Theoretical Computer Science
The Mathematics of Problem Solving

Tim Jackman

BU Summer Challenge

July 16th, 2025

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Theory

@ Today we'll be talking about theoretical computer science

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation
@ Given a problem, we can ask:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation
@ Given a problem, we can ask:
o Can a computer solve it?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation
@ Given a problem, we can ask:

o Can a computer solve it?
e How fast can a computer solve it?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Theory

@ Today we'll be talking about theoretical computer science
@ This area studies the mathematical foundation of computation

@ Given a problem, we can ask:

o Can a computer solve it?
e How fast can a computer solve it?
o What's the fastest a computer could ever solve it?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation
@ Given a problem, we can ask:

Can a computer solve it?

How fast can a computer solve it?

What's the fastest a computer could ever solve it?

How much space does a computer need to solve it?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Theory

Today we'll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:
o Can a computer solve it?
e How fast can a computer solve it?
o What's the fastest a computer could ever solve it?
e How much space does a computer need to solve it?

Today we'll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

@ Today we will be looking at decision problems: problems where the
answer is “yes” or "no"”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

@ Today we will be looking at decision problems: problems where the
answer is “yes” or "no"”

@ Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

@ Today we will be looking at decision problems: problems where the
answer is “yes” or "no"”

@ Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

@ Not all decision problems are solvable in general: “will program A
ever stop running on input x?"

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

@ Today we will be looking at decision problems: problems where the
answer is “yes” or "no"”

@ Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

@ Not all decision problems are solvable in general: “will program A
ever stop running on input x?"

@ Today we'll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:
o Is String s in String][] arg?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

o Is String s in String][] arg?
o Is String s in the sorted String][] arg?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

o Is String s in String][] arg?
o Is String s in the sorted String][] arg?
e Is String s a palindrome?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Is String s in String][] arg?

o Is String s in the sorted String][] arg?
e Is String s a palindrome?

e Does this array have duplicates?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Is String s in String][] arg?
o Is String s in the sorted String][] arg?
e Is String s a palindrome?
e Does this array have duplicates?
@ These are all efficiently solvable in polynomial time - O(n*) where k
is a constant

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:
Is String s in String][] arg?

o Is String s in the sorted String][] arg?

e Is String s a palindrome?

e Does this array have duplicates?

@ These are all efficiently solvable in polynomial time - O(n*) where k
is a constant

@ The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

@ Given a purported solution, it's easy to verify: plug in and evaluate -

O(n)

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true
e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments
@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)
@ Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true
e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments
@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)
@ Verification Problems: Given a specific “solution,” answer “yes/no’
to the decision problem
o If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)
@ Verification Problems: Given a specific “solution,” answer “yes/no’
to the decision problem
o If the “solution” is “bad” we can say “no”, even if the answer is

actually “yes”
e Only requirement is that if the solution is “good”, we say ‘“yes”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true
e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)

@ Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

o If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
e Only requirement is that if the solution is “good”, we say ‘“yes”

@ The set of efficiently verifiable (polynomial time) decision problems is
called NP

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)

@ Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

o If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
e Only requirement is that if the solution is “good”, we say ‘“yes”

@ The set of efficiently verifiable (polynomial time) decision problems is
called NP

e NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

The Biggest Question in Computer Science

@ Every problem in P is also in NP

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? l.e. Is P = N'P?
o This is called the "P vs NP" problem

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

@ Far reaching consequences if they are the same:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

@ Far reaching consequences if they are the same:
o Is x the password to your bank account?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

@ Far reaching consequences if they are the same:

o Is x the password to your bank account?
e A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array

@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array

@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A

@ These reductions use a solution to A a subroutine to solve B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array

@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A

@ These reductions use a solution to A a subroutine to solve B

@ Sometimes we can “transform” an instance of problem B into an
instance of problem A

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array
@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A
@ These reductions use a solution to A a subroutine to solve B

@ Sometimes we can “transform” an instance of problem B into an
instance of problem A

e Once we do this “transformation,” we can just call the solution to A
and copy it's answer

