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Java Overview
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Java Overview

@ Developed in 1995, Java is one of the most popular programming
languages in use today

@ Java is designed to be platform independent, any computer with Java
installed can run Java programs without needing to worry about the
specific OS (Windows, Mac, Linux)

@ Java is an “Object-Oriented Language”

@ Java is verbose: keywords (public, private, static), explicit types,
semicolons and curly brackets

@ Android apps are built using Java or languages that build on it
(Kotlin)

g
—

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025



A Basic Java File

@ Java code is written in .java files
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A Basic Java File

@ Java code is written in .java files
o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)
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A Basic Java File

@ Java code is written in .java files
o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)

@ Blocks of code are grouped using curly braces { ...}
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A Basic Java File

Java code is written in .java files

Code is written in a public class that is named the same as the file

The body of the class consists of fields (variables) and methods
(functions)

Blocks of code are grouped using curly braces { ...}

We indent code nested in curly brackets as part of good Java style
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A Basic Java File

@ Java code is written in .java files

o Code is written in a public class that is named the same as the file

@ The body of the class consists of fields (variables) and methods
(functions)

@ Blocks of code are grouped using curly braces { ...}

@ We indent code nested in curly brackets as part of good Java style

e Statements (lines of code that perform an action) end using

semicolons ;. This is required.
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Example Class

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");
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Example Class

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");

[
LV Hello Worldl
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”
e It has two keywords “public’ and “static” and it's return type is “void"

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!"
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!");
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file

HelloWorld.java
@ The body of the class consists of a single method called “main”
e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]
o We'll see what all this means later

@ When a java file is run the class's main method is what is run

HelloWorld {
void main(String[] args) {
System.out.println(x:"Hello, World!"
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Breaking It Down

@ This code defines the public class HelloWorld, and is found in the file
HelloWorld.java
@ The body of the class consists of a single method called “main”

e It has two keywords “public’ and “static” and it's return type is “void"
o It takes in one argument (input) called args that has type String]]
o We'll see what all this means later

@ When a java file is run the class's main method is what is run

@ System.out.println(‘‘Hello World!’’); tells the computer to
print out the line “Hello World" into the output (terminal)

HelloWorld {
void main(String[] args) {
System.out.println(x:“Hello, World!");
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How do we run our program?
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Running Code in Visual Code Studio
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Running Code in Visual Code Studio

PROBLEN OUTPUT SOLE TERMINAL

PS C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025> &

Hello, World!
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Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt
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Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command
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Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command

@ Run javac FileName.java to compile the Java code into .class files
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Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command
@ Run javac FileName.java to compile the Java code into .class files

@ Run java FileName to run your program
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Running Code from the Terminal

@ You can also run Java programs from the Terminal/Command
Line/Command Prompt

o First, navigate to the folder containing the file using the cd command
@ Run javac FileName. java to compile the Java code into .class files
@ Run java FileName to run your program

C:\Users\timmj>cd Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02\

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>javac HelloWorld. java

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>java HellolWorld
Hello, World!
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Running a Java Program

Human-Readable
Code
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How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments
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How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input
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How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.
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How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

HelloWorld {
void main(String[] args) {
System.out.println("Hello, " + args[e]);
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How do we give inputs to our program?

@ The easiest way to give inputs to your program is with command line
arguments

@ Every string (separated by a space) after the filename is supplied to
your program as an input

@ The first input can be accessed by your code with args[0], the
second is given by args[1], etc.

