
Theoretical Computer Science
The Mathematics of Problem Solving

Tim Jackman

BU Summer Challenge

July 16th, 2025

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 1

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?

How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?

What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?

How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

Theory

Today we’ll be talking about theoretical computer science

This area studies the mathematical foundation of computation

Given a problem, we can ask:

Can a computer solve it?
How fast can a computer solve it?
What’s the fastest a computer could ever solve it?
How much space does a computer need to solve it?

Today we’ll be focused again on speed

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 2

What Is A Problem?

There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Today we will be looking at decision problems: problems where the
answer is “yes” or ”no”

Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Not all decision problems are solvable in general: “will program A
ever stop running on input x?”

Today we’ll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Today we will be looking at decision problems: problems where the
answer is “yes” or ”no”

Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Not all decision problems are solvable in general: “will program A
ever stop running on input x?”

Today we’ll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Today we will be looking at decision problems: problems where the
answer is “yes” or ”no”

Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Not all decision problems are solvable in general: “will program A
ever stop running on input x?”

Today we’ll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Today we will be looking at decision problems: problems where the
answer is “yes” or ”no”

Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Not all decision problems are solvable in general: “will program A
ever stop running on input x?”

Today we’ll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

What Is A Problem?

There are multiple types of problems: yes-no, search problems (e.g.
find any x such that...), optimization (i.e. find the minimum size
solution), etc.

Today we will be looking at decision problems: problems where the
answer is “yes” or ”no”

Problems are sets of specific instances, for example “is x prime?” is a
problem, “is 100010101 prime?” is an instance

Not all decision problems are solvable in general: “will program A
ever stop running on input x?”

Today we’ll be talking about solvable decision problems, and how fast
they can be solved.

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 3

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?
Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?

Is String s in the sorted String[] arg?
Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?

Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?
Is String s a palindrome?

Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?
Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?
Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Solved Fast

We’ve seen a number of solvable decision problems:

Is String s in String[] arg?
Is String s in the sorted String[] arg?
Is String s a palindrome?
Does this array have duplicates?

These are all efficiently solvable in polynomial time - O(nk) where k
is a constant

The set of all decision problems solvable in polynomial time is called P

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 4

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem

Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”

Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP

NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

Some Problems Can Be Verified Fast

Recall the problem of checking whether a Boolean formula can ever
evaluate to true

This is called the Boolean Satisfiability Problem
Seems to require brute force over all 2n combinations of assignments

Given a purported solution, it’s easy to verify: plug in and evaluate -
O(n)

Verification Problems: Given a specific “solution,” answer “yes/no”
to the decision problem

If the “solution” is “bad” we can say “no”, even if the answer is
actually “yes”
Only requirement is that if the solution is “good”, we say “yes”

The set of efficiently verifiable (polynomial time) decision problems is
called NP
NP stands for Nondeterministic Polynomial Time, not Not
Polynomial

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 5

The Biggest Question in Computer Science

Every problem in P is also in NP

Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem

There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem

Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?

A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

The Biggest Question in Computer Science

Every problem in P is also in NP
Is the reverse also true? I.e. Is P = NP?

This is called the “P vs NP” problem
There is a $1,000,000 prize for solving this problem
Your name would go down in history

Far reaching consequences if they are the same:

Is x the password to your bank account?
A lot of cryptography depend on verification being easy but solving
being hard

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 6

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

Solving Problems to Solve Other Problems

We’ve seen how problems become “easy” once we solve another
problem:

Finding duplicates in an array is simple once we sort the array

If solving problem A allows us to solve problem B, we say B reduces
to A, written B ≤ A

These reductions use a solution to A a subroutine to solve B

Sometimes we can “transform” an instance of problem B into an
instance of problem A

Once we do this “transformation,” we can just call the solution to A
and copy it’s answer

If the reduction and the solution to A are both efficient then we can
solve B efficiently

An efficient reduction says that problem A is “harder” than B

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 7

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P
This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P

This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P
This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P
This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P
This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

The Hardest Verification Problems

It turns out that every NP problem efficiently reduces to Boolean
Satisfiability

If we can solve Boolean Satisfiability efficiently, then NP = P
This property is called “NP-completeness”

