Analyzing Algorithms

How do we know if our code is good at it's job?

Tim Jackman

BU Summer Challenge

July 15th, 2025

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2

Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

@ But there are many algorithms to solve the same problem

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2

Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

@ But there are many algorithms to solve the same problem

@ How do we assess what algorithms are “better” than others?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 2

Abundant Algorithms

@ So far we've talked about how to implement algorithms into computer
programs in order to solve problems

But there are many algorithms to solve the same problem

How do we assess what algorithms are “better” than others?

@ There's not always one “best” algorithm for a problem. It often
depends on our situation

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 3

Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 3

Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?

@ We might prioritize one or the other or try to find a healthy balance.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 3

Time and Space

@ The most straightforward way to judge is on “running time": How
long does it take the algorithm to run?

@ We can also judge them on “space”: How many bits of memory does
the algorithm take to run?

@ We might prioritize one or the other or try to find a healthy balance.

@ Today we will focus on “running time".

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 3

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?
o We could implement the algorithm and run it and time the
computation
o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Analyzing Running Time

@ How can we analyze the running time of an algorithm?
o We could implement the algorithm and run it and time the
computation
o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program

@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

e Write our analysis as a function of how large our input is (e.g. for an
array of size n, it takes n?> + n — 5 steps)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

e Write our analysis as a function of how large our input is (e.g. for an
array of size n, it takes n?> + n — 5 steps)

@ Algorithms can behave differently for two arrays of the same size

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing Running Time

@ How can we analyze the running time of an algorithm?

o We could implement the algorithm and run it and time the
computation

o Different computers can take different amounts of time to run the
same program
@ Analyze the algorithm mathematically and try to count how many
steps the algorithm takes

@ The same algorithm can take a different number of steps depending
on the input (e.g. how large the input array is)

e Write our analysis as a function of how large our input is (e.g. for an
array of size n, it takes n?> + n — 5 steps)

@ Algorithms can behave differently for two arrays of the same size

o Worst case analysis: What's the maximum number of steps an
algorithm could take?

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 4

Analyzing search

@ On your homework, you implemented search that finds an element
in the array.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5

Analyzing search

@ On your homework, you implemented search that finds an element

in the array.
public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5

Analyzing search

@ On your homework, you implemented search that finds an element

in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;

@ Worst case is s is not there

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5

Analyzing search

@ On your homework, you implemented search that finds an element
in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}
return -1;
@ Worst case is s is not there

e We'll count "basic” actions as 1 step (i.e. accessing the array,
checking equality)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5

Analyzing search

@ On your homework, you implemented search that finds an element
in the array.

public static int search(String[] arr, String s) {
for (int i = 0; i <n; i=1+ 1) {
if (arr[i].equals(s)) {
return i;

}

return -1;
}
@ Worst case is s is not there

e We'll count "basic” actions as 1 step (i.e. accessing the array,
checking equality)

@ We have to loop through the entire array, and each iteration we do 2
actions so roughly 2n steps

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 5

Binary Search

o If arr is sorted in alphabetical order, we can use binary search

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 6

Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 6

Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.
o If m=s, we are done.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 6

Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.
o If s < m, then s is to the left of m (or not in the array)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 6

Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.
o If s < m, then s is to the left of m (or not in the array)
o If s > m then s is to the right of m (or not in the array)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Binary Search

o If arr is sorted in alphabetical order, we can use binary search
@ We check the middle element m and compare it to s.

o If m=s, we are done.

o If s < m, then s is to the left of m (or not in the array)

o If s > m then s is to the right of m (or not in the array)

@ We repeat the above step with the half of the array that s must be in
if it is in the array.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 6

Binary Search Example

) search({llall, IIbll, IICII’ lldll, IIell, llfll’ llgll, IIhll, llill’
||j n s llkll s lllll s ||mll s lln" s lloll s llell)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

o search({llall ||b|| IICII lldll ||e|| llfll llgll ||hl| llill
s b b s b b s s’ b
||jll’ llkll, lllll’ ||mll’ "n", lloll s llell)
o We compare the middle element, h, to e and see e < h so e must be to
the left.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

o search({llall, IIbll, IICII’ lldll, IIell, llfll’ llgll, IIhll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)
o We compare the middle element, h, to e and see e < h so e must be to
the left.
o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

o search({llall, IIbll, IICII’ lldll, IIell, llfll’ llgll, IIhll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, Ilill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 7

Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, llill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.