HelloWorld {
ic void main(String[] args) {
System.out.println("Hello,

+ args[e]);

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02> javac HellolWorld.java

C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge_2025\Lessons\02>java HelloWorld Tim
Hello, Tim!
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Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 11



Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

"type": "java",
"name”: "HelloWorld",
"request™: "launch”,

"mainClass™: "HelloWorld",
"args": ["arge", "argl"],
"projectName": "BU_Summer_Challenge_2825_b2b66@b3
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Command Line Args in VS Code

@ Command Line Args can be supplied to VS Code in the launch. json
files

"type": "java",

"name”: "HelloWorld",

"request”: "launch”,

"mainClass": "HelloWorld",

"args": ["arge", "argl®"],

"projectName": "BU_Summer_Challenge_2825_b2b660b3

PS C:\Users\timmj\Documents\Teaching\BU_Summer_Challenge 2025> c:; cd
; &
5

Hello, arge
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Types in Java

e Java is a statically typed languages
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Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 12



Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared
e Java does not automatically cast between similar types
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Types in Java

e Java is a statically typed languages

e The type of every variable and the output of any function must be
declared
e Java does not automatically cast between similar types

@ This allows the compiler to check for any type errors before we ever
run any code
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Primitive Types

@ Java has a few special types called primitives
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
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@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:
e byte: integers between -128 and 127
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:

e byte: integers between -128 and 127
e short: integers between -32,768 and 32,767
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Primitive Types

@ Java has a few special types called primitives
@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

e byte: integers between -128 and 127
e short: integers between -32,768 and 32,767
e int: integers between —273! and 23! — 1
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”
@ Most represent different sets of numbers:

e byte: integers between -128 and 127

e short: integers between -32,768 and 32,767
e int: integers between —273! and 23! — 1

e long: integers between —2793 and 203 — 1
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)
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Primitive Types

@ Java has a few special types called primitives

@ These are the only types that are “lowercase”

@ Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

@ boolean: Booleans (true and false)
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Primitive Types

Java has a few special types called primitives

These are the only types that are “lowercase”

Most represent different sets of numbers:

byte: integers between -128 and 127

short: integers between -32,768 and 32,767

int: integers between —273 and 23! — 1

long: integers between —27%3 and 263 — 1

float: 32 bit floating point decimals (arithmetic is not precise)
double: 64 bit floating point decimals (arithmetic is not precise)

boolean: Booleans (true and false)

char: Unicode character (individual letters and symbols), wrapped in

single quotes (e.g. ‘a’)
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Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)
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Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)

@ Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)
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Numerical Operators

@ The basic arithmetic operators are +, —, *, /, and % (modulo)

@ Be careful with / on ints, you get an integer back (the result is
rounded towards 0, e.g. 2/3 = -2/3 = 0)

@ Number comparison operators are <, <=, ==, = >= >

b * b
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and

then compute p & q
o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q

o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

@ Remember || is inclusive or. it evaluates to true if at least one of its
inputs is true
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Boolean Operators

e The AND, OR, and NOT operators are &&;, ||, and ! respectively
@ Java also has & and | for AND and OR but these are less efficient

o If you write p & q in Java, it always evaluates both p and then g and
then compute p & q

o If you write p && q in Java, it will evaluate p, and if it is false, it short
circuits and evaluates the & to false

@ Remember || is inclusive or. it evaluates to true if at least one of its
inputs is true

o If you want exclusive or (exactly one of the two is true), you can use
“or | =
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

@ There are a bunch of String methods to work with Strings:
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Strings

@ Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

@ Most Reference Types are classes (we will explore what that means
later in the seminar)

@ However, the String class has special built in support and are
therefore like pseudo-primitives

@ Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

@ There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)
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Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:
length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt (int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5
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Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5
Java indexes starting at O: the first character of “Hello” is at the Oth
position: ¢ ‘Hello’’.charAt(0) evaluates to ‘H'.
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Strings

Every other type in Java is a Reference Type, and will be capitalized
using UpperCamelCase

Most Reference Types are classes (we will explore what that means
later in the seminar)

However, the String class has special built in support and are
therefore like pseudo-primitives

Strings are essentially ordered lists of chars, and are written by
wrapping chars with double quotes: “hello”

There are a bunch of String methods to work with Strings:

length() concat (String str) index0f (String str)
replace(char oldChar, char newChar) contains(String str) compareTo(String str)
substring(int beginIndex, int endIndex) equals(String str) charAt(int index)

To call these methods, you use the dot operator on a specific String,
followed by the method name: ‘ ‘Hello’’.length() evaluates to 5
Java indexes starting at O: the first character of “Hello” is at the Oth
position: ¢ ‘Hello’’.charAt(0) evaluates to ‘H'.

