text{in}, \text{out}, \text{core}\}$
 1350 describes the role that w plays in block i , such that:*

- 1351 1. *Each block is a three-gate XOR_2 sub-circuit, with distinguished input, output, and core
 1352 wires.*
- 1353 2. *The input wires of every block are also the output wires of a different block or the input
 1354 gates.*
- 1355 3. *Contracting all the core wires of C results in a binary tree.*

1356 The proof will proceed via induction, however most of the work will be in proving that we
 1357 can find a $(\neg)\text{XOR}_2$ block in any XOR_n circuit which we can “peel off” with a single variable
 1358 substitution. The resulting circuit will compute XOR_{n-1} allowing us apply our inductive
 1359 hypothesis in order to get a partition we can lift back up to the original circuit. For this
 1360 reason we separate this out as a lemma.

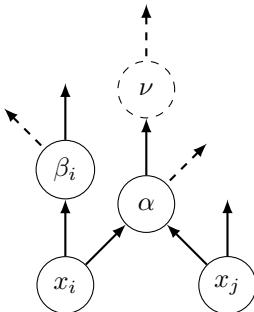
1361 ▶ **Lemma 38.** *Let C be a circuit computing XOR_n for $n \geq 3$. There exists two inputs x_i
 1362 and x_j that feed into a block B in C as described in Theorem 37.*

1363 **Proof.** Let C be an optimal normalized circuit computing XOR_n where $n \geq 3$. We first
 1364 identify two variables which will be inputs to block B (which we will later prove that
 1365 $B \equiv (\neg)\text{XOR}_2$). Let α be a maximum depth binary gate of C . As in the proof of Theorem 31,
 1366 we know that α must read two distinct inputs x_i and x_j for some $i, j \in [n]$ since otherwise
 1367 we can apply a simplification rule and remove α , which contradicts that it is an optimal
 1368 normalized circuit. Our local view of α can be seen in Figure 9, where dashed arrows indicate
 1369 one (or more) adjacent binary gates whose existence has not yet been established.



■ **Figure 9** The local neighborhood of α

1370 By Lemma 35, we know that both x_i and x_j have exactly two costly successors. Let β_i
 1371 be the other successor of x_i . We first observe that neither α nor β_i can be the output of the
 1372 circuit: if they were, some substitution of x_i would fix the output and leave the resulting
 1373 circuit constant, violating Corollary 34. Hence, α and β_i must each feed into at least one
 1374 more costly gate. Let ν be a costly gate fed by α . We remark that ν could be β_i and hence
 1375 in Figure 10, we denote ν with a dashed node until we establish $\nu \neq \beta_i$.



■ **Figure 10** Our view after establishing $\beta_i \neq \alpha$ and neither are the output

1376 We first show that ν is the only successor of α . Towards a contradiction, suppose α also
 1377 feeds other gates besides ν . If it feeds more than one other gate, then substituting x_i to fix
 1378 α immediately eliminates more than three gates. Hence, it can at most feed one more gate
 1379 ν' . In particular, we must analyze two cases depending on whether or not β_i is distinct from
 1380 ν and ν' . These cases can be seen in Figure 11. In both cases, we can eliminate more than 3
 1381 costly gates, violating Corollary 34.

- 1382 1. Assume β_i is distinct from ν and ν' . Fixing α with x_i will eliminate four distinct gates,
 1383 $\alpha, \beta_i, \nu, \nu'$.
- 1384 2. Assume β_i is not distinct from ν and ν' . Without loss of generality, assume $\beta_i = \nu'$.
 1385 Substituting x_i to fix α also fixes β_i since both of its inputs are now constants. If β_i has
 1386 any costly successors besides ν then we are done, since that eliminates at least four gates
 1387 (α, ν, β_i , and any distinct successor). If β_i only feeds into ν , then ν also becomes fixed.
 1388 Hence, ν cannot be the output of the circuit and thus it must have at least one costly
 1389 successor that is distinct from α, ν and β_i . This successor can also be eliminated from
 1390 our substitution.