@ In general, if there are ~ 2 elements, it takes k iterations.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Binary Search Example

) search({llall, ||b||, IICII’ lldll, ||e||, llfll’ llgll, ||hll, llill’
||jll’ llkll, lllll’ ||mll’ "nll, lloll s llell)

o We compare the middle element, h, to e and see e < h so e must be to
the left.

o We compare the middle element of the left half, d to e and see e > d
so e must be to the right.

e We compare the middle element of the second quadrant, f to e and
see e < f so e must be to the right.

o We get down to a single element, e and compare it and see that we
found it!

@ This 15 element array took 3 iterations.
@ In general, if there are ~ 2 elements, it takes k iterations.

@ So an array of size n takes roughly 2 - log, n steps.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 8

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 8

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 8

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.

@ Total number of iterationsis1 +2+3+...4+n

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025

Sorting

@ On your homework we implemented selection sort, where we
slowly sort the array by searching the unsorted portion of the array for
the minimum and then moving it to the front.

@ If we wrote this without a helper function, we would use a double
for-loop:

for (int i = 0; i < arr.length; i++) {

for (int j = i; j < arr.length; i++) {

@ When / = 0, the inner for loop runs n times. When / = 1, the inner
loop runs n — 1 times. In general the inner loop runs n — i times.

@ Total number of iterationsis1 +2+3+...4+n

: n(ntl) _ 1.2 1
@ This sum actually equals ==~ = 5n° + 5n

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 8

Sorting

@ There are other sorting algorithms, like bubble sort

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}

@ In the worst case, it takes an element n iterations for an element to
reach its correct position

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Sorting

@ There are other sorting algorithms, like bubble sort

@ In bubble sort, we loop over the array until it is sorted. During each
iteration, we compare each adjacent element. If they are not in
increasing order we swap the two positions.

@ For example, if the array is {1, 5, 3, 2} we loop through the array
as such:

o We compare 1 and 5 and they are both in the correct order, so we do
nothing.

o We compare 5 and 3 and they aren't in the correct order, so we swap
them.

o We compare 5 and 2 and they are not in the correct order, so we swap
them.

o After one iteration, we get {1, 3, 2, 5}

@ In the worst case, it takes an element n iterations for an element to
reach its correct position

e Each iteration makes n — 1 comparisons, for a total of n(n — 1)
iterations.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 9

Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 10

Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 10

Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.

@ In general, there are 2" combinations

July 15th, 2025 10

Tim Jackman (BU Summer Challenge) Analyzing Algorithms

Exponential Brute Force

o If we a Boolean formula with 2 variables x and y, there are 4
combinations of truth-values we can assign x and y:

oex=T,y=T,orx=T,y=F,orx=F,y=T,orx=F,y=F.
@ In general, there are 2" combinations

o If we wanted to check whether a formula was ever true for any
combination, we have to check 2" combinations.

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 10

Comparing These Running Times

Search Binary Search Selection Sort Bubble Sort Booleans
Steps 2n 2log,(n) 3(n® + n) n?—n 2"

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 11

Comparing These Running Times

Search

Steps 2n

5000
4000

3000

Number of Steps.

2000

1000

Binary Search Selection Sort
2log,(n) %(n2 + n)

Growth of Common Algorithmic Functions

Bubble Sort

n2—n

Tim Jackman (BU Summer Challenge)

20 20 60
n (Input Size)

Analyzing Algorithms

80 100

Booleans
:2[1

July 15th, 2025

11

Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n®> — n? + n)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 12

Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n®> — n? + n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 12

Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 12

Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:

e n® — n?+ 1000 = O(n®)

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 12

Big O Notation

o As n gets bigger, coefficients matter less (e.g. 2n vs 3n), smaller
powers matter less (e.g. n® vs n® — n? 4 n)

o What matters is the leading term (e.g. log n vs n vs n? vs 2")

o We use Big O Notation to hide these coefficients and lower order
terms:

e n® — n?+ 1000 = O(n®)

o If an algorithm doesn’t take longer as the input gets longer, we say it

is O(1).

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 12

Practice vs Theory

o In theoretical CS, algorithms that are O(n*) are often called efficient

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 13

Practice vs Theory

o In theoretical CS, algorithms that are O(n*) are often called efficient
e A O(2") algorithm would be inefficient

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 13

Practice vs Theory

o In theoretical CS, algorithms that are O(n*) are often called efficient
e A O(2") algorithm would be inefficient

e In real life, O(n) and O(nlog,(n)) algorithms are often called efficient

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 13

Practice vs Theory

In theoretical CS, algorithms that are O(n*) are often called efficient
A O(2") algorithm would be inefficient
In real life, O(n) and O(nlog,(n)) algorithms are often called efficient

Even O(n?) might be too much in practice

Tim Jackman (BU Summer Challenge) Analyzing Algorithms July 15th, 2025 13