You can check the Java Documentation to see all of the methods and
how they work
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Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method
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Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 17



Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

@ Because of how Java handles Strings, this is ok like 95% of the time
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Checking String Equality? use .equals()

Equality Testing

Do not use == to compare reference data types, use the .equals() method

o == will check whether the two things are taking up the same the
memory address on your computer, not whether the content of them
is the same

@ Because of how Java handles Strings, this is ok like 95% of the time

@ But 5% of the time your program will be wrong and you'll be
confused!
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Variables and Assignments

@ To create a variable we declare it:
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Variables and Assignments

@ To create a variable we declare it:

int exampleVar;
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Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
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Variables and Assignments

@ To create a variable we declare it:

int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables

int exampleVar = 5;
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Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)
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Variables and Assignments

To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:
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Variables and Assignments

@ To create a variable we declare it:
int exampleVar;
@ Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables
int exampleVar = 5;

o If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:

int exampleVar = b;
exampleVar = 10;

System.out.println(exampleVar);
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Variables and Assignments

@ To create a variable we declare it:

int exampleVar;

Since Java is statically typed, we must include types
@ We use = to assign values when declaring variables

int exampleVar = 5;

If we don't initially define them, variables will default to some value
depending on their type (e.g. 0, false, null)

@ We can reassign variables by using = again:

int exampleVar = b;
exampleVar = 10;

System.out.println(exampleVar);

Naming Conventions: lowerCamelCase for regular variables,
UPPER_SNAKE_CASE for constants (e.g. double PI = 3.14;)
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Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19



Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

o Java will automatically “cast up” number primitives to the larger sets
of numbers:

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 19



Converting Between Types

@ While we can't change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
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int examplelnt = 5;
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Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = examplelnt;

@ We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;
int exampleInt = (int) exampleDouble; //equals 5
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Converting Between Types

@ While we can’t change a variables type we can cast from one type to
another

@ Java will automatically “cast up” number primitives to the larger sets
of numbers:

int exampleInt = 5;

double exampleDouble = examplelnt;

@ We can manually “cast down” number primitives into the smaller sets
of numbers:

double exampleDouble = 5.6;
int exampleInt = (int) exampleDouble; //equals 5

@ All Reference Types will have a built-in .toString() method to convert
to String
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");
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private, static)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025

20



Methods

@ We have seen a number of methods (functions) so far, now let's see
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type
o If a method returns a value it will have a return statement inside the
body of the code
o If a method doesn’t return anything, it's return type is void
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return str.tolLowerCase().contains("bob");

}

o Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase
o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase

o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

@ A method's inputs can only be accessed inside that specific method's
body
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.tolLowerCase().contains("bob");

}

@ Every method starts with its signature which uniquely identifies it
o The first part of the signature are any modifiers (e.g. public,
private, static)
e The second part is the return type (e.g. boolean, int, void)
e The third part is the method name, we use lowerCamelCase
o The final is its arguments, a list of inputs (and their types) that must
supplied to call the method

@ Two methods can have the same name but cannot have the same
signature
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

@ Between the curly brackets is a method's body, it is where we write
our code
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how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write

our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside

conditionals)
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside
conditionals)

@ When we call a method, the expression has that method’s type, and
thus we can curry function calls:
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Methods

@ We have seen a number of methods (functions) so far, now let's see
how to define them

public static boolean hidesBob(String str) {

return str.toLowerCase().contains("bob");

}

@ Between the curly brackets is a method's body, it is where we write
our code

o If the method’s return type is not void, the body must use the
return keyword to return a value of the correct type

@ In void methods we can use return; to halt the method (e.g. inside
conditionals)

@ When we call a method, the expression has that method’s type, and
thus we can curry function calls:

e str.toLowerCase() is a String, so we can call .contains("bob");
on it directly

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 21



Calling Methods

@ We have seen how to call methods using the the dot operator

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22



Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22



Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)
o We use the dot operator on a specific instance of a class

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 22
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@ We have seen how to call methods using the the dot operator
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o We use the dot operator on a specific instance of a class
e ‘‘Hello’’.charAt(3);
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Calling Methods

@ We have seen how to call methods using the the dot operator
@ So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
o ‘‘Hello’’.charAt(3);
e Instance methods behave differently on different instances

@ static methods do not depend on the specific instance and are for the
class as a whole
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Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class

o ‘‘Hello’’.charAt(3);

o Instance methods behave differently on different instances
@ static methods do not depend on the specific instance and are for the
class as a whole

@ static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name
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Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class

o ‘‘Hello’’.charAt(3);

o Instance methods behave differently on different instances
@ static methods do not depend on the specific instance and are for the
class as a whole

@ static mathods often belong to utility classes that just bundle
together useful functions

To call them we use the dot operator on the class name
o Math.min(int a, int b);
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Calling Methods

We have seen how to call methods using the the dot operator

So far we've called instance methods (i.e. non-static)

o We use the dot operator on a specific instance of a class
o ‘‘Hello’’.charAt(3);
e Instance methods behave differently on different instances

@ static methods do not depend on the specific instance and are for the
class as a whole
@ static mathods often belong to utility classes that just bundle
together useful functions
@ To call them we use the dot operator on the class name
o Math.min(int a, int b);

@ Math and Integer are some classes with useful static methods
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Conditionals in Java

o Conditionals in Java work just like in Scratch
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Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {

//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true
} else {

//runs if neither are true

Tim Jackman (BU Summer Challenge) Intro to Java July 8th, 2025 23



Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true

} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans
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Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {

//runs if conditionA is true
} else if (conditionB) {

//runs if conditionA is false and conditionB is true
} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans

@ Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)
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Conditionals in Java

o Conditionals in Java work just like in Scratch

if (conditionA) {
//runs if conditionA is true

} else if (conditionB) {

//runs if conditionA is false and conditionB is true

} else {

//runs if neither are true

@ The conditions can be boolean expressions, boolean variables, or
methods that return booleans
@ Avoid writing conditions involving booleans like (boolVar == true)
or (boolVar == false)
e You can just write (boolVar) or (!boolVar)
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Loops in Java

@ There are two basic types of loops in Java: while and for loops
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Loops in Java

@ There are two basic types of loops in Java: while and for loops

@ while loops are kind of like until loops in Scratch but the opposite

while (conditionA) {

//iterates if conditionA is true
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Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general
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Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false
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Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop
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@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

o statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true
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Loops in Java

@ There are two basic types of loops in Java: while and for loops
@ while loops are kind of like until loops in Scratch but the opposite

@ for loops are like repeat loops in Scratch but more general

for (statementA; statementB; statementC) {

//iterates until statementB is false

}

@ Before the first iteration of the loop statementA is executed: typically
initiating a temporary variable that controls the loop

o statementB is a condition. Before any iteration of the loop,
statementB is evaluated and the nested code only runs if it evaluates
to true

@ At the end of a loop iteration, statementC is run: typically
incrementing the temporary variable
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Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);
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Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)
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Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)

@ Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable's scope)
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Example Loop

for (int i = 0; i < 10; i++) {

System.out.println(i);

e Typically our temporary loop variables are called i, j, k (if we're
nesting loops)

@ Temporary loop variables are removed after the loop is done, they can
only be referenced in the loop (we call this the variable's scope)

@ We have a lot of control here with the third statement
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Challenge

o Create a FizzBuzz file that when run prints the integers 1 through
100, replacing multiples of 3 with Fizz, multiples of 5 with Buzz, and
multiples of both with FizzBuzz.

@ As an extra challenge, modify the program to take a command line
argument for the upper bound (e.g. java FizzBuzz 45 does 1
through 45). You'll need to look at the Integer class documentation
to find a helpful static method.

@ As an extra extra challenge, modify it to loop through only the even
integers, and replace multiples of 6 and 10 with Fizz and Buzz (and
FizzBuzz)!
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