1391 We now show that ν and β_i are distinct. Assume otherwise, then fixing α by substituting
 1392 x_i also fixes $\beta_i = \nu$, which we know is not the output of the circuit. This eliminates at least 3
 1393 (and therefore exactly three) gates (α, β_i , and β_i 's successor which we will call ν) and results

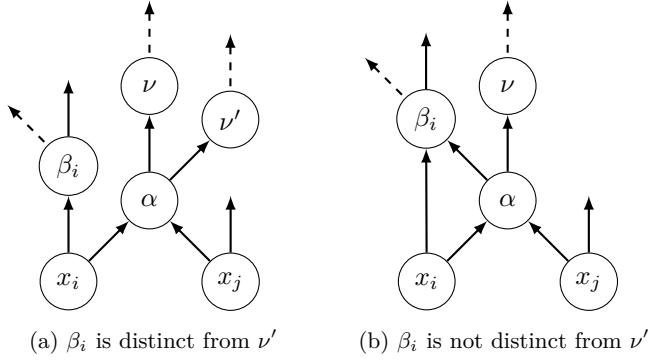


Figure 11 The two cases if α feeds two gates

in an optimal XOR_{n-1} circuit. We now consider the other gate fed by x_j which we will call β_j . Again, there are two cases as seen in Figure 12: either β_j is distinct from ν or they are the same.

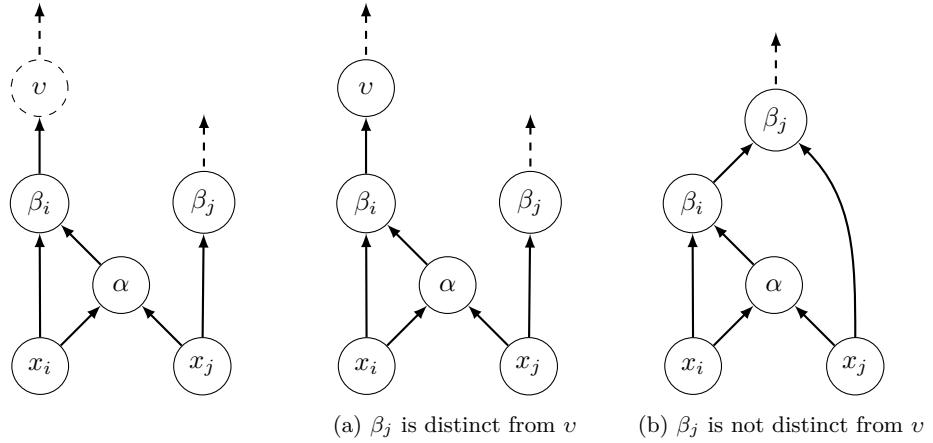
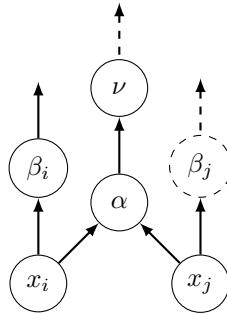


Figure 12 The two cases if $\nu = \beta_i$

If β_i does not also feed into β_j , then x_j feeds only β_j in the resulting circuit contradicting Lemma 35. If β_j is fed by β_i , then consider instead substituting x_j to fix β_j . Observe that β_j is not the output of the circuit, and hence fixing it eliminates four gates: α , β_i , β_j , and β_j 's costly successors. In both cases we reach a contradiction, hence $\beta_i \neq \nu$. Furthermore, notice that β_i cannot be the output gate and it must have only one costly successor. Otherwise, using x_i to fix β_i would eliminate at least four gates: α , β_i , and the costly successors of β_i . Hence, we arrive at the local view around h as shown in Figure 13.

Now, if we fix α using x_i , then α , β_i , and ν are eliminated and thus must be the only gate that are eliminated. Thus, if β_j , the other successor of x_j is distinct from these three gates, then x_j is left with one costly successor in the resulting circuit computing XOR_{n-1} thus violating Lemma 35. Hence β_j must be one of β_i or ν . We will show it must be β_i .

