Boston University Summer Challenge Tim Jackman
Computer Science July 8, 2025

Activity - Weather App using APIs

In this activity, we will call a RESTful API using Java in order to construct a rudimentary Weather program.
This lesson will also teach you how to load and use an external library (i.e. a collection of custom Classes
that someone wrote that doesn’t come with the base Java language).

Setup. Download the WeatherProgram folder on the class Google Drive. Right click on the zip folder
in your Downloads folder and select ”Extract All...”. Extract the folder into your Documents folder (e.g.
c:\Users\ [buid]\Documents). You should see the folder now in Documents and it should contain three files:

e WeatherApp. java - the partial java file you will complete over the course of this activity
e api-key.txt - an API key, we’ll explain what this below
e json.jar - an external library for parsing JSON in Java

An API key is a secret unique identifier used to authenticate a user before replying to a API call. In order
to prevent a server from being overloaded, a rate limit may be placed on users (e.g. can only make 1000 a
minute). The API may even be placed behind a paywall. The API key is how the server identifies who is
making the request so that it can apply a limit or paywall. api-key.txt is my private API key for the API
we will be using today. It is placed in a separate file because we never want to hard-code our secret key, lest
we accidentally leak it when sharing the code.

Problem 1. Complete the 1oadAPIKey () method in WeatherApp. java by reading from api-key.txt file.
Observe: Part of the method signature says throws I0Exception. This means that we do not need to
handle the IOException ourselves in the method body, even though it is a checked Exception. Any sucker
that calls loadAPIKey () will have to handle it however...

Problem 2. In the main method, assign the API Key to apiKey by calling loadAPIKey (). You will need
to handle the exception: in the case of an error, tell the user that something has gone wrong loading the
api-key.txt file and halt the program.

We will be using the HTTPClient and HTTPRequest classes in Java.net package in order to communicate
with the API and receive the server’s response.
Today we are using Weather Api to get the current weather. Requests made to this API look like:

GET http://api.weatherapi.com/vl/current. json?key=APIKEY&q=QUERY

Where we replace APIKEY with our API key, and QUERY with the location we want the weather of. We
can give the City name, coordinates, or Zipcode. The Weather API will also accept our API key has a header
under the name “key”. We will implement it this way so you can try adding a header to the request.

Problem 3. Finish the makeRequest method, which constructs our HTTPRequest object by adding the
apiKey to the header under the name “key”. Constructing HTTPClient and HTTPRequest objects requires
using a special type of class called a builder. The purpose of a Builder class is to make constructing compli-
cated types easier. Builder classes have specific methods to set specific fields, and then a method build ()
that constructs the object. The code for constructing the HTTPClient object has already been written, and
you can use it as a reference for how a Builder works.

Hint: You only need to use the .header() method. If you uncomment it and hover over it you can read
the documentation.

Do not end the .header() call with a semicolon. We are actually currying all the Builder methods
together, placing each new call on it’s own line for readability. This is one advantage to semicolons, we can
have one “line of code” split up over multiple lines without semicolons and it’ll be the same for the compiler
as one really long line.


https://github.com/stleary/JSON-java
https://www.weatherapi.com/

If you’ve done everything correctly running the program should print the response to the terminal. Un-
fortunately, the response is a JSON file and we will need to parse it. Rather than using Scanner, we will
use an external library org.json. In order to use it we must do some set up so VS Code knows the library exists.

Setup.

1. Uncomment import org.json.JSONObject; at the top of your WeatherApp.java file. VS Code should
complain that the import cannot be resolved.

2. Press Ctrl + Shift + P (i.e press Ctrl, Shift, and P all at once) to bring the Command Palette in VS
Code. A search bar should open at the top of your screen. You can also alternatively select the search
bar at the top of your screen and select “Show and Run commands”

3. Search for and select Java: Open Project Settings. This will open a new tab in VS Code.
4. Navigate to the Libraries tab and then click Add Library. Select json.jar.

5. json.jar should appear under Libraries. Click Apply Settings and return to your WeatherApp.java
file. You may now see a folder called .vscode containing settings.json. You can ignore this.

VS Code should no longer complain about your import statement.

Problem 4. Use the JSONObject class to parse the JSON response (response.body()). Pass the response
to the JSONObject constructor and then use JSONODbject methods to get the double stored under temp_f.
Hint: The response JSON has two fields: location and current, both of which are themselves JSON
objects. You will want to use getJSONObject () and getDouble().

If you have done everything correctly, your program when run will print the current Boston tempature to
the terminal. To run your program from the Windows command prompt you will need to the following
commands:

javac -cp ".;json.jar" WeatherApp.java
java -cp ".;json.jar" WeatherApp

This tells the compiler that you need to use the json. jar file stored in the same folder. Otherwise it will
not be imported and you will get an error.

Problem 5. Challenge Modify WeatherApp to change the city from Boston to another city of your choice.

For an extra challenge, have the program take in a command line argument for the City and print out “The
temperature in [CITY] is currently: ”

You can also try printing other weather data besides temperature or to get forecasted weather data rather
than current data. You can find the Weather API Documentation online at weatherapi.com


https://www.weatherapi.com/docs/

