Intro to Java

Our First Foray into a “Real” Programming Language

Tim Jackman

BU Summer Challenge

July 8th, 2025

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Java Overview

@ Developed in 1995, Java is one of the most popular programming

languages in use today

Tim Jackman (BU Summer Challenge)

Q/)
—
—

Java

Intro to Java

July 8th, 2025

2

Java Overview

@ Developed in 1995, Java is one of the most popular programming

languages in use today

@ Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the

specific OS (Windows, Mac, Linux)

Tim Jackman (BU Summer Challenge)

)
—
—

Java

Intro to Java

July 8th, 2025

2

Java Overview

@ Developed in 1995, Java is one of the most popular programming
languages in use today

@ Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

@ Java is an “Object-Oriented Language”

)
—
—

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

@ Developed in 1995, Java is one of the most popular programming
languages in use today

@ Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

@ Java is an “Object-Oriented Language”

@ Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

)
—
—

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

@ Developed in 1995, Java is one of the most popular programming
languages in use today

@ Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

@ Java is an “Object-Oriented Language”

@ Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

@ Android apps are built using Java or languages that build on it
(Kotlin)

g
—

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

A Basic Java File

@ Java code is written in .java files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

@ Java code is written in .java files

o Code is written in a public class that is named the same as the file

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

@ Java code is written in .java files
o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

@ Java code is written in .java files
o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)

@ Blocks of code are grouped using curly braces { ...}

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { ...}

We indent code nested in curly brackets as part of good Java style

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

A Basic Java File

@ Java code is written in .java files

o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)

@ Blocks of code are grouped using curly braces { ...}

@ We indent code nested in curly brackets as part of good Java style

e Statements (lines of code that perform an action) end using

semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Example Class

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 4

Example Class

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

[
LV Hello Worldl

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”
e It has two keywords “public’ and “static” and it's return type is “void"

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!"

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file

HelloWorld.java
@ The body of the class consists of a single method called “main”
e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]
o We'll see what all this means later

@ When a java file is run the class's main method is what is run

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!"

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]
o We'll see what all this means later

@ When a java file is run the class's main method is what is run

@ System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World" into the output (terminal)

HelloWorld {
void main(String[] args) {
System.out.println(x:“Hello, World!");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

How do we run our program?

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 6

Running Code in Visual Code Studio

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 7

Running Code in Visual Code Studio

PROBLEN OUTPUT SOLE TERMINAL

PS C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025> &

Hello, World!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 7

Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command

@ Run javac FileName.java to compile the Java code into .class files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command
@ Run javac FileName.java to compile the Java code into .class files

@ Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command
@ Run javac FileName. java to compile the Java code into .class files
@ Run java FileName to run your program

C:\Users\timmj>cd Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02\

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>javac HelloWorld. java

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>java HellolWorld
Hello, World!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Running a Java Program

Human-Readable
Code

Tim Jackman (BU Summer Challenge)

Java Compiler

Bytecode
(Platform
Independent)

Intro to Java

Java Virtual
Machine
(java command)

July 8th

, 2025

9

How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

HelloWorld {
void main(String[] args) {
System.out.println("Hello, " + args[e]);

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

HelloWorld {
ic void main(String[] args) {
System.out.println("Hello,

+ args[e]);

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02> javac HellolWorld.java

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>java HelloWorld Tim
Hello, Tim!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11

Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

"type": "java",
"name”: "HelloWorld",
"request™: "launch”,

"mainClass™: "HelloWorld",
"args": ["arge", "argl"],
"projectName": "BU_Summer_Challenge_2825_b2b66@b3

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

11

Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

"type": "java",

"name”: "HelloWorld",

"request”: "launch”,

"mainClass": "HelloWorld",

"args": ["arge", "argl®"],

"projectName": "BU_Summer_Challenge_2825_b2b660b3

PS C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge 2025> c:; cd
; &
5

Hello, arge

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11

Types in Java

e Java is a statically typed languages

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared
e Java does not automatically cast between similar types

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared
e Java does not automatically cast between similar types

@ This allows the compiler to check for any type errors before we ever
run any code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

12

Primitive Types

@ Java has a few special types called primitives

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:
e byte: integers between -128 and 127

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:

e byte: integers between -128 and 127
e short: integers between -32,768 and 32,767

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

13

Primitive Types

@ Java has a few special types called primitives
@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

e byte: integers between -128 and 127
e short: integers between -32,768 and 32,767
e int: integers between —273! and 23! — 1

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:

e byte: integers between -128 and 127

e short: integers between -32,768 and 32,767
e int: integers between —273! and 23! — 1

e long: integers between —2793 and 203 — 1

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

13

Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

@ boolean: Booleans (true and false)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in

single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)

@ Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)

@ Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

@ Number comparison operators are <, <=, ==, = >= >

b * b

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and

then compute p & q
o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q

o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

@ Remember || is inclusive or. it evaluates to true if at least one of its
inputs is true

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q

o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

@ Remember || is inclusive or. it evaluates to true if at least one of its
inputs is true

o If you want exclusive or (exactly one of the two is true), you can use
“or | =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

@ There are a bunch of String methods to work with Strings:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