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:
e Finding duplicates in an array is simple once we sort the array
@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A
@ These reductions use a solution to A a subroutine to solve B
@ Sometimes we can “transform” an instance of problem B into an
instance of problem A
e Once we do this “transformation,” we can just call the solution to A
and copy it's answer
@ If the reduction and the solution to A are both efficient then we can
solve B efficiently

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array
@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A
@ These reductions use a solution to A a subroutine to solve B

@ Sometimes we can “transform” an instance of problem B into an
instance of problem A
e Once we do this “transformation,” we can just call the solution to A
and copy it's answer
@ If the reduction and the solution to A are both efficient then we can
solve B efficiently

@ An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
@ If we can solve Boolean Satisfiability efficiently, then NP = P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
@ If we can solve Boolean Satisfiability efficiently, then NP = P

@ This property is called “NP-completeness”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Hardest Verification Problems

It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
If we can solve Boolean Satisfiability efficiently, then NP = P

This property is called “NP-completeness”

o If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025

The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability

@ If we can solve Boolean Satisfiability efficiently, then NP = P

@ This property is called “NP-completeness”

o If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

e It certainly can't be solved in polynomial time with the current state of
computer science

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability

@ If we can solve Boolean Satisfiability efficiently, then NP = P

@ This property is called “NP-completeness”

o If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

e It certainly can't be solved in polynomial time with the current state of
computer science

Let's try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 9

null

Other

4.153477

A Real Example - Super Mario Maker

@ Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

@ Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

@ Players can play random mario levels that have been uploaded

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

@ Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

@ Players can play random mario levels that have been uploaded

@ Nintendo doesn't like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

@ Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

@ Players can play random mario levels that have been uploaded

@ Nintendo doesn't like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

@ Some people are really good at designing hard levels, but cannot beat
them themselves

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

@ Players can play random mario levels that have been uploaded

@ Nintendo doesn't like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

@ Some people are really good at designing hard levels, but cannot beat
them themselves

o If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'X8\/—\X10)/\(...)...

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'Xg\/—\Xlo)/\(...)...

o Each V of three variables (or their negations) is called a clause

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'X8\/—\X10)/\(...)...

o Each V of three variables (or their negations) is called a clause
o 3-SAT is also NP-complete

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'X3\/—\X10)/\(...)...

o Each V of three variables (or their negations) is called a clause
o 3-SAT is also NP-complete

@ We will take each clause and each variable and represent it in Mario

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'X3\/—\X10)/\(...)...

o Each V of three variables (or their negations) is called a clause
o 3-SAT is also NP-complete
@ We will take each clause and each variable and represent it in Mario

@ Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?
o Not very extendable, there's a limited number of power ups in the game

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit

@ How do we represent a clause? How to represent V7?7

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit

@ How do we represent a clause? How to represent V7?7

e Each clause will be a room, and you can only get to the other side if
the clause evaluates to true

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:

@ How can we represent a variable? What does it mean for a variable to
be true/false?

o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit

@ How do we represent a clause? How to represent V7?7

e Each clause will be a room, and you can only get to the other side if
the clause evaluates to true

e Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:
@ How can we represent a variable? What does it mean for a variable to
be true/false?
o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit
@ How do we represent a clause? How to represent V7?7
e Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
e Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

@ Representing A is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

@ This reduction is “straightforward” to compute

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

@ So it looks like level creators will just need to “git gud” as gamers say

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

@ So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(avbVvd)A(avbV-c)A(avVdV=b)A(bVcV-d)A
(bV—-aV-c)A(cVvdV-a)A(cV-bV-d)A(—-aV-bV-c)

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

@ So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(avbVvd)A(avbV-c)A(avVdV=b)A(bVcV-d)A
(bv=aVv-c)A(cvdV=a)A(cV-bV-ad)A(—aV-bV-c)

Let's load up Mario Maker and find out!

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Temporary page!

IATEX was unable to guess the total number of pages correctly.
was some unprocessed data that should have been added to the
this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus pag
away, because IATEX now knows how many pages to expect for 1
document.

	fd@rm@0:

