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Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2



Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

@ But there are many algorithms to solve the same problem

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2



Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

@ But there are many algorithms to solve the same problem

@ How do we assess what algorithms are “better” than others?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2



Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

But there are many algorithms to solve the same problem

How do we assess what algorithms are “better” than others?

@ There's not always one “best” algorithm for a problem. It often
depends on our situation
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Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?
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Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?
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Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?

@ We might prioritize one or the other or try to find a healthy balance.
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Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?

@ We might prioritize one or the other or try to find a healthy balance.

@ Today we will focus on “running time".
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?
o We could implement the algorithm and run it and time the
computation
o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?
o We could implement the algorithm and run it and time the
computation
o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program

@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

e Write our analysis as a function of how large our input is (e.g. for an
array of size n, it takes n?> + n — 5 steps)
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Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

e Write our analysis as a function of how large our input is (e.g. for an
array of size n, it takes n?> + n — 5 steps)

@ Algorithms can behave differently for two arrays of the same size

o Worst case analysis: What's the maximum number of steps an
algorithm could take?
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Analyzing search

@ On your homework, you implemented search that finds an element
in the array.
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Analyzing search

@ On your homework, you implemented search that finds an element

in the array.
public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;
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Analyzing search

@ On your homework, you implemented search that finds an element

in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;

@ Worst case is s is not there

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5



Analyzing search

@ On your homework, you implemented search that finds an element
in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}
return -1;
@ Worst case is s is not there

e We'll count "basic” actions as 1 step (i.e. accessing the array,
checking equality)
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Analyzing search

@ On your homework, you implemented search that finds an element
in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;
}
@ Worst case is s is not there

e We'll count "basic” actions as 1 step (i.e. accessing the array,
checking equality)

@ We have to loop through the entire array, and each iteration we do 2
actions so roughly 2n steps
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Binary Search

o If arr is sorted in alphabetical order, we can use binary search
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o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.
o If m=s, we are done.
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Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.
o If s < m, then s is to the left of m (or not in the array)
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Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.
o If s < m, then s is to the left of m (or not in the array)
o If s > m then s is to the right of m (or not in the array)
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Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.

o If s < m, then s is to the left of m (or not in the array)

o If s > m then s is to the right of m (or not in the array)

@ We repeat the above step with the half of the array that s must be in
if it is in the array.
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Binary Search Example

) search({llall, IIbll, IICII’ lldll, IIell, llfll’ llgll, IIhll, llill’
||j n s llkll s lllll s ||mll s lln" s lloll s llell)
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Binary Search Example

o search({llall ||b|| IICII lldll ||e|| llfll llgll ||hl| llill
s b b s b b s s’ b
||jll’ llkll, lllll’ ||mll’ "n", lloll s llell)
o We compare the middle element, h, to e and see e < h so e must be to
the left.
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the left.
o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.
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o search({llall, IIbll, IICII’ lldll, IIell, llfll’ llgll, IIhll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.
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Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!
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Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.
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Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, llill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.

@ In general, if there are ~ 2 elements, it takes k iterations.
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Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, llill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.
@ In general, if there are ~ 2 elements, it takes k iterations.

@ So an array of size n takes roughly 2 - log, n steps.
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Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.
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Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:
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slowly sort the array by searching the unsorted portion of the array for
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for (int j = i; j < arr.length; i++) {
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Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.
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Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.

@ Total number of iterationsis1 +2+3+...4+n

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025



Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.

@ Total number of iterationsis1 +2+3+...4+n

: n(ntl) _ 1.2 1
@ This sum actually equals ==~ = 5n° + 5n
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Sorting

@ There are other sorting algorithms, like bubble sort
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}

@ In the worst case, it takes an element n iterations for an element to
reach its correct position
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Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}

@ In the worst case, it takes an element n iterations for an element to
reach its correct position

e Each iteration makes n — 1 comparisons, for a total of n(n — 1)
iterations.
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Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:
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Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.
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Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.

@ In general, there are 2" combinations
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Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.
@ In general, there are 2" combinations

o If we wanted to check whether a formula was ever true for any
combination, we have to check 2" combinations.
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Comparing These Running Times

Search Binary Search  Selection Sort Bubble Sort Booleans
Steps 2n 2log,(n) 3(n® + n) n?—n 2"
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Comparing These Running Times

Search

Steps 2n

5000
4000

3000

Number of Steps.

2000

1000

Binary Search  Selection Sort
2log,(n) %(n2 + n)

Growth of Common Algorithmic Functions

Bubble Sort

n2—n
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Analyzing Algorithms
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Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n®> — n? + n)
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Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n®> — n? + n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")
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Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:
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Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:

e n® — n?+ 1000 = O(n®)
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Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:

e n® — n?+ 1000 = O(n®)

o If an algorithm doesn’t take longer as the input gets longer, we say it

is O(1).
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Practice vs Theory

o In theoretical CS, algorithms that are O(n*) are often called efficient
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o In theoretical CS, algorithms that are O(n*) are often called efficient
e A O(2") algorithm would be inefficient
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Practice vs Theory

o In theoretical CS, algorithms that are O(n*) are often called efficient
e A O(2") algorithm would be inefficient

e In real life, O(n) and O(nlog,(n)) algorithms are often called efficient
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Practice vs Theory

In theoretical CS, algorithms that are O(n*) are often called efficient
A O(2") algorithm would be inefficient
In real life, O(n) and O(nlog,(n)) algorithms are often called efficient

Even O(n?) might be too much in practice
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