@ There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:
length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt (int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5
Java indexes starting at O: the first character of “Hello” is at the Oth
position: ¢ ‘Hello’’.charAt(0) evaluates to ‘H'.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5
Java indexes starting at O: the first character of “Hello” is at the Oth
position: ¢ ‘Hello’’.charAt(0) evaluates to ‘H'.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

@ Because of how Java handles Strings, this is ok like 95% of the time

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

@ Because of how Java handles Strings, this is ok like 95% of the time

@ But 5% of the time your program will be wrong and you'll be
confused!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Variables and Assignments

@ To create a variable we declare it:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

@ To create a variable we declare it:

int exampleVar;

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

@ To create a variable we declare it:
int exampleVar;

@ Since Java is statically typed, we must include types

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

18

Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
@ Since Java is statically typed, we must include types

© We use = to assign values when declaring variables

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

18

Variables and Assignments

@ To create a variable we declare it:

int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables

int exampleVar = 5;

Tim Jackman (BU Summer Challenge) Intro to Java

July 8th, 2025

18

Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:

int exampleVar = b;
exampleVar = 10;

System.out.println(exampleVar);

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

@ To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables

int exampleVar = 5;

If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:

int exampleVar = b;
exampleVar = 10;

System.out.println(exampleVar);

Naming Conventions: lowerCamelCase for regular variables,
UPPER_SNAKE_CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

18

Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

o Java will automatically “cast up” number primitives to the larger sets
of numbers:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

@ While we can't change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int examplelnt = 5;

double exampleDouble = examplelnt;

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

@ While we can't change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int examplelnt = 5;

double exampleDouble = examplelnt;

© We can manually “cast down” number primitives into the smaller sets
of numbers:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = examplelnt;

@ We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;
int exampleInt = (int) exampleDouble; //equals 5

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = examplelnt;

@ We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;
int exampleInt = (int) exampleDouble; //equals 5

@ All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it

o The first part of the signature are any modifiers (e.g. public,
private, static)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it

o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type
o If a method returns a value it will have a return statement inside the
body of the code
o If a method doesn’t return anything, it's return type is void

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type
o If a method returns a value it will have a return statement inside the
body of the code
o If a method doesn’t return anything, it's return type is void

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it

o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase
o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase

o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

@ A method's inputs can only be accessed inside that specific method's
body

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase
o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

@ Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

@ Between the curly brackets is a method's body, it is where we write
our code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

21

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write

our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside

conditionals)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside
conditionals)

@ When we call a method, the expression has that method’s type, and
thus we can curry function calls:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside
conditionals)

@ When we call a method, the expression has that method’s type, and
thus we can curry function calls:

e str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Calling Methods

@ We have seen how to call methods using the the dot operator

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)
o We use the dot operator on a specific instance of a class

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
e ‘‘Hello’’.charAt(3);

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
o ‘‘Hello’’.charAt(3);
e Instance methods behave differently on different instances

@ static methods do not depend on the specific instance and are for the
class as a whole

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
o ‘‘Hello’’.charAt(3);
e Instance methods behave differently on different instances

@ static methods do not depend on the specific instance and are for the
class as a whole

@ static mathods often belong to utility classes that just bundle
together useful functions

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class

o ‘‘Hello’’.charAt(3);

o Instance methods behave differently on different instances
@ static methods do not depend on the specific instance and are for the
class as a whole

@ static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class

o ‘‘Hello’’.charAt(3);

o Instance methods behave differently on different instances
@ static methods do not depend on the specific instance and are for the
class as a whole

@ static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name
o Math.min(int a, int b);

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
o ‘‘Hello’’.charAt(3);
e Instance methods behave differently on different instances

@ static methods do not depend on the specific instance and are for the
class as a whole
@ static mathods often belong to utility classes that just bundle
together useful functions
@ To call them we use the dot operator on the class name
o Math.min(int a, int b);

@ Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Conditionals in Java

o Conditionals in Java work just like in Scratch

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {

//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true
} else {

//runs if neither are true

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true

} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {

//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true
} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans

@ Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {

//runs if conditionA is false and conditionB is true

} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans
@ Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)
e You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Loops in Java

@ There are two basic types of loops in Java: while and for loops

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops

@ while loops are kind of like until loops in Scratch but the opposite

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops

@ while loops are kind of like until loops in Scratch but the opposite

while (conditionA) {

//iterates if conditionA is true

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

o statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

o statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

@ At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

25

Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)

@ Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable's scope)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)

@ Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable's scope)

@ We have a lot of control here with the third statement

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Challenge

o Create a FizzBuzz file that when run prints the integers 1 through
100, replacing multiples of 3 with Fizz, multiples of 5 with Buzz, and
multiples of both with FizzBuzz.

@ As an extra challenge, modify the program to take a command line
argument for the upper bound (e.g. java FizzBuzz 45 does 1
through 45). You'll need to look at the Integer class documentation
to find a helpful static method.

@ As an extra extra challenge, modify it to loop through only the even
integers, and replace multiples of 6 and 10 with Fizz and Buzz (and
FizzBuzz)!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 26