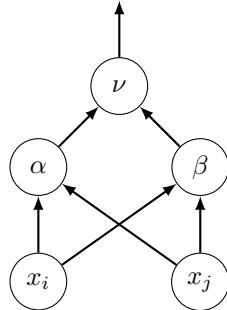
Suppose, for the sake of contradiction, that $\beta_j = \nu$. We can see that β_i must be fed by ν , otherwise we could substitute x_j to fix α and the resulting XOR_{n-1} circuit only reads x_i once. Now that β_i is fed by ν , if we substitute x_i to fix β_i , then this eliminates β_i , α and ν .



■ **Figure 13** Our view after establishing $\nu \neq \beta_i$

1411 and disconnects x_j entirely from the resulting circuit, but the resulting $(\neg)\text{XOR}_{n-1}$ circuit
 1412 must still depend on x_j .

1413 We now have that $\beta_j = \beta_i$ —let us call the gate β . Recall β has exactly one costly
 1414 successor, and if this costly successor isn't ν and is another gate then fixing α with x_j
 1415 eliminates three gates (α, β, ν) but leaves x_j with exactly one costly successor it inherited
 1416 from β . This is a contradiction, and hence β must feed ν which yields a block B as shown in
 1417 Figure 14. ◀



■ **Figure 14** The local area around x_i and x_j form a block B .

1418 We now provide the proof of Theorem 37

1419 **Proof of Theorem 37 using Lemma 38.** We prove this via induction. For $n = 1$ and $n = 2$
 1420 the theorem trivially holds: $(\neg)x_i$ is the unique normal optimal circuit for $(\neg)\text{XOR}_1$ and
 1421 normal optimal $(\neg)\text{XOR}_2$ circuits trivially define a single block.

1422 Assume the statement holds for some $k - 1 \geq 2$. Let C be a normal optimal circuit
 1423 computing $(\neg)\text{XOR}_k$ for $k \geq 3$. By Lemma 38, we know C must have a block B that is fed
 1424 by two distinct inputs $(\neg)x_i$ and $(\neg)x_j$. Let the three gates be α, β , and ν where $(\neg)\nu$ is
 1425 the output gate of B . We label the wires from $(\neg)x_i$ and $(\neg)x_j$ as **in**, the wires from $(\neg)\nu$ as **out** and all other internal wires of B as **core**. We first need to partition the rest of the
 1426 circuit into blocks and ensure that the two **out** wires are **in** wires to the same block in the
 1427 rest of C .

1428 If we substitute $x_i = b$ to fix α and simplify, we see that x_j 's successors are replaced
 1429 by $(\neg)\nu$'s successors and that the three costly gates in B have been eliminated. Therefore
 1431 the circuit computes $(\neg)\text{XOR}_{k-1}$ and is optimal. Applying the inductive hypothesis, we can

23:40 Simple Circuit Extensions for XOR in PTIME

¹⁴³² partition the remaining circuit into blocks which we lift back to the original. Notice that
¹⁴³³ x_j 's new successors are in the same block and therefore in C , $(\neg)\nu$'s successors are also in
¹⁴³⁴ the same block as desired.

¹⁴³⁵ It remains to prove that B computes $(\neg)\text{XOR}_2$. If we substitute $x_i = b$ to fix h and rewrite
¹⁴³⁶ as above we see that B reduces to $(\neg)x_j$, i.e. $B(b, x_j) = (\neg)x_j$. We argue that if we instead
¹⁴³⁷ substitute $x_i = 1 - b$, then B would also reduce to $(\neg)x_j$. It cannot reduce to a constant as
¹⁴³⁸ otherwise C , which now computes XOR_{k-1} does not depend on x_j , contradicting Fact 2. We
¹⁴³⁹ also observe B cannot reduce to just x_j in both cases (or $\neg x_j$ in both cases), as otherwise
¹⁴⁴⁰ we could replace B with x_j (or $\neg x_j$) and C would still correctly compute XOR_n with three
¹⁴⁴¹ fewer gates — contradicting that C is optimal. Therefore $B(1 - b, x_j) = \neg B(b, x_j)$ and the
¹⁴⁴² only binary Boolean functions that satisfy these two equations are XOR_2 and $\neg\text{XOR}_2$. ◀