If we show Boolean Satisfiability reduces to another problem, that
means that problem is (likely) “hard”

It certainly can’t be solved in polynomial time with the current state of
computer science

Let’s try showing a real problem is “hard”

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 8

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 9

null

Other

4.153477

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Players can play random mario levels that have been uploaded

Nintendo doesn’t like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Some people are really good at designing hard levels, but cannot beat
them themselves

If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Players can play random mario levels that have been uploaded

Nintendo doesn’t like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Some people are really good at designing hard levels, but cannot beat
them themselves

If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Players can play random mario levels that have been uploaded

Nintendo doesn’t like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Some people are really good at designing hard levels, but cannot beat
them themselves

If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Players can play random mario levels that have been uploaded

Nintendo doesn’t like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Some people are really good at designing hard levels, but cannot beat
them themselves

If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

A Real Example - Super Mario Maker

Super Mario Maker 2 is a Nintendo Switch Game where you make
and share Mario levels

Players can play random mario levels that have been uploaded

Nintendo doesn’t like “impossible” levels, so you cannot upload until
you demonstrate it is beatable

Some people are really good at designing hard levels, but cannot beat
them themselves

If they made a Super Mario Maker 3, could Nintendo write an
efficient program to check whether a level is beatable?

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 10

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause
3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause
3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause

3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause
3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause
3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will “transform” a general Boolean Satisfiability instance into a
general Mario Maker level

We will actually reduce 3-SAT: Boolean Satisfiability for formulas of
the form

(x1 ∨ x7 ∨ ¬x10) ∧ (x2 ∨ ¬x8 ∨ ¬x10) ∧ (. . .) . . .

Each ∨ of three variables (or their negations) is called a clause
3-SAT is also NP-complete

We will take each clause and each variable and represent it in Mario

Beating the Mario level will be equivalent to finding an assignment of
the variables that

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 11

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?

Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game

Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?

Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?
Each clause will be a room, and you can only get to the other side if
the clause evaluates to true

Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?
Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

We will break the problem down like always, and try to solve each
individual part:

How can we represent a variable? What does it mean for a variable to
be true/false?

Power ups?
Not very extendable, there’s a limited number of power ups in the game
Shells for each variable, and they can either move or sit

How do we represent a clause? How to represent ∨?
Each clause will be a room, and you can only get to the other side if
the clause evaluates to true
Mario can only jump so high, maybe a vine is revealed if the variable is
correctly set

Representing ∧ is easy: we just chain rooms together

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 12

Reducing to Mario Maker

This reduction is “straightforward” to compute

If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

So it looks like level creators will just need to “git gud” as gamers say

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

This reduction is “straightforward” to compute

If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

So it looks like level creators will just need to “git gud” as gamers say

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

This reduction is “straightforward” to compute

If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

So it looks like level creators will just need to “git gud” as gamers say

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

This reduction is “straightforward” to compute

If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬c) ∧ (a ∨ d ∨ ¬b) ∧ (b ∨ c ∨ ¬d)∧
(b ∨ ¬a ∨ ¬c) ∧ (c ∨ d ∨ ¬a) ∧ (c ∨ ¬b ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬c)

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Reducing to Mario Maker

This reduction is “straightforward” to compute

If Nintendo made an efficient course checker, then they could solve
Boolean Satisfiability

So it looks like level creators will just need to “git gud” as gamers say

Can you satisfy:

(a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬c) ∧ (a ∨ d ∨ ¬b) ∧ (b ∨ c ∨ ¬d)∧
(b ∨ ¬a ∨ ¬c) ∧ (c ∨ d ∨ ¬a) ∧ (c ∨ ¬b ∨ ¬d) ∧ (¬a ∨ ¬b ∨ ¬c)

Let’s load up Mario Maker and find out!

Tim Jackman (BU Summer Challenge) Theoretical Computer Science July 16th, 2025 13

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there
was some unprocessed data that should have been added to the final page
this extra page has been added to receive it.
If you rerun the document (without altering it) this surplus page will go
away, because LATEX now knows how many pages to expect for this
document.

	fd@rm@0:

