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Prediction

@ Yesterday we were looking at decision problems, today we'll look at
learning problems
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Prediction

@ Yesterday we were looking at decision problems, today we'll look at
learning problems

@ In a learning problem, an algorithm “learns” from a data set (called
the training set) and tries to “predict” for new data

e For example, we might want to “predict” a student’s grade based on
how many hours they studied

o We have 1000s of examples in our training data (# hours, letter grade)
(e.g. (10, A), (5, B), (0, F), etc.)

e Given that a new student has studied 7 hours, our algorithm will try to
predict what grade they'll get

o Randomness is inherent here, our algorithm will sometimes be wrong
but we want it to be right more than just randomly guessing
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Simple Prediction

@ Imagine we had our data sets where points fall into two categories,
red/blue:
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@ Given a new point, how should we decide whether it should be
red/blue?
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@ Imagine we had our data sets where points fall into two categories,
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@ Given a new point, how should we decide whether it should be

red/blue?

@ We can draw trying drawing a line that’s separating the bulk of the

red and blue:
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@ Given a new point, we just check if it's above or below this line
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point, we just check if it's above or below this line

@ But how do we work out what this line should be?
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@ Given a new point, we just

check if it's above or below this line

@ But how do we work out what this line should be?

@ How do we judge how good a line is?

Tim Jackman (BU Summer Challenge)

Machine Learning July 17th, 2025



Loss Function and Gradient Descent

@ To judge a line, we compute a loss function (or cost function) which
takes in our prediction and compares how it does on the training data
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@ To judge a line, we compute a loss function (or cost function) which
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o If our line misclassifies a bunch of points, it will have high loss
@ We can then adjust our line by moving it slightly in the direction that
best improves our loss (i.e. minimizes loss after the update)

e This is a technique called gradient descent (if you know/are learning
calculus, we compute the derivative of the loss function and see what
change would lead to a minimum)
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Loss Function and Gradient Descent

@ To judge a line, we compute a loss function (or cost function) which
takes in our prediction and compares how it does on the training data

o If our line misclassifies a bunch of points, it will have high loss

@ We can then adjust our line by moving it slightly in the direction that
best improves our loss (i.e. minimizes loss after the update)

e This is a technique called gradient descent (if you know/are learning
calculus, we compute the derivative of the loss function and see what
change would lead to a minimum)

@ We repeat this many times until we get a good prediction
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Predicting Sequences

@ This previous task was classification problems, machine learning is
also used for generation problems
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@ Given a sequence of data, output the next part of the sequence
e For example, given a series of words (partial sentence), can we predict
the next word (or the rest of the sentence)?

@ To do this, the algorithm “learns” by breaking down many examples
and finding associations between words
o If the sequence is “l am going to the" then in it's training data it might
have seen that “going to the" was often finished with store, movies,

beach, etc.
o Based on it's data, it will weight these words with a probability:
store:30%, movies:10%, beach:5%, ..., moon:0.01%
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Predicting Sequences

@ This previous task was classification problems, machine learning is
also used for generation problems

@ Given a sequence of data, output the next part of the sequence
e For example, given a series of words (partial sentence), can we predict
the next word (or the rest of the sentence)?

@ To do this, the algorithm “learns” by breaking down many examples
and finding associations between words
o If the sequence is “l am going to the" then in it's training data it might
have seen that “going to the" was often finished with store, movies,

beach, etc.
o Based on it's data, it will weight these words with a probability:
store:30%, movies:10%, beach:5%, ..., moon:0.01%

o It will then randomly predict the next word based on the probability
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Large Language Models

o Large Language Models (LLMs) like ChatGPT are this but on steroids
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o Large Language Models (LLMs) like ChatGPT are this but on steroids

@ Their training data is massive and how they arrive at probabilities is
very complex and uses a lot of Linear Algebra (matrices) and calculus
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Large Language Models

o Large Language Models (LLMs) like ChatGPT are this but on steroids

@ Their training data is massive and how they arrive at probabilities is
very complex and uses a lot of Linear Algebra (matrices) and calculus

THIS 15 YOUR MACHINE LEARNING SYSTET?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JusT STIR THE PILE. INTIL
THEY START LOOKING RIGHT.
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Limitations of Language Models

@ Models are only “as good" as their training data:
o If the training data contains a lot of misinformation or bias, the model
could say stupid and racist things (like Elon Musk's GrokAl)
e They easily be manipulated for evil purposes by manipulating their
training data + prompt engineering (e.g. “Respond to the prompt like
a dumb edgy teenager would")

o LLMs are not alive. They do not know what “truth” is. They do not
understand the meaning of the text they output.
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Doesn’t make them useless! A basic webpage is going to have the
same structure and a LLM can “predict” a good HTML page.
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@ You need to verify what they say, you need to know the information
independently of LLMs for them to be useful.
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Limitations of Language Models

Models are only “as good” as their training data:
o If the training data contains a lot of misinformation or bias, the model
could say stupid and racist things (like Elon Musk's GrokAl)
e They easily be manipulated for evil purposes by manipulating their
training data + prompt engineering (e.g. “Respond to the prompt like
a dumb edgy teenager would")

o LLMs are not alive. They do not know what “truth” is. They do not
understand the meaning of the text they output.

@ They only print text that looks like their training data

@ Doesn't make them useless! A basic webpage is going to have the
same structure and a LLM can “predict” a good HTML page.

@ You need to verify what they say, you need to know the information
independently of LLMs for them to be useful.

@ Tech companies, investors, influencers, etc. are overselling LLMs as
“Al" in order to make money
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