
Intro to Java
Our First Foray into a “Real” Programming Language

Tim Jackman

BU Summer Challenge

July 8th, 2025

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 1

Java Overview

Developed in 1995, Java is one of the most popular programming
languages in use today

Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

Java is an “Object-Oriented Language”

Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

Android apps are built using Java or languages that build on it
(Kotlin)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

Developed in 1995, Java is one of the most popular programming
languages in use today

Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

Java is an “Object-Oriented Language”

Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

Android apps are built using Java or languages that build on it
(Kotlin)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

Developed in 1995, Java is one of the most popular programming
languages in use today

Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

Java is an “Object-Oriented Language”

Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

Android apps are built using Java or languages that build on it
(Kotlin)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

Developed in 1995, Java is one of the most popular programming
languages in use today

Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

Java is an “Object-Oriented Language”

Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

Android apps are built using Java or languages that build on it
(Kotlin)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

Java Overview

Developed in 1995, Java is one of the most popular programming
languages in use today

Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

Java is an “Object-Oriented Language”

Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

Android apps are built using Java or languages that build on it
(Kotlin)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 2

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }
We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }
We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }
We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }

We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }
We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { . . . }
We indent code nested in curly brackets as part of good Java style

Statements (lines of code that perform an action) end using
semicolons ;. This is required.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 3

Example Class

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 4

Example Class

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 4

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”
It takes in one argument (input) called args that has type String[]
We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”
It takes in one argument (input) called args that has type String[]
We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”

It takes in one argument (input) called args that has type String[]
We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”
It takes in one argument (input) called args that has type String[]

We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”
It takes in one argument (input) called args that has type String[]
We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

Breaking It Down

This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

The body of the class consists of a single method called “main”

It has two keywords “public” and “static” and it’s return type is “void”
It takes in one argument (input) called args that has type String[]
We’ll see what all this means later

When a java file is run the class’s main method is what is run

System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World” into the output (terminal)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 5

How do we run our program?

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 6

Running Code in Visual Code Studio

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 7

Running Code in Visual Code Studio

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 7

Running Code from the Terminal

You can also run Java programs from the Terminal/Command
Line/Command Prompt

First, navigate to the folder containing the file using the cd command

Run javac FileName.java to compile the Java code into .class files

Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

You can also run Java programs from the Terminal/Command
Line/Command Prompt

First, navigate to the folder containing the file using the cd command

Run javac FileName.java to compile the Java code into .class files

Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

You can also run Java programs from the Terminal/Command
Line/Command Prompt

First, navigate to the folder containing the file using the cd command

Run javac FileName.java to compile the Java code into .class files

Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

You can also run Java programs from the Terminal/Command
Line/Command Prompt

First, navigate to the folder containing the file using the cd command

Run javac FileName.java to compile the Java code into .class files

Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running Code from the Terminal

You can also run Java programs from the Terminal/Command
Line/Command Prompt

First, navigate to the folder containing the file using the cd command

Run javac FileName.java to compile the Java code into .class files

Run java FileName to run your program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 8

Running a Java Program

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 9

How do we give inputs to our program?

The easiest way to give inputs to your program is with command line
arguments

Every string (separated by a space) after the filename is supplied to
your program as an input

The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

The easiest way to give inputs to your program is with command line
arguments

Every string (separated by a space) after the filename is supplied to
your program as an input

The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

The easiest way to give inputs to your program is with command line
arguments

Every string (separated by a space) after the filename is supplied to
your program as an input

The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

The easiest way to give inputs to your program is with command line
arguments

Every string (separated by a space) after the filename is supplied to
your program as an input

The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

How do we give inputs to our program?

The easiest way to give inputs to your program is with command line
arguments

Every string (separated by a space) after the filename is supplied to
your program as an input

The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 10

Command Line Args in VS Code

Command Line Args can be supplied to VS Code in the launch.json
files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11

Command Line Args in VS Code

Command Line Args can be supplied to VS Code in the launch.json
files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11

Command Line Args in VS Code

Command Line Args can be supplied to VS Code in the launch.json
files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11

Types in Java

Java is a statically typed languages

The type of every variable and the output of any function must be
declared
Java does not automatically cast between similar types

This allows the compiler to check for any type errors before we ever
run any code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

Java is a statically typed languages

The type of every variable and the output of any function must be
declared

Java does not automatically cast between similar types

This allows the compiler to check for any type errors before we ever
run any code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

