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Theory

@ Today we'll be talking about theoretical computer science

@ This area studies the mathematical foundation of computation
@ Given a problem, we can ask:

Can a computer solve it?

How fast can a computer solve it?

What's the fastest a computer could ever solve it?

How much space does a computer need to solve it?
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Theory

Today we'll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:
o Can a computer solve it?
e How fast can a computer solve it?
o What's the fastest a computer could ever solve it?
e How much space does a computer need to solve it?

Today we'll be focused again on speed
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What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.
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What Is A Problem?

@ There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

@ Today we will be looking at decision problems: problems where the
answer is “yes” or "no"”

@ Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

@ Not all decision problems are solvable in general: “will program A
ever stop running on input x?"

@ Today we'll be talking about solvable decision problems, and how fast
they can be solved.
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Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4



Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:
o Is String s in String][] arg?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4



Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

o Is String s in String][] arg?
o Is String s in the sorted String][] arg?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4



Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

o Is String s in String][] arg?
o Is String s in the sorted String][] arg?
e Is String s a palindrome?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4



Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Is String s in String][] arg?

o Is String s in the sorted String][] arg?
e Is String s a palindrome?

e Does this array have duplicates?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025



Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:

Is String s in String][] arg?
o Is String s in the sorted String][] arg?
e Is String s a palindrome?
e Does this array have duplicates?
@ These are all efficiently solvable in polynomial time - O(n*) where k
is a constant
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Some Problems Can Be Solved Fast

@ We've seen a number of solvable decision problems:
Is String s in String][] arg?

o Is String s in the sorted String][] arg?

e Is String s a palindrome?

e Does this array have duplicates?

@ These are all efficiently solvable in polynomial time - O(n*) where k
is a constant

@ The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4



Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true
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Some Problems Can Be Verified Fast

@ Recall the problem of checking whether a Boolean formula can ever
evaluate to true

e This is called the Boolean Satisfiability Problem
e Seems to require brute force over all 2" combinations of assignments

@ Given a purported solution, it's easy to verify: plug in and evaluate -
O(n)

@ Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

o If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
e Only requirement is that if the solution is “good”, we say ‘“yes”

@ The set of efficiently verifiable (polynomial time) decision problems is
called NP

e NP stands for Nondeterministic Polynomial Time, not Not
Polynomial
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@ Every problem in P is also in NP
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The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? l.e. Is P = N'P?
o This is called the "P vs NP" problem
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@ Is the reverse also true? le. Is P = NP?
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The Biggest Question in Computer Science

@ Every problem in P is also in NP
@ Is the reverse also true? le. Is P = NP?

o This is called the "P vs NP" problem
o There is a $1,000,000 prize for solving this problem
e Your name would go down in history

@ Far reaching consequences if they are the same:

o Is x the password to your bank account?
e A lot of cryptography depend on verification being easy but solving
being hard
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Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:
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e Finding duplicates in an array is simple once we sort the array
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to A, written B < A
@ These reductions use a solution to A a subroutine to solve B
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instance of problem A
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and copy it's answer
@ If the reduction and the solution to A are both efficient then we can
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Solving Problems to Solve Other Problems

@ We've seen how problems become “easy” once we solve another
problem:

e Finding duplicates in an array is simple once we sort the array
@ If solving problem A allows us to solve problem B, we say B reduces
to A, written B < A
@ These reductions use a solution to A a subroutine to solve B

@ Sometimes we can “transform” an instance of problem B into an
instance of problem A
e Once we do this “transformation,” we can just call the solution to A
and copy it's answer
@ If the reduction and the solution to A are both efficient then we can
solve B efficiently

@ An efficient reduction says that problem A is “harder” than B
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The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
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The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
@ If we can solve Boolean Satisfiability efficiently, then NP = P

@ This property is called “NP-completeness”
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The Hardest Verification Problems

It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability
If we can solve Boolean Satisfiability efficiently, then NP = P

This property is called “NP-completeness”

o If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”
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The Hardest Verification Problems

@ It turns out that every N'P problem efficiently reduces to Boolean
Satisfiability

@ If we can solve Boolean Satisfiability efficiently, then NP = P

@ This property is called “NP-completeness”

o If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

e It certainly can't be solved in polynomial time with the current state of
computer science

Let's try showing a real problem is “hard”
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A Real Example - Super Mario Maker

@ Super Mario Maker 2 is a Nintendo Switch Game where you make
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A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

@ Players can play random mario levels that have been uploaded

@ Nintendo doesn't like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

@ Some people are really good at designing hard levels, but cannot beat
them themselves

o If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?
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Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level
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Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form
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Reducing to Mario Maker

o We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

o We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(X1 \/X7\/_‘Xlo)/\(Xz\/—'X3\/—\X10)/\(...)...

o Each V of three variables (or their negations) is called a clause
o 3-SAT is also NP-complete
@ We will take each clause and each variable and represent it in Mario

@ Beating the Mario level will be equivalent to finding an assignment of
the variables that
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Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:
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Reducing to Mario Maker

@ We will break the problem down like always, and try to solve each
individual part:
@ How can we represent a variable? What does it mean for a variable to
be true/false?
o Power ups?
o Not very extendable, there's a limited number of power ups in the game
o Shells for each variable, and they can either move or sit
@ How do we represent a clause? How to represent V7?7
e Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
e Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

@ Representing A is easy: we just chain rooms together
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Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

@ So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(avbVvd)A(avbV-c)A(avVdV=b)A(bVcV-d)A
(bV—-aV-c)A(cVvdV-a)A(cV-bV-d)A(—-aV-bV-c)
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Reducing to Mario Maker

@ This reduction is “straightforward” to compute

@ If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

@ So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(avbVvd)A(avbV-c)A(avVdV=b)A(bVcV-d)A
(bv=aVv-c)A(cvdV=a)A(cV-bV-ad)A(—aV-bV-c)

Let's load up Mario Maker and find out!
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