Boston University Summer Challenge Tim Jackman
Computer Science July 10, 2025

Assignment 4 - Linked Lists

In this assignment we will work with and define a custom data type called a linked list, an alternative to
arrays. As we saw, arrays cannot expand because the form continuous blocks in the memory of the program,
and thus expanding may overwrite memory being used for something else. Linked lists get around this
issue by having each piece of the list consist of two parts: the actual content stored in the list, and the
memory address of the next part of the list. In memory, a linked list containing the ints 1,2, 3 in that order
may look like:

x
- -

3 3
@334 “a” | null 2 |@337| 1.2 3 null | 10

l-

330 331 332 333 334 335 336 337 338 339

The head of the list is located at memory address 330, and its content is 1. The next memory address 331
stores the memory address of the next part of the list 334. At address 334 we find 2, the second int in the
list, and 335 points us to the last part of the list. Notice the memory address for the last element of the list
is null, indicating there is no next element in the list.

In this assignment we will implement the class IntegerLLL,, a LinkedList of integers. Java has a built-in linked
list class java.util.LinkedList but recreating it will be instructive.

Problem 1. Our IntegerLL class has two fields:

private int data;
private IntegerLL next;

In Java, we do not work with memory addresses directly, so rather than an address, next is itself an
IntegerLL. This is known as a recursive data structure. The final object constituting a specific linked list
will have it’s next field as null.

Define a Constructor that given an integer n, creates a single element linked list containing n.

Problem 2. Complete the following iterative code for the method length() that returns the length of this
linked list.

public int length() {
int counter = 1;
IntegerLL current = this;

while (current.next !'= null) {

return counter;

}

Write a recursive method to compute length(). Which do you feel is more intuitive for this data structure?

Problem 3. Write a method add(int n) that appends n to this list and returns nothing. Again, consider
how you might do it iteratively and recursively.

Problem 4. Challenge: Write a method removelndex(int n) removes the n-th element of the list (zero-
indexed) for n > 1 (i.e. you cannot remove the first element). When you remove an item from the middle of
the list, you will need re-link the remaining parts of the list together correctly.

Hint: Your code will probably include something like current.next = current.next.next.
You should throw an IndexOutOfBoundsException if n is out of bounds (less than 1 or greater than the
length).