Java is a statically typed languages

The type of every variable and the output of any function must be
declared
Java does not automatically cast between similar types

This allows the compiler to check for any type errors before we ever
run any code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Types in Java

Java is a statically typed languages

The type of every variable and the output of any function must be
declared
Java does not automatically cast between similar types

This allows the compiler to check for any type errors before we ever
run any code

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767

int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1

long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)

double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127
short: integers between -32,768 and 32,767
int: integers between −2−31 and 231 − 1
long: integers between −2−63 and 263 − 1
float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in
single quotes (e.g. ‘a’)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 13

Numerical Operators

The basic arithmetic operators are +,−, ∗, /, and % (modulo)

Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

Number comparison operators are <, <=, ==, !=, >=, >

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Numerical Operators

The basic arithmetic operators are +,−, ∗, /, and % (modulo)

Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

Number comparison operators are <, <=, ==, !=, >=, >

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Numerical Operators

The basic arithmetic operators are +,−, ∗, /, and % (modulo)

Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

Number comparison operators are <, <=, ==, !=, >=, >

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 14

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Boolean Operators

The AND, OR, and NOT operators are &&, ||, and ! respectively

Java also has & and | for AND and OR but these are less efficient

If you write p & q in Java, it always evaluates both p and then q and
then compute p & q

If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

Remember || is inclusive or: it evaluates to true if at least one of its
inputs is true

If you want exclusive or (exactly one of the two is true), you can use
ˆor ! =

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 15

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase
Most Reference Types are classes (we will explore what that means
later in the seminar)
However, the String class has special built in support and are
therefore like pseudo-primitives
Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”
There are a bunch of String methods to work with Strings:
length() concat(String str) indexOf(String str)

replace(char oldChar, char newChar) contains(String str) compareTo(String str)

substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5
Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.
You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase
Most Reference Types are classes (we will explore what that means
later in the seminar)
However, the String class has special built in support and are
therefore like pseudo-primitives
Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”
There are a bunch of String methods to work with Strings:
length() concat(String str) indexOf(String str)

replace(char oldChar, char newChar) contains(String str) compareTo(String str)

substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5

Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.
You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase
Most Reference Types are classes (we will explore what that means
later in the seminar)
However, the String class has special built in support and are
therefore like pseudo-primitives
Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”
There are a bunch of String methods to work with Strings:
length() concat(String str) indexOf(String str)

replace(char oldChar, char newChar) contains(String str) compareTo(String str)

substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5
Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.

You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase
Most Reference Types are classes (we will explore what that means
later in the seminar)
However, the String class has special built in support and are
therefore like pseudo-primitives
Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”
There are a bunch of String methods to work with Strings:
length() concat(String str) indexOf(String str)

replace(char oldChar, char newChar) contains(String str) compareTo(String str)

substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘‘Hello’’.length() evaluates to 5
Java indexes starting at 0: the first character of “Hello” is at the 0th
position: ‘‘Hello’’.charAt(0) evaluates to ‘H’.
You can check the Java Documentation to see all of the methods and
how they work

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 16

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/String.html

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

== will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Because of how Java handles Strings, this is ok like 95% of the time

But 5% of the time your program will be wrong and you’ll be
confused!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

== will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Because of how Java handles Strings, this is ok like 95% of the time

But 5% of the time your program will be wrong and you’ll be
confused!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

== will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Because of how Java handles Strings, this is ok like 95% of the time

But 5% of the time your program will be wrong and you’ll be
confused!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

== will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Because of how Java handles Strings, this is ok like 95% of the time

But 5% of the time your program will be wrong and you’ll be
confused!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17

Variables and Assignments

To create a variable we declare it:

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

int exampleVar = 5;

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

int exampleVar = 5;

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

int exampleVar = 5;

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

int exampleVar = 5;

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

int exampleVar = 5;

exampleVar = 10;

System.out.println(exampleVar);

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types

We use = to assign values when declaring variables

int exampleVar = 5;

If we don’t initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

We can reassign variables by using = again:

int exampleVar = 5;

exampleVar = 10;

System.out.println(exampleVar);

Naming Conventions: lowerCamelCase for regular variables,
UPPER SNAKE CASE for constants (e.g. double PI = 3.14;)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 18

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

We can manually “cast down” number primitives into the smaller sets
of numbers:

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

We can manually “cast down” number primitives into the smaller sets
of numbers:

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = exampleInt;

We can manually “cast down” number primitives into the smaller sets
of numbers:

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = exampleInt;

We can manually “cast down” number primitives into the smaller sets
of numbers:

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = exampleInt;

We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;

int exampleInt = (int) exampleDouble; //equals 5

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Converting Between Types

While we can’t change a variables type we can cast from one type to
another

Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = exampleInt;

We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;

int exampleInt = (int) exampleDouble; //equals 5

All Reference Types will have a built-in .toString() method to convert
to String

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)

The second part is the return type
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type

The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}
Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type

If a method returns a value it will have a return statement inside the
body of the code
If a method doesn’t return anything, it’s return type is void

The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}
Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type

If a method returns a value it will have a return statement inside the
body of the code
If a method doesn’t return anything, it’s return type is void

The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type (e.g. boolean, int, void)

The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type (e.g. boolean, int, void)
The third part is the method name, we use lowerCamelCase

The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type (e.g. boolean, int, void)
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it
The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type (e.g. boolean, int, void)
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

A method’s inputs can only be accessed inside that specific method’s
body

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Every method starts with its signature which uniquely identifies it

The first part of the signature are any modifiers (e.g. public,
private, static)
The second part is the return type (e.g. boolean, int, void)
The third part is the method name, we use lowerCamelCase
The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

Two methods can have the same name but cannot have the same
signature

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 20

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)

When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)
When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)
When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)

When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)
When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Methods

We have seen a number of methods (functions) so far, now let’s see
how to define them

public static boolean hidesBob(String str) {
return str.toLowerCase().contains("bob");

}

Between the curly brackets is a method’s body, it is where we write
our code

If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

In void methods we can use return; to halt the method (e.g. inside
conditionals)
When we call a method, the expression has that method’s type, and
thus we can curry function calls:

str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class

‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Calling Methods

We have seen how to call methods using the the dot operator

So far we’ve called instance methods (i.e. non-static)

We use the dot operator on a specific instance of a class
‘‘Hello’’.charAt(3);

Instance methods behave differently on different instances

static methods do not depend on the specific instance and are for the
class as a whole

static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name

Math.min(int a, int b);

Math and Integer are some classes with useful static methods

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22

Conditionals in Java

Conditionals in Java work just like in Scratch

The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {
//runs if conditionA is false and conditionB is true

} else {
//runs if neither are true

}

The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {
//runs if conditionA is false and conditionB is true

} else {
//runs if neither are true

}

The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {
//runs if conditionA is false and conditionB is true

} else {
//runs if neither are true

}

The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Conditionals in Java

Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {
//runs if conditionA is false and conditionB is true

} else {
//runs if neither are true

}

The conditions can be boolean expressions, boolean variables, or
methods that return booleans

Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)

You can just write (boolVar) or (!boolVar)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

while (conditionA) {
//iterates if conditionA is true

}

for loops are like repeat loops in Scratch but more general

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {
//iterates until statementB is false

}

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {
//iterates until statementB is false

}

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {
//iterates until statementB is false

}

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Loops in Java

There are two basic types of loops in Java: while and for loops

while loops are kind of like until loops in Scratch but the opposite

for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {
//iterates until statementB is false

}

Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 24

Example Loop

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Typically our temporary loop variables are called i , j , k (if we’re
nesting loops)

Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable’s scope)

We have a lot of control here with the third statement

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Example Loop

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Typically our temporary loop variables are called i , j , k (if we’re
nesting loops)

Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable’s scope)

We have a lot of control here with the third statement

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Example Loop

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Typically our temporary loop variables are called i , j , k (if we’re
nesting loops)

Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable’s scope)

We have a lot of control here with the third statement

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Example Loop

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Typically our temporary loop variables are called i , j , k (if we’re
nesting loops)

Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable’s scope)

We have a lot of control here with the third statement

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 25

Challenge

Create a FizzBuzz file that when run prints the integers 1 through
100, replacing multiples of 3 with Fizz, multiples of 5 with Buzz, and
multiples of both with FizzBuzz.

As an extra challenge, modify the program to take a command line
argument for the upper bound (e.g. java FizzBuzz 45 does 1
through 45). You’ll need to look at the Integer class documentation
to find a helpful static method.

As an extra extra challenge, modify it to loop through only the even
integers, and replace multiples of 6 and 10 with Fizz and Buzz (and
FizzBuzz)!

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 26

